首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
1. The aims of this study were to determine: (1) whether vasoactive intestinal peptide (VIP) regulates cholinergic and 'sensory-efferent' (tachykininergic) 35SO4 labelled mucus output in ferret trachea in vitro, using a VIP antibody, (2) the class of potassium (K+) channel involved in VIP-regulation of cholinergic neural secretion using glibenclamide (an ATP-sensitive K+ (K(ATP)) channel inhibitor), iberiotoxin (a large conductance calcium activated K+ (BK(ca)) channel blocker), and apamin (a small conductance K(ca) (SK(ca)) channel blocker), and (3) the effect of VIP on cholinergic neurotransmission using [3H]-choline overflow as a marker for acetylcholine (ACh) release. 2. Exogenous VIP (1 and 10 microM) alone increased 35SO4 output by up to 53% above baseline, but suppressed (by up to 80% at 1 microM) cholinergic and tachykininergic neural secretion without altering secretion induced by ACh or substance P (1 microM each). Endogenous VIP accounted for the minor increase in non-adrenergic, non-cholinergic (NANC), non-tachykininergic neural secretion, which was compatible with the secretory response of exogenous VIP. 3. Iberiotoxin (3 microM), but not apamin (1 microM) or glibenclamide (0.1 microM), reversed the inhibition by VIP (10 nM) of cholinergic neural secretion. 4. Both endogenous VIP (by use of the VIP antibody; 1:500 dilution) and exogenous VIP (0.1 microM), the latter by 34%, inhibited ACh release from cholinergic nerve terminals and this suppression was completely reversed by iberiotoxin (0.1 microM). 5. We conclude that, in ferret trachea in vitro, endogenous VIP has dual activity whereby its small direct stimulatory action on mucus secretion is secondary to its marked regulation of cholinergic and tachykininergic neurogenic mucus secretion. Regulation is via inhibition of neurotransmitter release, consequent upon opening of BK(Ca) channels. In the context of neurogenic mucus secretion, we propose that VIP joins NO as a neurotransmitter of i-NANC nerves in ferret trachea.  相似文献   

2.
The effect of vasoactive intestinal peptide (VIP) was examined on the smooth muscle contraction and mucus secretion produced by methacholine and phenylephrine in the ferret whole trachea in vitro. VIP (0.5 to 800 nM) produced a concentration-dependent relaxation of the ferret trachea contracted by methacholine (1 microM) and phenylephrine (10 microM). The concentration-response curves for methacholine- and phenylephrine-induced contractions were both shifted to the right by VIP (0.1 microM). Methacholine-induced secretion was inhibited in a concentration-dependent manner by VIP, whereas that due to phenylephrine was enhanced. The concentration-response curve for methacholine-induced secretion was shifted to the right by VIP, whereas the curve for phenylephrine was shifted to the left. Methacholine produced a concentration-dependent increase in the rate of output of lysozyme from the ferret trachea with no corresponding increase in the concentration of lysozyme in the mucus. Phenylephrine produced a concentration-dependent increase in the rate of output and in the concentration of lysozyme. VIP (0.1 microM) significantly increased the concentration of lysozyme in the mucus produced by methacholine with no increase in the rate of lysozyme output. However, the rate of lysozyme output due to phenylephrine was significantly increased by VIP (0.1 microM) with no increase in concentration. We suggest that VIP inhibits secretion from mucous cells stimulated by methacholine, and enhances the secretion produced by phenylephrine from serous cells.  相似文献   

3.
Six neuropeptides: short and long form of the pituitary adenylate cyclase activating polypeptide (PACAP), i.e. PACAP27 and PACAP38, vasoactive intestinal peptide (VIP), peptide histidine-isoleucine (PHI), secretin and glucagon, members of the secretin/VIP/PACAP superfamily ofpolypeptides, were tested for their ability to stimulate cyclic AMP formation in [3H]adenine-prelabeled slices of the chick hypothalamus and cerebral cortex. Of the tested peptides, only PACAP evoked pronounced and significant responses in the two analyzed brain structures. Although magnitude of the responses varied in different experiments, the effects of both forms of PACAP were usually larger in the cerebral cortex than in the hypothalamus. Glucagon, PHI (both used at concentrations 0.01-1 microM) and VIP (0.1-3 microM) induced concentration-dependent yet comparatively small effects that did not reach statistical significance, while secretin (0.1-3 microM) had no effect.  相似文献   

4.
Vasoactive intestinal peptide (VIP), secretin and pituitary adenylate cyclase-activating peptide(1-38)(PACAP(1-38)) are widely distributed amphipathic mammalian neuropeptides that exert diverse biological effects in target tissues located distant from their site of release. However, the half-life of exogenously-administered VIP, secretin and PACAP(1-38) in the bloodstream is relatively short (minutes) due to rapid degradation and inactivation. This seemingly paradoxical behavior suggests the presence of an innate system(s) that protects the peptides from degradation in vivo. To this end, VIP, secretin and PACAP(1-38) express distinct biophysical properties that once released may protect them from degradation in biological fluids. They self-aggregate at low (nanomolar) concentrations and interact avidly with biomimetic phospholipid monolayers and bilayers at physiological concentrations. The latter evokes conformational transition of the VIP, secretin and PACAP(1-38) molecules from predominantly random coil in aqueous solution to alpha-helix, the preferred peptide conformation for receptor interaction, in phospholipids. These features increase peptide stability and amplify bioactivity in vivo. Collectively, these data suggest the presence of an endogenous targeted delivery platform for VIP, secretin and PACAP(1-38). This innate system may constitute a novel molecular recognition paradigm that could also apply to other amphipathic neuropeptides. Importantly, the distinct behavior of VIP, secretin and PACAP(1-38) in the presence of phospholipids could be exploited to develop novel, long-acting therapeutic formulations of these peptides.  相似文献   

5.
1. The effects of pituitary adenylate cyclase-activating polypeptide (PACAP), vasoactive intestinal peptide (VIP) and secretin on pancreatic endocrine secretions and vascular resistance were investigated and compared in the isolated perfused pancreas of the rat. The PACAP/VIP receptor types involved have been characterized. 2. On insulin secretion, in the range 10(-11) to 10(-8) M, PACAP and VIP elicited a concentration-dependent biphasic response from pancreas perfused with 8.3 mM glucose; the peptides were equipotent. In contrast, secretin was ineffective in the range 10(-11) to 10(-9) M; at 10(-8) and 10(-7) M, it induced only low and transient insulin responses. On the other hand, the peptides did not modify the basal insulin release in the presence of a non stimulating glucose concentration (2.8 mM). 3. On glucagon secretion, PACAP and VIP (10(-11) to 10(-8) M) but also secretin (10(-9) to 10(-7) M) caused a concentration-dependent peak shaped response from pancreas perfused with 2.8 mM glucose; PACAP and VIP were equipotent and 20 times more potent then secretin. On the other hand, the peptides did not affect the glucagon release in the presence of 8.3 mM glucose. 4. On pancreatic vessels, in the range 10(-11) to 10(-9) M, the three peptides were equipotent in inducing a concentration-dependent sustained increase in pancreatic flow rate. On the other hand, at the high concentration of 10(-7) M PACAP but not VIP provoked a transient decrease of flow rate. 5. This study provides evidence for PACAP/VIP type II receptors mediating insulin and glucagon secretion as well as vasodilatation in rat pancreas. In addition, the different efficacies of secretin suggest that these effects are mediated by different PACAP/VIP type II receptor subtypes.  相似文献   

6.
1. The effect of 4-H-2-carboxamido-4-phenyl-thieno-[3,2c]-[1]-benzopyran (Zy 16039) was examined on the smooth muscle contraction, mucus secretion and albumin transudation in the ferret whole trachea in vitro. 2. Zy 16039 (0.1-20 microM) produced a concentration-dependent relaxation of the ferret trachea contracted by methacholine (1 microM) and phenylephrine (10 microM). The relaxations were about 20% of the full contractions. 3. Zy 16039 has no effect on the resting (zero) output of mucus in the ferret trachea. Methacholine-induced mucus secretion was significantly inhibited by Zy 16039, whereas phenylephrine-induced secretion was significantly increased. 4. Methacholine-induced secretion of lysozyme, a marker of serous cell secretion, was inhibited by Zy 16039 both with regard to output and concentration of lysozyme. In contrast, Zy 16039 significantly increased the output of lysozyme due to phenylephrine, with no effect on concentration. 5. Zy 16039 had no significant effect on the rate of output of fluorescent albumin through the tracheal wall. However the concentration of albumin in the mucus samples was changed because of the effect of Zy 16039 on mucus secretion induced by methacholine and phenylephrine. 6. We conclude that Zy 16039 relaxes airway smooth muscle, and either promotes or inhibits mucus secretion depending on its source. It has qualitatively similar actions to vasoactive intestinal peptide.  相似文献   

7.
We investigated, in ferret trachea in vitro, the binding characteristics and the inhibition of non-adrenergic, non-cholinergic (NANC) neural mucus secretion of four tachykinin receptor antagonists: the non-peptide tachykinin NK(1) receptor antagonists CGP 49823 ((2R,4S)-2-benzyl-1-(3, 5-dimethylbenzoyl)-4-(quinolin-micro-ylmethyl amino) piperidine), CGP 55000 ((2R,4S)-2-benzyl-1-(3, 5-bistrifluoromethyl-benzoyl)-4-(quinolinyl-methylamino)piperidine ) and CP 99,994 ((+)-(2S,3S)-3-methoxybenzyl amino)-2-phenylpiperidine), and the peptide tachykinin NK(2) receptor antagonist MEN 10,627 (cyclo(Met-Asp-Trp-Phe-Dap-Leu)cyclo(2beta-5beta)). CGP 49823, CGP 55000 and CP 99,994 concentration-dependently displaced [125I]Bolton-Hunter substance P binding in tracheal membranes with Hill coefficients not different from unity and IC(50) values of 1.4, 1.7 and 1.3 nM, respectively. In contrast, MEN 10,627 displaced binding according to a two-site model, with IC(50)s of 0.2 nM and 1. 3 microM. Electrical stimulation of tracheal segments with adrenoceptor and cholinoceptor blockade increased output of the mucus marker 35SO(4) by 59% above baseline (representing the NANC neural secretory response). CGP 49823, CGP 55000 or CP 99,994 concentration-dependently inhibited NANC neural secretion with IC(50) values of 30, 8 and 120 nM, respectively. In contrast, MEN 10, 627 (3 microM) did not inhibit secretion. The NK(1) antagonists, but not the NK(2) antagonist, inhibited [Sar(9)]substance P-induced secretion, while none of the antagonists affected acetylcholine-induced secretion. We conclude that NANC neural secretion in ferret trachea in vitro is a useful test system for tachykinin NK(1) receptor antagonists with therapeutic potential in conditions of the airways in which tachykininergic mechanisms and mucus hypersecretion are implicated in pathophysiology, for example asthma and chronic bronchitis.  相似文献   

8.
1. The effects of peptide histidine isoleucine (PHI) and neuropeptide Y (NPY) were examined on the mucus volume output produced by methacholine and phenylephrine in the ferret whole trachea in vitro. 2. Sustained application of methacholine (5 microM) or phenylephrine (20 microM) produced a maintained volume output of mucus from the trachea. Both these agonists also increased the output of lysozyme (a marker for serous cell secretion). 3. PHI inhibited the maintained mucus volume output produced by methacholine but had no effect on that due to phenylephrine. The output of lysozyme produced by methacholine or phenylephrine was not significantly changed by PHI. 4. NPY enhanced the volume output of mucus produced by methacholine or phenylephrine; however, the rate of output of lysozyme in mucus produced by both agonists was reduced by NPY. 5. We suggest that PHI has no effect on serous cell secretion but inhibits secretion from another source, possibly mucous cells. NPY inhibits serous cell secretion but has a stronger stimulant action on secretion from another source, again possibly mucous cells. 6. PHI and NPY may be important physiological modulators of mucus volume output in the ferret trachea.  相似文献   

9.
Receptors for vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) in the goose cerebral cortex were characterized using two approaches: (1) in vitro radioreceptor binding of [(125)I]-VIP, and (2) effects of peptides from the VIP/PACAP/secretin family on cyclic AMP formation. The binding of [(125)I]-VIP to goose cortical membranes was rapid, stable, and reversible. Saturation analysis resulted in a linear Scatchard plot, suggesting binding to a single class of receptor binding sites with a high affinity (K(d)=0.76 +/- 0.13 nM) and high capacity (B(max)=70 +/- 7 fmol/mg of protein). Various peptides displaced the specific binding of 0.12 nM [(125)I]-VIP to the goose cerebral cortical membranes in a concentration-dependent manner. The relative rank order of potency of the tested peptides to inhibit [(125)I]-VIP binding to the goose cerebrum was: PACAP(38) asymptotically equal to mammalian VIP > or = PACAP(27) asymptotically equal to chicken VIP > PHI (peptide histidine-isoleucine) > secretin (inactive). About 52% of specific [(125)I]-VIP binding sites in the goose cerebral cortex was sensitive to 5'-guanylimidodiphosphate [Gpp(NH)p], a nonhydrolyzable analogue of GTP. PACAP(38) and PACAP(27) potently stimulated cyclic AMP formation in the goose cerebral cortical slices in a concentration-dependent manner, displaying EC(50) values of 45.5 nM and 51.5 nM, respectively. Chicken VIP was markedly less potent than both forms of PACAP, mammalian VIP only weakly affected the nucleotide production, while effects evoked by PHI were negligible. It is concluded that the cerebral cortex of goose contains VPAC type receptors that are labeled with [(125)I]-VIP and are positively linked to cyclic AMP formation. In addition, the observed stronger action of PACAP, when compared to VIP, on cyclic AMP production in this tissue suggests its interaction with both PAC(1) and VPAC receptors.  相似文献   

10.
Chimeric peptides were synthesized by adding the C-terminal extension 28-38 of the pituitary adenylate cyclase activating polypeptide (PACAP) to the sequences (1–27), (2–27), (3–27) and (6–27) of VIP. The capacity of these peptides to occupy the selective PACAP- and the non-selective PACAP-VIP receptors and to stimulate adenylate cyclase activity was studied in Chinese hamster ovary (CHO) cells expressing the recombinant receptors. The results were compared to those obtained with VIP and the corresponding VIP fragments. The presence of the (28–38) PACAP extension increased at least 100-fold the VIP- or VIP fragment affinities for the selective PACAP receptor but not for the non-selective PACAP-VIP receptors. Furthermore, on both receptors, the extension increased peptide intrinsic activity: VIP(3–28) was a partial agonist; while VIP(3–27)/PACAP(28–38) was as potent as VIP and was apparently a full agonist; VIP(6–28) had no intrinsic activity, but VIP(6–27)/PACAP(28–38) was a partial agonist. These results suggest: (1) the presence of a specific domain for the (28–38) PACAP sequence on the selective PACAP receptor; and (2) a stabilizing effect of the (28–38) PACAP sequence on the structure of N-terminally truncated VIP. © Munksgaard 1996.  相似文献   

11.
The vasoactivity of the 27- and 38-amino acid forms of the novel peptide pituitary adenylate cyclase-activating polypeptide (PACAP) was tested in vitro. Both forms of PACAP caused endothelium-independent vasodilation (assayed by their vasodilator action on rabbit aorta). When superfused for 1 min the relaxation EC50 of PACAP27 was 23 +/- 8 nM and of PACAP38 was 152 +/- 66 nM. PACAP was 100-fold more potent than vasoactive intestinal polypeptide (VIP) (PACAP27 shows 68% amino acid sequence homology with VIP), and had a prolonged duration of action, a 1 min exposure to 1 microM PACAP27 lasting 135 +/- 7 min and to 1 microM PACAP38 108 +/- 3 min. Adenylate cyclase activity in homogenates of rabbit aortic smooth muscle cells was increased by PACAP27 and PACAP38 with EC50s of 4.4 and 0.73 nM, respectively. PACAP27 and PACAP38 are potent, long-lasting, endothelium-independent vasodilators.  相似文献   

12.
Tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis, is subject to regulation by the cAMP as well as the calcium and cGMP second messenger systems. Treatment of intact rat PC12 cells with neuropeptides including secretin and vasoactive intestinal polypeptide (VIP) stimulated tyrosine hydroxylase activity 2 to 3-fold in vitro. Secretin (EC50 = 10 nM) was about 3 orders of magnitude more potent than VIP (EC50 = 3 microM). A combination of several protease inhibitors failed to enhance the potency of either peptide. Other members of the secretin family including glucagon and peptide histidine isoleucine (PHI) stimulated tyrosine hydroxylase activity to a lesser extent. Somatostatin, which is not homologous to secretin, was ineffective. The maximal response of tyrosine hydroxylase activation to 1 microM secretin occurred within 6-15 sec. Secretin, VIP, and forskolin also enhanced tyrosine hydroxylase activity (3,4-dihydroxyphenylalanine production) in intact cells, as determined by high performance liquid chromatography and electrochemical detection. Secretin, VIP, PHI, and glucagon increased the levels of cAMP in PC12 cells more than 10-fold, as determined by radioimmunoassay. We also demonstrated that cAMP is released from the cells into the incubation medium following secretin treatment. Secretin and VIP treatment also enhanced the activity of cAMP-dependent protein kinase in a concentration-dependent fashion, as measured subsequently in vitro. Based on the greater potency of secretin in comparison with VIP, PHI, and glucagon, we suggest that the PC12 cells contain a secretin-preferring receptor that increases cAMP levels and brings about an activation of tyrosine hydroxylase activity through the stimulation of cAMP-dependent protein kinase.  相似文献   

13.
1. We investigated the effect of MEN 11467 ((1R,2S)-2-N[1(H)indol-3-yl-carbonyl]-1-N-[N(alpha)(p-tolylacetyl)-N(alpha)(methyl)-D-3-(2-naphthyl)alanyl]diaminocyclohexane) on tachykinin-induced mucus secretion in ferret trachea in vitro and determined its effect on secretion by tracheae from allergic ferrets in response to allergen challenge. 2. Repeated administration of [Sar(9),Met(O(2))(11)]-substance P ([Sar(9)]SP, 1 microM) maintained mucus output above control values for at least 1.75 h. MEN 11467 inhibited secretion in a concentration-dependent manner with maximal inhibition at 10 microM and an approximate IC(50) of 0.3 microM. Inhibition by MEN 11467 (0.1--10 microM) was maintained, to varying degree, for at least 1.75 h after washout in the continued presence of [Sar(9)]SP. 3. In electrically stimulated tracheae, tachykininergic neural secretion was virtually abolished by 1 microM MEN 11467. 4. In tracheae from ovalbumin-sensitised animals, repeated administration of ovalbumin maintained mucus output above controls for 1.5 h. MEN 11467 inhibited ovalbumin-induced secretion in a concentration-dependent manner, with complete inhibition at 1 microM. Inhibition by MEN 11467 (1 and 10 microM) was maintained, to varying degree, after drug washout for the 1.5 h of ovalbumin stimulation. 5. MEN 11467 1 microM did not affect secretion induced by either acetylcholine or histamine, whereas 10 microM MEN 11467 did inhibit agonist-induced secretion. 6. We conclude that, in ferret trachea in vitro, MEN 11467 at concentrations of 0.1--1 microM is a long acting and selective inhibitor of tachykininergic-induced mucus secretion, and may have therapeutic potential for bronchial hypersecretion associated with allergic conditions, for example in asthma.  相似文献   

14.
This work aimed to study the effects of pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP) on the mechanical and electrical activity of the circular muscle of the rat colon and the mechanisms involved in such effects. Spontaneous mechanical activity was studied in vitro in an organ bath and the membrane potential was recorded using the microelectrode technique. Both VIP and PACAP (0.1 microM) caused an immediate, sustained and tetrodotoxin (1 microM)-resistant inhibition of the cyclic spontaneous mechanical activity and hyperpolarization. The small-conductance Ca(2+)-activated K(+) channel blocker, apamin (1 microM), did not change the VIP- and PACAP-induced relaxation but reduced the hyperpolarization induced by PACAP whereas it did not change that induced by VIP. In contrast, the purinoceptor antagonist, suramin (100 microM), blocked the hyperpolarization caused by PACAP and VIP but failed to change their mechanical inhibitory effects. Moreover, the putative PACAP and VIP receptor antagonists, PACAP-(6-38) and VIP-(10-28), respectively, both 3 microM, failed to change the effects of either peptide and modified neither the inhibitory junction potential nor the relaxation induced by electrical-field stimulation. Thus, these results suggest that the mechanisms mediating relaxation are not strictly coupled to the mechanisms mediating hyperpolarization. This could be due to activation of two distinct mechanisms of action after agonist receptor interaction.  相似文献   

15.
In recent years, VIP/PACAP/secretin family has special interest. Family members are vasoactive intestinal peptide (VIP), pituitary adenylate cyclase-activating polypeptide (PACAP), secretin, glucagon, glucagon like peptide-1 (GLP(1)), GLP(2), gastric inhibitory peptide (GIP), growth hormone releasing hormone (GHRH or GRF), and peptide histidine methionine (PHM). Most of the family members present both in central nervous system (CNS) and in various peripheral tissues. The family members that are released into blood from periphery, especially gut, circulate the brain and they can cross the blood brain barrier. On the other hand, some of the members of this family that present in the brain, can cross from brain to blood and reach the peripheral targets. VIP, secretin, GLP(1), and PACAP 27 are transported into the brain by transmembrane diffusion, a non-saturable mechanism. However, uptake of PACAP 38 into the brain is saturable mechanism. While there is no report for the passage of GIP, GLP(2), and PHM, there is only one report that shows, glucagon and GHRH can cross the BBB. The passage of VIP/PACAP/secretin family members opens up new horizon for understanding of CNS effects of peripherally administrated peptides. There is much hope that those peptides may prove to be useful in the treatment of serious neurological diseases such as Alzheimer's disease, amyotropic lateral sclerosis, Parkinson's disease, AIDS related neuropathy, diabetic neuropathy, autism, stroke and nerve injury. Their benefits in various pathophysiologic conditions undoubtly motivate the development of a novel drug design for future therapeutics.  相似文献   

16.
Pituitary adenylate cyclase-activating polypeptide (PACAP38) and vasoactive intestinal peptide (VIP) were tested for their ability to influence protein kinase C (PKC) activity in the chick cerebral cortical slices. Thirty minutes incubation of the chick tissue with PACAP38 (0.1-1 microM) or VIP (0.3-3 microM) produced significant and concentration-dependent changes in PKC activity. Both peptides enhanced the enzyme activity in cell membrane preparation, and decreased it in cytosol preparation obtained from cerebral cortical slices. These changes in PKC activity suggest that PACAP and VIP are capable of activating this enzyme in cerebral cortex of chick.  相似文献   

17.
1. We characterized the tachykinin receptor(s) mediating 'sensory-efferent' neural control of release of 35SO4-labelled macromolecules (mucus) from ferret trachea in vitro in Ussing chambers using selective tachykinin antagonists. Secretion was induced by substance P (SP), neurokinin A (NKA), capsaicin, the NK1 tachykinin receptor agonist [Sar9, Met(O2)11]substance P ([Sar9]SP), or acetylcholine (ACh), or by electrical stimulation of nerves. Antagonists used were FK888 and L-668,169, selective for the NK1 receptor, SR 48968, selective for the NK2 receptor, and FK224, a dual antagonist at NK1 and NK2 receptors. The selectivity of FK888 and SR 48968 was examined on NKA-induced contraction of ferret tracheal smooth muscle in vitro. 2. SP (1 microM) increased mucus secretion by 695% above vehicle controls. FK888 (0.1 microM-30 microM) inhibited SP-induced secretion in a dose-dependent manner, with complete inhibition at 10 microM and an IC50 of 1 microM. L-668,169 (1 microM) also completely inhibited SP-induced secretion. 3. NKA (1 microM) significantly increased mucus secretion by 271% above baseline, a response which was completely inhibited by FK888 (10 microM) or L-668,169 (microM). Secretion induced by ACh (10 microM: 317% above baseline) was not inhibited by FK888 but was inhibited by atropine. Capsaicin (10 microM)-induced secretion (456% above vehicle controls) was significantly inhibited by FK888 and by L-668,169 (111% and 103% inhibition respectively). 4. Electrical stimulation (50 V, 10 Hz, 0.5 ms, 5 min) increased mucus output above baseline (increased by 12 to 26 fold), a response blocked by tetrodotoxin (0.1 microM). FK888 (10 microM) inhibited the increase in secretion due to electrical stimulation by 47%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are members of a superfamily of structurally related peptide hormones that includes glucagon, glucagon-like peptides, secretin, gastric inhibitory peptide (GIP) and growth hormone-releasing hormone (GHRH). VIP and PACAP exert their actions through three GPCRs – PAC1, VPAC1 and VPAC2– belonging to class B (also referred to as class II, or secretin receptor-like GPCRs). This family comprises receptors for all peptides structurally related to VIP and PACAP, and also receptors for parathyroid hormone, corticotropin-releasing factor, calcitonin and related peptides. PAC1 receptors are selective for PACAP, whereas VPAC1 and VPAC2 respond to both VIP and PACAP with high affinity. VIP and PACAP play diverse and important roles in the CNS, with functions in the control of circadian rhythms, learning and memory, anxiety and responses to stress and brain injury. Recent genetic studies also implicate the VPAC2 receptor in susceptibility to schizophrenia and the PAC1 receptor in post-traumatic stress disorder. In the periphery, VIP and PACAP play important roles in the control of immunity and inflammation, the control of pancreatic insulin secretion, the release of catecholamines from the adrenal medulla and as co-transmitters in autonomic and sensory neurons. This article, written by members of the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC-IUPHAR) subcommittee on receptors for VIP and PACAP, confirms the existing nomenclature for these receptors and reviews our current understanding of their structure, pharmacology and functions and their likely physiological roles in health and disease. More detailed information has been incorporated into newly revised pages in the IUPHAR database (http://www.iuphar-db.org/DATABASE/FamilyMenuForward?familyId=67).

LINKED ARTICLES

This article is part of a themed section on Secretin Family (Class B) G Protein-Coupled Receptors. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.166.issue-1  相似文献   

19.
We investigated the contribution of pituitary adenylate cyclase activating peptide (PACAP) to inhibitory nonadrenergic noncholinergic (inhibitory-NANC) relaxation of tracheal smooth muscle in cats. We also investigated the roles of vasoactive intestinal peptide (VIP) and nitric oxide (NO) on this function. Smooth muscle strips prepared from feline trachea were precontracted with 1 microM serotonin, and inhibitory-NANC relaxation was induced by electrical-field stimulation in the presence of atropine and propranolol. PACAP-(6-38) (a selective antagonist of PACAP; 1, 3 and 10 microM), VIP-(10-28) (a selective antagonist of VIP; 1, 3 and 10 microM) and N(omega)-nitro-L-arginine methyl ester (L-NAME, a selective NO synthase inhibitor; 3, 10 and 30 microM) each partially but significantly attenuated the amplitude of inhibitory-NANC relaxation. The effects of PACAP-(6-38) and VIP-(10-28) were additive. Addition of PACAP-(6-38) and/or VIP-(10-28) further attenuated relaxation in the presence of L-NAME. These results suggest that PACAP, VIP and NO contribute to the relaxation induced by inhibitory-NANC in tracheal smooth muscle in cats, and that they mediate this relaxation via different pathways.  相似文献   

20.
BACKGROUND AND PURPOSE: As pituitary adenylate cyclase-activating polypeptide 38 (PACAP 38)- and vasoactive intestinal peptide (VIP) are widely distributed in the urinary tract, the current study investigated the receptors and mechanisms involved in relaxations induced by these peptides in the pig bladder neck. EXPERIMENTAL APPROACH: Urothelium-denuded strips were suspended in organ baths for isometric force recordings and the relaxations to VIP and PACAP analogues were investigated. KEY RESULTS: VIP, PACAP 38, PACAP 27 and [Ala(11,22,28)]-VIP produced similar relaxations. Inhibition of neuronal voltage-gated Ca(2+) channels reduced relaxations to PACAP 38 and increased those induced by VIP. Blockade of capsaicin-sensitive primary afferents (CSPA), nitric oxide (NO)-synthase or guanylate cyclase reduced the PACAP 38 relaxations but failed to modify the VIP responses. Inhibition of VIP/PACAP receptors and of voltage-gated K(+) channels reduced PACAP 38 and VIP relaxations, which were not modified by the K(+) channel blockers iberiotoxin, charybdotoxin, apamin or glibenclamide. The phosphodiesterase 4 inhibitor rolipram and the adenylate cyclase activator forskolin produced potent relaxations. Blockade of protein kinase A (PKA) reduced PACAP 38- and VIP-induced relaxations. CONCLUSIONS AND IMPLICATIONS: PACAP 38 and VIP relax the pig urinary bladder neck through muscle VPAC(2) receptors linked to the cAMP-PKA pathway and involve activation of voltage-gated K(+) channels. Facilitatory PAC(1) receptors located at CSPA and coupled to NO release, and inhibitory VPAC receptors at motor endings are also involved in the relaxations to PACAP 38 and VIP, respectively. VIP/PACAP receptor antagonists could be useful in the therapy of urinary incontinence produced by intrinsic sphincter deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号