首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Inflammatory bowel disease (IBD) is a chronic gastrointestinal disease that results from a dysregulated immune response against specific environmental triggers in a genetically predisposed individual. Increasing evidence has indicated a causal role for changes in gut microbiota (dysbiosis) contributing to this immune-mediated intestinal inflammation. These mechanisms involve dysregulation of multiple facets of the host immune pathways that are potentially reversible. Faecal microbiota transplantation (FMT) is the transfer of processed stool from a healthy donor into an individual with an illness. FMT has shown promising results in both animal model experiments and clinical studies in IBD in the resolution of intestinal inflammation. The underlying mechanisms, however, are unclear. Insights from these studies have shown interactions between modulation of dysbiosis via changes in abundances of specific members of the gut microbial community and changes in host immunological pathways. Unravelling these causal relationships has promising potential for a translational therapy role to develop targeted microbial therapies and understand the mechanisms that underpin IBD aetiopathogenesis. In this review, we discuss current evidence for the contribution of gut microbiota in the disruption of intestinal immune homeostasis and immunoregulatory mechanisms that are associated with the resolution of inflammation through FMT in IBD.  相似文献   

2.
Mucosal surfaces are colonized by a diverse and dynamic microbiota. Much investigation has focused on bacterial colonization of the intestine, home to the vast majority of this microbiota. Experimental evidence has highlighted that these colonizing microbes are essential to host development and homeostasis, but less is known about host factors that may regulate the composition of this ecosystem. While evidence shows that IgA has a role in shaping this microbiota, it is likely that effector molecules of the innate immune system are also involved. One hypothesis is that gene-encoded antimicrobial peptides, key elements of innate immunity throughout nature, have an essential role in this regulation. These effector molecules characteristically have activity against a broad spectrum of bacteria and other microbes. At mucosal surfaces, antimicrobial peptides may affect the numbers and/or composition of the colonizing microbiota. In humans and other mammals, defensins are a predominant class of antimicrobial peptides. In the small intestine, Paneth cells (specialized secretory epithelial cells) produce high quantities of defensins and several other antibiotic peptides and proteins. Data from murine models indicate that Paneth cell defensins play a pivotal role in defense from food and water-borne pathogens in the intestinal lumen. Recent studies in humans provide evidence that reduced Paneth cell defensin expression may be a key pathogenic factor in ileal Crohn's disease, a subgroup of inflammatory bowel disease (IBD), and changes in the colonizing microbiota may mediate this pathogenic mechanism. It is also possible that low levels of Paneth cell defensins, characteristic of normal intestinal development, may predispose premature neonates to necrotizing enterocolitis (NEC) through similar close links with the composition of the intestinal microbiota. Future studies to further define mechanisms by which defensins and other host factors regulate the composition of the intestinal microbiota will likely provide new insights into intestinal homeostasis and new therapeutic strategies for inflammatory and infectious diseases of the bowel.  相似文献   

3.
A complex relationship between the microbiota and the host emerges early at birth and continues throughout life. The microbiota includes the prokaryotes, viruses and eukaryotes living among us, all of which interact to different extents with various organs and tissues in the body, including the immune system. Although the microbiota is most dense in the lower intestine, its influence on host immunity extends beyond the gastrointestinal tract. These interactions with the immune system operate through the actions of various microbial structures and metabolites, with outcomes ranging from beneficial to deleterious for the host. These differential outcomes are dictated by host factors, environment, and the type of microbes or products present in a specific ecosystem. It is also becoming clear that the microbes are in turn affected and respond to the host immune system. Disruption of this complex dialogue between host and microbiota can lead to immune pathologies such as inflammatory bowel diseases, diabetes and obesity. This review will discuss recent advances regarding the ways in which the host immune system and microbiota interact and communicate with one another.  相似文献   

4.
Inflammatory bowel disease (IBD) and colorectal cancer (CRC) are the major diseases of the lower gastrointestinal tract. The intestinal epithelium plays a critical role in the host’s interactions with the large communities of resident luminal bacteria. Epithelial cells recognize the bacterial components via pattern-recognition receptors. Toll-like receptors (TLRs) are a major class of pattern-recognition receptors that are present on intestinal epithelial cells, including putative stem cells. Stem cells are responsible for tissue homeostasis and regeneration after injury including IBD. Stem cells are also implicated in the pathogenesis of CRC. In susceptible individuals, disruption of normal homeostatic balance between the host’s mucosal cells and enteric microflora is believed to result in aberrant immune responses against the resident commensal bacteria, leading to IBD. Microbiological analyses have revealed that the composition and localization of microbiota is altered in CRC and IBD. It is plausible that stem cells directly sense and respond to microbiota. This review aims to summarize the current knowledge on the effect of microbiota and TLR signaling on intestinal stem cells. It also describes how TLR signaling could affect the stem cell regulatory pathways.  相似文献   

5.
The commensal microbiota is a major regulator of the immune system. The majority of commensal bacteria inhabit the gastrointestinal tract and are known to regulate local mucosal defenses against intestinal pathogens. There is growing appreciation that the commensal microbiota also regulates immune responses at extraintestinal sites. Currently, however, it is unclear how this influences host defenses against bacterial infection outside the intestine. Microbiota depletion caused significant defects in the early innate response to lung infection by the major human pathogen Klebsiella pneumoniae. After microbiota depletion, early clearance of K. pneumoniae was impaired, and this could be rescued by administration of bacterial Nod-like receptor (NLR) ligands (the NOD1 ligand MurNAcTriDAP and NOD2 ligand muramyl dipeptide [MDP]) but not bacterial Toll-like receptor (TLR) ligands. Importantly, NLR ligands from the gastrointestinal, but not upper respiratory, tract rescued host defenses in the lung. Defects in early innate immunity were found to be due to reduced reactive oxygen species-mediated killing of bacteria by alveolar macrophages. These data show that bacterial signals from the intestine have a profound influence on establishing the levels of antibacterial defenses in distal tissues.  相似文献   

6.
The intestinal tract harbors diverse microorganisms, host- and microbiota-derived metabolites, and potentially harmful dietary antigens. The epithelial barrier separates the mucosa, where diverse immune cells exist, from the lumen to avoid excessive immune reactions against microbes and dietary antigens. Inflammatory bowel disease (IBD), such as ulcerative colitis and Crohn's disease, is characterized by a chronic and relapsing disorder of the gastrointestinal tract. Although the precise etiology of IBD is still largely unknown, accumulating evidence suggests that IBD is multifactorial, involving host genetics and microbiota. Alterations in the metabolomic profiles and microbial community are features of IBD. Advances in mass spectrometry–based lipidomic technologies enable the identification of changes in the composition of intestinal lipid species in IBD. Because lipids have a wide range of functions, including signal transduction and cell membrane formation, the dysregulation of lipid metabolism drastically affects the physiology of the host and microorganisms. Therefore, a better understanding of the intimate interactions of intestinal lipids with host cells that are implicated in the pathogenesis of intestinal inflammation might aid in the identification of novel biomarkers and therapeutic targets for IBD. This review summarizes the current knowledge on the mechanisms by which host and microbial lipids control and maintain intestinal health and diseases.  相似文献   

7.
Host–microbiota mutualism has been established during long‐term co‐evolution. A diverse and rich gut microbiota plays an essential role in the development and maturation of the host immune system. Education of the adaptive immune compartment by gut microbiota antigens is important in establishing immune balance. In particular, a critical time frame immediately after birth provides a ‘window of opportunity’ for the development of lymphoid structures, differentiation and maturation of T and B cells and, most importantly, establishment of immune tolerance to gut commensals. Depending on the colonization niche, antigen type and metabolic property of different gut microbes, CD4 T‐cell responses vary greatly, which results in differentiation into distinct subsets. As a consequence, certain bacteria elicit effector‐like immune responses by promoting the production of pro‐inflammatory cytokines such as interferon‐γ and interleukin‐17A, whereas other bacteria favour the generation of regulatory CD4 T cells and provide help with gut homeostasis. The microbiota have profound effects on B cells also. Gut microbial exposure leads to a continuous diversification of B‐cell repertoire and the production of T‐dependent and ‐independent antibodies, especially IgA. These combined effects of the gut microbes provide an elegant educational process to the adaptive immune network. Contrariwise, failure of this process results in a reduced homeostasis with the gut microbiota, and an increased susceptibility to various immune disorders, both inside and outside the gut. With more definitive microbial–immune relations waiting to be discovered, modulation of the host gut microbiota has a promising future for disease intervention.  相似文献   

8.
9.
Mucosal tissues contain distinct microbial communities that differ drastically depending on the barrier site, and as such, mucosal immune responses have evolved to be tailored specifically for their location. Whether protective or regulatory immune responses against invading pathogens or the commensal microbiota occur is controlled by local mononuclear phagocytes (MNPs). Comprising macrophages and dendritic cells (DCs), the functions of these cells are highly dependent on the local environment. For example, the intestine contains the greatest bacterial load of any site in the body, and hence, intestinal MNPs are hyporesponsive to bacterial stimulation. This is thought to be one of the major mechanisms by which harmful immune responses directed against the trillions of harmless bacteria that line the gut lumen are avoided. Regulation of MNP function by the microbiota has been characterized in the most depth in the intestine but there are several mucosal sites that also contain their own microbiota. In this review, we present an overview of how MNP function is regulated by the microbiota at mucosal sites, highlighting recent novel pathways by which this occurs in the intestine, and new studies elucidating these interactions at mucosal sites that have been characterized in less depth, including the urogenital tract.  相似文献   

10.
Maintaining homoeostatic host–microbe interactions is vital for host immune function. The gut microbiota shapes the host immune system and the immune system reciprocally shapes and modifies the gut microbiota. However, our understanding of how these microbes are tolerated and how individual, or communities of, gut microbes influence host function is limited. This review will focus on metabolites as key mediators of this complex host–microbe relationship. It will look at the central role of epithelial metabolism in shaping the gut microbiota, how microbial metabolites influence the epithelium and the mucosal and peripheral immune system, and how the immune system shapes microbial composition and metabolism. Finally, this review will look at how metabolites are involved in cross-talk between different members of the microbiota and their role during infections.  相似文献   

11.
《Mucosal immunology》2022,15(6):1188-1198
In the beginning it was simple: we injected a protein antigen and studied the immune responses against the purified protein. This elegant toolbox uncovered thousands of mechanisms via which immune cells are activated. However, when we consider immune responses against real infectious threats, this elegant simplification misses half of the story: the infectious agents are typically evolving orders-of-magnitude faster than we are. Nowhere is this more pronounced than in the mammalian large intestine. A bacterium representing only 0.1% of the human gut microbiota will have a population size of 109 clones, each actively replicating. Moreover, the evolutionary pressure from other microbes is at least as profound as direct effects of the immune system. Therefore, to really understand intestinal immune mechanisms, we need to understand both the host response and how rapid microbial evolution alters the apparent outcome of the response. In this review we use the examples of intestinal inflammation and secretory immunoglobulin A (SIgA) to highlight what is already known (Fig. 1). Further, we will explore how these interactions can inform immunotherapy and prophylaxis. This has major implications for how we design effective mucosal vaccines against increasingly drug-resistant bacterial pathogens  相似文献   

12.
《Autoimmunity reviews》2020,19(8):102530
As a gigantic community in the human body, the microbiota exerts pleiotropic roles in human health and disease ranging from digestion and absorption of nutrients from food, defense against infection of pathogens, to regulation of immune system development and immune homeostasis. Recent advances in “omics” studies and bioinformatics analyses have broadened our insights of the microbiota composition of the inner and other surfaces of the body and their interactions with the host. Apart from the direct contact of microbes at the mucosal barrier, metabolites produced or metabolized by the gut microbes can serve as important immune regulators or initiators in a wide variety of diseases, including gastrointestinal diseases, metabolic disorders and systemic rheumatic diseases. This review focuses on the most recent understanding of how the microbiota and metabolites shape rheumatic diseases. Studies that explore the mechanistic interplay between microbes, metabolites and the host could thereby provide clues for novel methods in the diagnosis, therapy, and prevention of rheumatic diseases.  相似文献   

13.
Bile salts are the water-soluble end products of hepatic cholesterol catabolism that are released into the duodenum and solubilize lipids due to their amphipathic structure. Bile salts also act as endogenous ligands for dedicated nuclear receptors that exert a plethora of biological processes, mostly related to metabolism. Bile salts are actively reclaimed in the distal part of the small intestine, released into the portal system, and subsequently extracted by the liver. This enterohepatic cycle is critically dependent on dedicated bile salt transporters. In the intestinal lumen, bile salts exert direct antimicrobial activity based on their detergent property and shape the gut microbiota. Bile salt metabolism by gut microbiota serves as a mechanism to counteract this toxicity and generates bile salt species that are distinct from those of the host. Innate immune cells of the liver play an important role in the early recognition and effector response to invading microbes. Bile salts signal primarily via the membrane receptor TGR5 and the intracellular farnesoid-x receptor, both present in innate immune cells. In this review, the interactions between bile salts, gut microbiota, and hepatic innate immunity are discussed.  相似文献   

14.
Connection between inflammation and cancer is a rapidly developing field. Epidemiological data suggests that inflammation along with distinct arms of host immune system plays a very important role in the development and progression of many different cancers. Inflammatory bowel disease (IBD) is an important risk factor for the development of colon cancer, namely, colitis-associated cancer (CAC). The molecular mechanisms by which inflammation promotes cancer development are still being uncovered and may differ between CAC and other forms of colorectal cancer. Recent work has shed light on the role of distinct immune cells, cytokines, and other immune mediators in virtually all of the steps of colonic tumorigenesis, including tumor initiation and promotion as well as progression and metastasis. The close proximity of colonic tumors to the myriad of intestinal microbes, as well as instrumental role of microbiota in IBD, introduces microbes as new players capable of triggering inflammation and possibly promoting tumorigenesis. Various mechanisms of CAC tumorigenesis as well as new possible hints for the future approaches for prevention and therapy are discussed in this review.  相似文献   

15.
The intestinal tract of mammals is colonized by a large number of microorganisms including trillions of bacteria that are referred to collectively as the gut microbiota. These indigenous microorganisms have co-evolved with the host in a symbiotic relationship. In addition to metabolic benefits, symbiotic bacteria provide the host with several functions that promote immune homeostasis, immune responses, and protection against pathogen colonization. The ability of symbiotic bacteria to inhibit pathogen colonization is mediated via several mechanisms including direct killing, competition for limited nutrients, and enhancement of immune responses. Pathogens have evolved strategies to promote their replication in the presence of the gut microbiota. Perturbation of the gut microbiota structure by environmental and genetic factors increases the risk of pathogen infection, promotes the overgrowth of harmful pathobionts, and the development of inflammatory disease. Understanding the interaction of the microbiota with pathogens and the immune system will provide critical insight into the pathogenesis of disease and the development of strategies to prevent and treat inflammatory disease.  相似文献   

16.
《Mucosal immunology》2016,9(6):1360-1365
Inflammatory bowel disease (IBD) is due to an aberrant immune response toward luminal antigens, probably commensal bacteria, in genetically susceptible subjects and is also influenced by environmental factors. An imbalanced intestinal microbiota known as “dysbiosis,” characterized by an increased proportion of pro-inflammatory microorganisms and a decreased proportion of anti-inflammatory microorganisms, has been repeatedly observed in IBD and is now recognized as a key factor in the gut inflammatory process. Fecal microbiota transplantation (FMT) has gained interest as a novel treatment option in IBD. The goal of FMT in IBD is not only to correct the dysbiosis, but also to restore a normal dialog between the host immune system and the microbiota. Data are still scarce, but the results of the first studies suggest that FMT could be a promising therapy in IBD. More studies are needed to define the best indications, optimal timing, frequency, mode of delivery, and the optimal donor for each patient.  相似文献   

17.
The microbiota that populate the mammalian intestine are critical for proper host physiology, yet simultaneously pose a potential danger. Intestinal antigen-presenting cells, namely macrophages and dendritic cells (DCs), are integral components of the mucosal innate immune system that maintain co-existence with the microbiota in face of this constant threat. Intestinal macrophages and DCs integrate signals from the microenvironment to orchestrate innate and adaptive immune responses that ultimately lead to durable tolerance of the microbiota. Tolerance is not a default response, however, because macrophages and DCs remain poised to vigorously respond to pathogens that breach the epithelial barrier. In this review, we summarize the salient features of macrophages and DCs in the healthy and inflamed intestine and discuss how signals from the microbiota can influence their function.From birth, the mammalian intestine is colonized with a complex microbiota leading to a lifelong mutualistic relationship.1 This diverse microbial population confers several evolutionary advantages to the host while simultaneously introducing a robust antigenic challenge that has the potential to initiate intestinal inflammation. Despite this threat, the host manages to maintain intestinal homeostasis via a sophisticated immune cell network that promotes tolerance to the microbiota while permitting responsiveness to invading pathogens.2,3 Central to this discrimination process are intestinal antigen-presenting cells (APCs), predominantly composed of macrophages and dendritic cells (DCs), that are separated from the microbiota by a single layer of epithelial cells. Together, intestinal macrophages and DCs integrate cues from epithelial, immune, and stromal cells to direct innate and adaptive immunity.4–10 Inappropriate responses to these signals can lead to a breakdown of tolerance toward the microbiota and culminate in uncontrolled inflammation, such as that observed in Crohn disease and ulcerative colitis.11 This review will focus on the role of intestinal macrophages and DCs in the steady state and during inflammation, as well as how these cells interface with the microbiota.  相似文献   

18.
《Mucosal immunology》2020,13(1):3-11
The human intestine is densely colonized with commensal microbes that stimulate the immune system. While secretory Immunoglobulin (Ig) A is known to play a crucial role in gut microbiota compartmentalization, secretory IgM, and systemic IgG have recently been highlighted in host-microbiota interactions as well. In this review, we discuss important aspects of secretory IgA biology, but rather than focusing on mechanistic aspects of IgA impact on microbiota, we stress the current knowledge of systemic antibody responses to whole gut microbiota, in particular their generation, specificities, and function. We also provide a comprehensive picture of secretory IgM biology. Finally, therapeutic and diagnostic implications of these novel findings for the treatment of various diseases are outlined.  相似文献   

19.
The intestinal tract represents the largest mucosal surface and is a major site of multifaceted interactions between the host mucosal immune system and components of the intestinal microbiota. Host immune responses to the commensal microbiota are tightly controlled and, meanwhile, the microbiota actively shapes intestinal immune responses to itself. Appreciation of these interactions during health and disease may direct therapeutic approaches to a broad range of autoimmune and inflammatory disorders in humans. In this review, we will discuss findings on how the intestinal immune system, especially adaptive immune cells, helps accommodate the large number of resident bacteria, and in turn how the microbiota shapes intestinal immune responses to achieve mutualism.  相似文献   

20.
Mutualism with our intestinal microbiota is a prerequisite for healthy existence. This requires physical separation of the majority of the microbiota from the host (by secreted antimicrobials, mucus, and the intestinal epithelium) and active immune control of the low numbers of microbes that overcome these physical and chemical barriers, even in healthy individuals. In this review, we address how B-cell responses to members of the intestinal microbiota form a robust network with mucus, epithelial integrity, follicular helper T cells, innate immunity, and gut-associated lymphoid tissues to maintain host–microbiota mutualism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号