首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
CD4+ CD25+ regulatory T cells (Treg) play a major role in the prevention of autoimmune diseases. Converging evidence indicates that Treg specific for self-antigens expressed by target tissues have a greater therapeutic potential than polyclonal Treg. Therefore, the selective expansion of rare self-antigen-specific T(reg) naturally present in a polyclonal repertoire of Treg is of major importance. In this work, we investigated the potential of different dendritic cell (DC) subsets to expand antigen-specific Treg in mice. The in vitro selective expansion of rare islet-specific Treg from polyclonal Treg could only be achieved efficiently by stimulation with CD8+ splenic DC presenting islet antigens. These islet-specific Treg exerted potent bystander suppression on diabetogenic T cells and prevented type 1 diabetes. This approach opens new perspectives for cell therapy of autoimmune diseases.  相似文献   

2.
CD4+CD25+FoxP3+ naturally occurring regulatory T (Treg) cells play a crucial role in the maintenance of immune tolerance and in preventing autoimmune pathology. Interventions that expand Treg cells are highly desirable, as they may offer novel treatment options in a variety of autoimmune and transplantation settings. Paralleling previous preclinical studies, we demonstrate here that administration of the hematopoietic growth factor Flt3L to human subjects increases the frequency and absolute number of Treg cells, and reduces the ratio of CD8+ T cells to Treg cells in the peripheral blood. The increase in Treg cells was due to enhanced Treg‐cell proliferation rather than release of Treg cells from the thymus. Further studies revealed that Flt3L‐induced proliferation of Treg cells was an indirect effect that occurred via the interaction of Treg cells with the Flt3L‐expanded pool of CD1c+ myeloid dendritic cells. On the basis of these findings, Flt3L may represent a promising agent for promoting immune tolerance in a variety of clinical settings.  相似文献   

3.
Carbon monoxide (CO) treatment improves pathogenic outcome of autoimmune diseases by promoting tolerance. However, the mechanism behind this protective tolerance is not yet defined. Here, we show in a transgenic mouse model for autoimmune diabetes that ex vivo gaseous CO (gCO)‐treated DCs loaded with pancreatic β‐cell peptides protect mice from disease. This protection is peptide‐restricted, independent of IL‐10 secretion by DCs and of CD4+ T cells. Although no differences were observed in autoreactive CD8+ T‐cell function from gCO‐treated versus untreated DC‐immunized groups, gCO‐treated DCs strongly inhibited accumulation of autoreactive CD8+ T cells in the pancreas. Interestingly, induction of β1‐integrin was curtailed when CD8+ T cells were primed with gCO‐treated DCs, and the capacity of these CD8+ T cells to lyse isolated islet was dramatically impaired. Thus, immunotherapy using CO‐treated DCs appears to be an original strategy to control autoimmune disease.  相似文献   

4.
The ligand for the receptor tyrosine kinase fms-like tyrosine kinase 3 (Flt3L) is a growth factor for hematopoietic progenitors and induces expansion of the two distinct lineages of dendritic cells (DC) that have been described in humans. These two lineages, DC1 and DC2, have been described according to their ability to induce naive T cell differentiation to T helper cell type 1 (Th1) and Th2 effector cells, respectively. The immunoregulatory potential of DC1 and DC2 depends on their state of maturation and activation, which can be mediated by several molecules. Because monocyte-derived DC1 produce interleukin-12 (IL-12) when stimulated with CD40 ligand (CD40L), we hypothesized that similar results would be obtained with DC1 mobilized by Flt3L. Unexpectedly, we found that immature DC expanded in vivo by Flt3L treatment could not be stimulated to produce IL-12 in vitro using CD40L and/or interferon-gamma (IFN-gamma) alone. Instead, we found that Flt3L-mobilized DC from cancer patients require a sequence of specific signals for maturation, which included initial treatment with granulocyte macrophage-colony stimulating factor followed by a combination of maturation signals such as CD40L and IFN-gamma. Flt3L-mobilized DC matured in this manner possessed greater T cell-stimulatory function than nonmatured DC. The ability to generate phenotypically mature, IL-12-producing DC1 from peripheral blood mononuclear cells mobilized by Flt3L will have important implications for the development of effective cancer immunotherapy strategies.  相似文献   

5.
CD4+CD25+forkhead box p3 (Foxp3)+ regulatory T cells (Treg) control peripheral tolerance. Although Treg are anergic when stimulated through the TCR, mature bone marrow-derived, but not splenic, dendritic cells (DC) can induce their proliferation after TCR stimulation in the absence of IL-2. One possibility is that the DC produce proinflammatory cytokines such as IL-1 or IL-6 that function as growth factors for Treg. We have analyzed the costimulatory effects of IL-1 on the expansion of Foxp3+ Treg in vitro. When CD4+CD25+ T cells were cultured in the presence of splenic DC and IL-1, marked expansion of the Foxp3+ T cells was observed. The effects of IL-1 were mediated on CD4+CD25+Foxp3(-) T cells present in the starting population rather than on the DC or on the CD4+CD25+Foxp3+ T cells. In contrast, stimulation of CD4+CD25+ T cells with plate-bound anti-CD3 and IL-1 in the absence of DC resulted in the outgrowth of a CD4+CD25+Foxp3(-) T cell population composed of NKT cells and non-NKT, IL-17-producing cells. Foxp3+ Treg purified from mice expressing the reporter gene enhanced GFP in the Foxp3 locus failed to proliferate when costimulated with IL-1. These findings have important implications for the design of protocols for the expansion of CD4+CD25+ T cells for cellular biotherapy.  相似文献   

6.
CD4+ CD25+ Foxp3+ regulatory T cells (Treg) are natural suppressors of autoimmunity but they can also dampen the effective clearance of infectious organisms. These cells have the potential to be exploited to prevent transplant rejection and to treat autoimmune disease. A paper in this issue of the European Journal of Immunology details a method to selectively expand antigen-specific Treg from a polyclonal Treg population, by using a specific dendritic cell (DC) subset. Furthermore, the authors show that such Treg can be used to prevent experimental type I diabetes; however, as Treg are positively selected by thymic epithelial cells (TEC) on the basis of self-reactivity, they would systematically suppress protective immune responses unless their repertoire is devoid of recognition towards peripheral antigen-presenting cells. This may be achieved by negative selection of developing Treg on thymic DC, thus creating a 'blind-spot' corresponding to DC-self-antigens in the mature Treg repertoire. Therefore, therapeutic use of DC subsets for the expansion of rare Treg populations should take into account this blind-spot, as peptides that are not accessible to thymic DC may be significantly more effective for the expansion of Treg.  相似文献   

7.
Cancer immunotherapy might be based on the administration to cancer patients of dendritic cells (DC) 'pulsed' with tumor-specific antigens. An alternative approach is to directly expand and/or activate DC in vivo using the cytokine Flt3 Ligand (FL). In mice, FL can drive large expansion of both lymphoid-related DC that appears to selectively enhance Th1-like immune responses and myeloid-related DC that enhances a more mixed Th phenotype. Immunization of FL-treated mice with a protein antigen leads to increased production of antibodies specific for that protein as well as to antigen-specific helper T cell responses. Studies of mouse tumor models have demonstrated that FL administration leads to the generation of protective anti-tumor immune responses, these effects being mediated by CTL and/or NK cells. When, FL has only minor or short term effects, the anti-tumor response can be significantly amplified by adding other cytokines, known to act at the T cell level, such as CD40 ligand (CD40L) or 4-1BBL, a TNF family member. Thus, combination of FL + CD40L or FL + 4-1BBL have superior anti-tumor effects vs. either cytokine alone. In conclusion, cytokines offer a variety of novel approaches for the treatment of cancer, infectious or auto-immune diseases.  相似文献   

8.
Foxp3+ Treg are crucial for the maintenance of self‐tolerance and have been shown to control CD8+ T‐cell effector functions. In addition, Treg are thought to control the priming of CD8+ T cells, which recognize the same antigens as Treg. Taking advantage of our model of peripheral tolerance induction to influenza hemagglutinin (HA) after HA gene transfer, we found that HA‐specific Treg suppress antigen‐linked CTL responses through early blockade of CD8+ T‐cell expansion. Confronted with their cognate antigen, Treg expand more rapidly than CD8+ T cells and are highly suppressive only during the initial stages of immune priming. They nullify HA‐specific CD8+ T‐cell responses, local inflammatory responses and rejection of HA transduced cells. When HA gene transfer is performed with extensive tissue inflammation, HA‐specific Treg are less effective but still reduce the frequency of newly primed HA‐specific CD8+ T cells and the ensuing frequency of memory CD8+ T cells. Our results demonstrate that Treg control CTL priming in an antigen‐specific manner at the level of T‐cell expansion, highlighting how self‐reactive Treg could prevent the induction of autoimmune responses through selective blockade of autoreactive T‐cell proliferation.  相似文献   

9.
Type 1 diabetes mellitus (type 1 DM) is the disease of insulin deficiency due to the destruction of islet cells of the pancreas, presumably through the pathogenic process mediated by autoreactive T cells. In many autoimmune diseases, oligoclonal expansion of autoreactive T cells have been reported recently. It is also suggested that proliferation of T cell clones which recognize pancreatic beta cell antigen are involved in the pathogenesis of type 1 DM. In this study, the diversity of T cell receptor (TCR) structures were evaluated in patients with type 1 DM by analyzing TCR Vbeta repertoire and complementarity determining region 3 (CDR3) size distributions of circulating T cells. Increase of specific TCR Vbeta repertoires was often observed in patients with positive anti-glutamic acid decarboxylase antibody, and this tendency was more evident among CD8+ T cells than in CD4+ T cells. Reductions of CDR3 sizes were frequently seen among CD8+ T cells from patients whose onset was within 10 years. These results suggested that selective expansion of CD8+ T cell clones play roles in the pathogenesis of type 1 DM.  相似文献   

10.
Human autoimmune diseases are often characterized by a relative deficiency in CD4+CD25+ regulatory T cells (Treg). We therefore hypothesized that expansion of Treg can ameliorate autoimmune pathology. We tested this hypothesis in an experimental model for autoimmune myasthenia gravis (MG), a B‐cell‐mediated disease characterized by auto‐Ab directed against the acetylcholine receptor within neuromuscular junctions. We showed that injection of immune complexes composed of the cytokine IL‐2 and anti‐IL‐2 mAb (JES6‐1A12) induced an effective and sustained expansion of Treg, via peripheral proliferation of CD4+CD25+Foxp3+ cells and peripheral conversion of CD4+CD25?Foxp3? cells. The expanded Treg potently suppressed autoreactive T‐ and B‐cell responses to acetylcholine receptor and attenuated the muscular weakness that is characteristic of MG. Thus, IL‐2/anti‐IL‐2 mAb complexes can expand functional Treg in vivo, providing a potential clinical application of this modality for treatment of MG and other autoimmune disorders.  相似文献   

11.
12.
Generation and Regulation of CD8+ Regulatory T Cells   总被引:3,自引:0,他引:3  
Research into the suppressive activity of CD4+FoxP3+ T regulatory cells (Treg) has defined a sublineage of CD4+ cells that contribute to self-tolerance and resistance to autoimmune disease. Much less attention has been given to the potential contribution of regulatory sublineages of CD8+ cells. Analysis of a small fraction of CD8+ cells that target autoreactive CD4+ cells through recognition of the MHC class Ib molecule Qa-1 in mouse and HLA-E in human has revitalized interest in CD8+ Treg. Here we summarize recent progress and future directions of research into the role of this CD8+ sublineage in resistance to autoimmune disease. Cellular & Molecular Immunology. 2008; 5(6):401-406.  相似文献   

13.
A dendritic cell (DC) imbalance with a marked deficiency in CD4- 8+ DC occurs in non-obese diabetic (NOD) mice, a model of human autoimmune diabetes mellitus. Using a NOD congenic mouse strain, we find that this CD4- 8+ DC deficiency is associated with a gene segment on chromosome 4, which also encompasses non-MHC diabetes susceptibility loci. Treatment of NOD mice with fms-like tyrosine kinase 3 ligand (FL) enhances the level of CD4- 8+ DC, temporarily reversing the DC subtype imbalance. At the same time, fms-like tyrosine kinase 3 ligand treatment blocks early stages of the diabetogenic process and with appropriately timed administration can completely prevent diabetes development. This points to a possible clinical use of FL to prevent autoimmune disease.  相似文献   

14.
NKG2D blockade prevents autoimmune diabetes in NOD mice   总被引:19,自引:0,他引:19  
NKG2D is an activating receptor on CD8(+) T cells and NK cells that has been implicated in immunity against tumors and microbial pathogens. Here we show that RAE-1 is present in prediabetic pancreas islets of NOD mice and that autoreactive CD8(+) T cells infiltrating the pancreas express NKG2D. Treatment with a nondepleting anti-NKG2D monoclonal antibody (mAb) during the prediabetic stage completely prevented disease by impairing the expansion and function of autoreactive CD8(+) T cells. These findings demonstrate that NKG2D is essential for disease progression and suggest a new therapeutic target for autoimmune type I diabetes.  相似文献   

15.
Abnormalities in DC function are implicated in defective immune regulation that leads to type-1 diabetes (T1D) in NOD mice and humans. In this study, we used GM-CSF and Flt3-L to modulate DC function in NOD mice and observed the effects on T1D development. Treatment with either ligand at earlier stages of insulitis suppressed the development of T1D. Unlike Flt3-L, GM-CSF was more effective in suppressing T1D, even when administered at later stages of insulitis. In vitro studies and in vivo adoptive transfer experiments revealed that CD4+CD25+ T cells from GM-CSF-treated mice could suppress effector T cell response and T1D. This suppression is likely mediated through enhanced IL-10 and TGF-β1 production. Adoptive transfer of GM-CSF exposed DCs to naive mice resulted in an expansion of Foxp3+ T cells and a significant delay in T1D onset. Our results indicate that GM-CSF acted primarily on DCs and caused an expansion of Foxp3+ Tregs which delayed the onset of T1D in NOD mice.  相似文献   

16.
The PD-1-PDL1 pathway plays a critical role in regulating autoimmune diabetes as blockade or deficiency of PD-1 or PDL1 results in accelerated disease in NOD mice. We explored the cellular mechanisms involved in the regulation of these autoimmune responses by investigations involving various gene-deficient mice on the NOD background. Administration of blocking anti-PDL1 antibody to CD4+ T cell-deficient, CD8+ T cell-deficient and B cell-deficient mice demonstrated that PDL1-mediated regulation of autoreactive CD4+ and CD8+ T cells is critical for diabetes development. This concept was confirmed by adoptive transfer studies utilizing lymphocytes from BDC2.5 and 4.1 (CD4+) TCR transgenic mice and 8.3 (CD8+) TCR transgenic mice; efforts showing increased proliferation of both CD4+ and CD8+ T cells following PDL1 blockade in vivo. Furthermore, we observed that anti-PDL1-mediated acceleration is dependent upon events occurring in the pancreatic lymph nodes during early disease stages, but becomes independent of the pancreatic lymph nodes during later disease stages. These data provide strong evidence that PDL1 regulates autoimmune diabetes by limiting the expansion of CD4+ and CD8+ autoreactive T cells, and define the timing and locale of PDL1-mediated regulation of type 1 diabetes.  相似文献   

17.
DC present exogenous proteins to MHC class I‐restricted CD8+ T cells. This function does not require endogenous antigen synthesis within DC, providing the potential to elicit CD8+ T‐cell responses to immune complexes, inactivated microbes, dying cells, and proteins such as OVA. In mice, the CD8+ or DEC‐205+ DC are specialized for cross‐presentation, and this subset can be increased 10‐fold in numbers following Fms‐like tyrosine kinase 3 ligand (Flt3L) treatment in vivo. Therefore, we studied cross‐presentation by abundant Flt3L DC using HIV gag protein. When enriched by positive selection with anti‐CD11c beads, cells from Flt3L mice are not only more abundant but are also more highly enriched in CD11chigh DC, particularly the DEC‐205+ subset. DC cross‐present HIV gag to primed CD8+ T cells, but when the antigen is delivered within an antibody to DEC‐205 receptor, cross‐presentation becomes 100‐fold more efficient than non‐targeted antigen. This finding requires gag to be engineered into anti‐DEC antibody, not just mixed with antibody. Flt3L DC are a valuable tool to study cross‐presentation, since their use overcomes the obstacle posed by the low number of cross‐presenting DC in the steady state. These findings support future experiments to use Flt3L to enhance presentation of DC‐targeted vaccines.  相似文献   

18.
Cellular interactions promoting the in vivo expansion of CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cells for maintenance of immune tolerance remain poorly defined. Here we report that mobilized Lin(-)Sca-1(+)c-kit(+) (LSK) hematopoietic progenitor cells (HPCs), unlike medullary hematopoietic stem cells (HSCs), selectively drove the direct, immediate expansion of functional host-derived Treg cells, thereby preventing the progression to overt spontaneous autoimmune diabetes in nonobese diabetic mice. Treg cell expansion required cell-to-cell contact and Notch3 signaling, which was mediated selectively through the Notch ligand Jagged2 expressed by the multipotent HPC subset, as assessed by small interfering RNA (siRNA) silencing. Conversely, notwithstanding their similar multilineage microchimerism, neither sorted Jagged2(-) HPCs nor Jagged2(lo) medullary HSCs were able to expand Treg cells. These data provide evidence for a productive Notch-mediated interaction between a unique subset of mobilized hematopoietic progenitors and Treg cells. They open therapeutic perspectives for autologous transplantation of Jagged2(+) LSK progenitors to promote Treg cell expansion in T cell-mediated diseases.  相似文献   

19.
Treatment with the hematopoietic growth factor Flt3 ligand (FL) increases DC numbers in neonatal mice and enhances their resistance against intracellular pathogens. Flow cytometric analysis showed the presence of conventional DC (cDC) and plasmacytoid pre-DC (pDC) in neonatal spleens from untreated and FL-treated mice. CD8alpha and MHC class II expression on cDC and pDC was higher on DC from FL-treated mice than on DC from control littermates. After FL treatment, two additional subpopulations of DC-lineage cells were found that were able to produce IL-12 and IFN-alpha. The IL-12 production of cDC from FL-treated animals was more than 50-fold increased and their ability to stimulate T cell proliferation was also increased. We conclude that the enhanced resistance against intracellular pathogens was due to increased numbers of DC-lineage cells and their increased ability to produce the essential cytokines.  相似文献   

20.
The influence of GM+IL-4 and Flt3 ligand (FL) on phenotype and function of BM-derived DC from Lewis rats was investigated. GM+IL-4-induced DC, despite expression of CD80/CD86, were less stimulatory than FL-induced DC that expressed low CD80/CD86 and were efficient stimulators of allogeneic T cells. GM+IL-4 DC were CD11b+ OX62lo, whereas FL DC were CD11blo OX62+. Following activation, GM+IL-4 DC produced IL-10 and IL-6, but no IL-12p70, and were resistant to further maturation. FL DC produced IL-12p70, IFN-alpha/beta, IL-10 and IL-6 and underwent maturation. Repeated stimulation of T cells with GM+IL-4 DC inhibited proliferation, cytokine production and induced early T cell apoptosis. FL DC-activated T cells produced large amounts of IFN-gamma/IL-10 and exhibited late T cell apoptosis/necrosis. In vivo, GM+IL-4 DC induced alloAg-specific hyporesponsiveness following T cell restimulation. These results demonstrate that GM+IL-4 DC display intrinsic regulatory properties, inducing passive-cell-death in T cells with potential for inactivation/regulation of alloreactive T cells in transplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号