首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
van 't Veer  C; Hackeng  TM; Delahaye  C; Sixma  JJ; Bouma  BN 《Blood》1994,84(4):1132-1142
The procoagulant subcellular matrix of stimulated endothelial cells that contains tissue factor (TF) was used to investigate the mechanism by which TF pathway inhibitor (TFPI) inhibits thrombin formation initiated by TF/factor VIIa (FVIIa) under flow conditions. Purified coagulation factors VII, X, and V and prothrombin were perfused at a wall shear rate of 100 s-1 through a flow chamber containing a coverslip covered with matrix of cultured human umbilical vein endothelial cells. This resulted in a TF- and FVII-dependent FXa and thrombin generation as measured in the effluent at the outlet of the system. Inhibition of this TF/FVIIa-triggered thrombin formation by TFPI purified from plasma was dependent on the amount of TF present on the endothelial cell matrix. The rate of prothrombinase assembly and steady-state levels of thrombin formation were decreased by TFPI. Because persistent albeit decreased steady-state levels of thrombin formation occurred in the presence of TFPI, we conclude that plasma- TFPI does not inhibit FXa present in the prothrombinase complex. The addition of FIX and FVIII to perfusates containing FVII and FX increased the FXa generation on endothelial matrices, and counteracted the inhibition of thrombin formation on endothelial cell matrices by TFPI. Our data provide further evidence for the hypothesis that the rapid inactivation of TF/FVIIa by TFPI in combination with the absence of either FVIII or FIX causes the bleeding tendency of patients with hemophilia A or B.  相似文献   

2.
The Tissue Factor/Factor VIIa (TF/FVIIa) complex is an attractive target for pharmacological interruption of thrombin generation and hence blood coagulation, as this complex is the initiation point of the extrinsic pathway of coagulation. TF is a cell membrane-associated protein that interacts with soluble FVIIa to activate factors IX and X resulting in a cascade of events that leads to thrombin generation and eventual fibrin deposition. The goal of this non-randomized study was to evaluate XK1, a specific protein inhibitor of TF/FVIIa, and compare antithrombotic efficacy and bleeding propensity to a previously described Factor Xa (FXa) inhibitor (SC-83157/SN429) and a direct-acting thrombin inhibitor (SC-79407/L-374087) in an acute rat model of arterial thrombosis. All saline-treated animals experienced occlusion of the carotid artery due to acute thrombus formation within 20 minutes. Rats treated with XK1 exhibited a dose-dependent inhibition of thrombus formation with full antithrombotic efficacy and no change in bleeding time or total blood loss at a dose of 4.5 mg/kg, i.v. administered over a 60 minute period. FXa inhibition with SC-83157 resulted in complete inhibition of thrombus formation at a dose of 1.2 mg/kg, i.v.; however, this effect was associated with substantial blood loss. Thrombin inhibition with SC-79407 also afforded complete protection from thrombus formation and occlusion at a dose of 2.58 mg/kg, i.v., and like SC-83157, was associated with substantial blood loss. These data imply that TF/FVIIa inhibition confers protection from acute thrombosis without concomitant changes in bleeding, indicating that this target (TF/FVIIa) may provide improved separation of efficacy vs. bleeding side-effects than interruption of coagulation by directly inhibiting either FXa or thrombin.  相似文献   

3.
Originally isolated from a haematophagous hookworm, recombinant nematode anticoagulant protein c2 (rNAPc2) is an 85-amino acid protein with potent anticoagulant properties. Unlike conventional anticoagulants that attenuate blood coagulation via inhibition of thrombin or activated factor X (FXa) at the downstream portion of the cascade, rNAPc2 is a potent inhibitor of the activated factor VII/tissue factor complex (FVIIa/TF), the key physiological initiator of blood coagulation. Its mechanism of action requires prerequisite binding to circulating FXa or zymogen factor X (FX) to form a binary complex prior to its interaction and inhibition of membrane-bound FVIIa/TF. The binding of rNAPc2 to FX results in an elimination half-life of longer than 50 h following either subcutaneous or intravenous administration. Recombinant NAPc2, like other inhibitors of FVIIa/TF including tissue factor pathway inhibitor (TFPI) and active site-blocked FVIIa (ASIS, FFR-rFVIIa or FVIIai), may have a promising role in the prevention and treatment of venous and arterial thrombosis, as well as potential efficacy in the management of disseminated intravascular coagulopathies because of their potent and selective inhibition of FVIIa/TF.  相似文献   

4.
Saliva of the hard tick and Lyme disease vector, Ixodes scapularis, has a repertoire of compounds that counteract host defenses. Following sequencing of an I scapularis salivary gland complementary DNA (cDNA) library, a clone with sequence homology to tissue factor pathway inhibitor (TFPI) was identified. This cDNA codes for a mature protein, herein called Ixolaris, with 140 amino acids containing 10 cysteines and 2 Kunitz-like domains. Recombinant Ixolaris was expressed in insect cells and shown to inhibit factor VIIa (FVIIa)/tissue factor (TF)-induced factor X (FX) activation with an inhibitory concentration of 50% (IC(50)) in the picomolar range. In nondenaturing gel, Ixolaris interacted stoichiometrically with FX and FXa but not FVIIa. Ixolaris behaves as a fast-and-tight ligand of the exosites of FXa and gamma-carboxyglutamic acid domainless FXa (des-Gla-FXa), increasing its amidolytic activity. At high concentration, Ixolaris attenuates the amidolytic activity of FVIIa/TF; however, in the presence of DEGR-FX or DEGR-FXa (but not des-Gla-DEGR-FXa), Ixolaris becomes a tight inhibitor of FVIIa/TF as assessed by recombinant factor IX (BeneFIX) activation assays. This indicates that FX and FXa are scaffolds for Ixolaris in the inhibition of FVIIa/TF and implies that the Gla domain is necessary for FVIIa/TF/Ixolaris/FX(a) complex formation. Additionally, we show that Ixolaris blocks FXa generation by endothelial cells expressing TF. Ixolaris may be a useful tool to study the structural features of FVIIa, FX, and FXa, and an alternative anticoagulant in cardiovascular diseases.  相似文献   

5.
Tissue factor pathway.   总被引:3,自引:0,他引:3  
Blood coagulation is initiated in response to vessel damage in order to preserve the integrity of the mammalian vascular system. The coagulation cascade can also be initiated by mediators of the inflammatory response, and fibrin deposition has been noted in a variety of pathological states. The cascade of coagulation zymogen activations which leads to clot formation is initiated by exposure of flowing blood to Tissue Factor (TF), the cellular receptor and cofactor for Factor VII (FVII). FVII binds to the receptor in a I:I stoichiometric complex and is rapidly activated. FVIIa undergoes an active site transition upon binding TF in the presence of calcium which enhances the fundamental properties of the enzyme. This results in rapid autocatalytic activation of FVII to FVIIa, thereby amplifying the response by generating more TF-FVIIa complexes. The TF-FVIIa activates both FIX and FX. Further FXa generation by the FIXa-FVIIIa-Ca2+-phospholipid complex is required to sustain the coagulation mechanism, since the TF-FVIIa complex is rapidly inactivated by Tissue Factor pathway inhibitor (TFPI). TFPI circulates in plasma, is associated with vascular cell surface and is released from platelets following stimulation by thrombin. TFPI requires the formation of an active TF-FVIIa complex and FXa generation before inhibition can occur. TFPI prevents further participation of TF in the coagulation process by forming a stable quaternary complex, TF-FVIIa-FXa-TFPI.  相似文献   

6.
Following vessel wall injury, tissue factor (TF) is exposed and forms complexes with already activated factor VII (FVIIa) present in the circulating blood, thereby initiating the hemostatic process. After the first FXa is formed, the TF pathway inhibitor (TFPI) forms a complex with FXa, and a quaternary complex is formed, TF/FVIIa/ FXa/TFPI, which inhibits the first step of the hemostatic pathway. Recombinant activated FVII (rFVIIa) has been developed for use as a hemostatic agent (NovoNordisk A/S, Denmark). Active site-inactivated rFVIIa (rFVIIai) has also been prepared and was shown to have a faster association to and a slower dissociation from TF than rFVIIa, resulting in a lower calculated Kd of rFVIIai compared with rFVIIa. In various animal models rFVIIai has been demonstrated to prevent or diminish immediate thrombus formation at the site of vessel wall injury (athroplasty or other forms of mechanical injury) as well as the development of long-term intima thickening. The inflammatory response following endotoxin-induced sepsis was shown to decrease after administration of rFVIIai. Also, survival increased in the rFVIIai-treated animals in this study. In addition, ischemia-reperfusion injury was mitigated by rFVIIai. In a limited number of patients undergoing percutaneous transluminal coronary angioplasty (PTCA), rFVIIai was observed to allow PTCA to be performed at lower doses of heparin than what has been reported previously.  相似文献   

7.
Hemophilia A and B are caused by deficiencies in coagulation factor VIII (FVIII) and factor IX, respectively, resulting in deficient blood coagulation via the intrinsic pathway. The extrinsic coagulation pathway, mediated by factor VIIa and tissue factor (TF), remains intact but is negatively regulated by tissue factor pathway inhibitor (TFPI), which inhibits both factor VIIa and its product, factor Xa. This inhibition limits clot initiation via the extrinsic pathway, whereas factor deficiency in hemophilia limits clot propagation via the intrinsic pathway. ARC19499 is an aptamer that inhibits TFPI, thereby enabling clot initiation and propagation via the extrinsic pathway. The core aptamer binds tightly and specifically to TFPI. ARC19499 blocks TFPI inhibition of both factor Xa and the TF/factor VIIa complex. ARC19499 corrects thrombin generation in hemophilia A and B plasma and restores clotting in FVIII-neutralized whole blood. In the present study, using a monkey model of hemophilia, FVIII neutralization resulted in prolonged clotting times as measured by thromboelastography and prolonged saphenous-vein bleeding times, which are consistent with FVIII deficiency. ARC19499 restored thromboelastography clotting times to baseline levels and corrected bleeding times. These results demonstrate that ARC19499 inhibition of TFPI may be an effective alternative to current treatments of bleeding associated with hemophilia.  相似文献   

8.
Tissue factor (TF) plays an important role in hemostasis, inflammation, angiogenesis, and the pathophysiology of atherosclerosis and cancer. In this article we uncover a mechanism in which protein S, which is well known as the cofactor of activated protein C, specifically inhibits TF activity by promoting the interaction between full-length TF pathway inhibitor (TFPI) and factor Xa (FXa). The stimulatory effect of protein S on FXa inhibition by TFPI is caused by a 10-fold reduction of the K(i) of the FXa/TFPI complex, which decreased from 4.4 nM in the absence of protein S to 0.5 nM in the presence of protein S. This decrease in K(i) not only results in an acceleration of the feedback inhibition of the TF-mediated coagulation pathway, but it also brings the TFPI concentration necessary for effective FXa inhibition well within range of the concentration of TFPI in plasma. This mechanism changes the concept of regulation of TF-induced thrombin formation in plasma and demonstrates that protein S and TFPI act in concert in the inhibition of TF activity. Our data suggest that protein S deficiency not only increases the risk of thrombosis by impairing the protein C system but also by reducing the ability of TFPI to down-regulate the extrinsic coagulation pathway.  相似文献   

9.
A different rate and timing of subacute stent thrombosis after percutaneous coronary intervention was reported with various peri-interventional antithrombotic regimens. Next to platelet activation, coagulation triggered by tissue factor (TF) may play a key role in this process. Thirty-one consecutive patients with stable and unstable angina undergoing coronary stenting were randomly assigned to adjunct oral anticoagulation/anti-platelet therapy (coumadin, dipyridamole, aspirin and heparin; n = 16) or adjunct anti-platelet therapy with thienopyridin (ticlopidine, aspirin and heparin; n = 15). Antigen levels of plasma TF, total tissue factor pathway inhibitor (TFPI) and TFPI/ activated factor X (TFPI/FXa) complex were determined before and for up to 6 days after intervention by immunoassay. At baseline, significantly higher levels of plasma TF and TFPI/FXa were found in patients with unstable angina [TF, 161 pg/ml (126-191 pg/ml); TFPI/FXa, 7.8 ng/ml (6.1-9.6 ng/ml)] compared with stable angina [TF, 62 pg/ml (46-82 pg/ml), P < 0.0001; TFPI/FXa, 4.5 ng/ml (3-7.6 ng/ml), P= 0.003]. One hour after intervention, an increase of plasma TF and TFPI/FXa was seen in both treatment groups. In unstable angina patients, plasma levels of TF, TFPI and TFPI/FXa were more efficiently reduced by adjunct ticlopidine therapy compared with adjunct coumadin/dipyridamole. These data suggest reduced release of circulating TF by combined anti-platelet therapy with ticlopidine and aspirin after coronary artery stenting, which may-contribute to the lower incidence of subacute stent thrombosis previously observed.  相似文献   

10.
Protease-activated receptor 2 (PAR2) is expressed by vascular endothelial cells and other cells in which its function and physiological activator(s) are unknown. Unlike PAR1, PAR3, and PAR4, PAR2 is not activatable by thrombin. Coagulation factors VIIa (FVIIa) and Xa (FXa) are proteases that act upstream of thrombin in the coagulation cascade and require cofactors to interact with their substrates. These proteases elicit cellular responses, but their receptor(s) have not been identified. We asked whether FVIIa and FXa might activate PARs if presented by their cofactors. Co-expression of tissue factor (TF), the cellular cofactor for FVIIa, together with PAR1, PAR2, PAR3, or PAR4 conferred TF-dependent FVIIa activation of PAR2 and, to lesser degree, PAR1. Responses to FXa were also observed but were independent of exogenous cofactor. The TF/FVIIa complex converts the inactive zymogen Factor X (FX) to FXa. Strikingly, when FX was present, low picomolar concentrations of FVIIa caused robust signaling in cells expressing TF and PAR2. Responses in keratinocytes and cytokine-treated endothelial cells suggested that PAR2 may be activated directly by TF/FVIIa and indirectly by TF/FVIIa-generated FXa at naturally occurring expression levels of TF and PAR2. These results suggest that PAR2, although not activatable by thrombin, may nonetheless function as a sensor for coagulation proteases and contribute to endothelial activation in the setting of injury and inflammation. More generally, these findings highlight the potential importance of cofactors in regulating PAR function and specificity.  相似文献   

11.
Tissue factor pathway inhibitor (TFPI) blocks thrombin generation via the extrinsic blood coagulation pathway. Because the severe bleeding in patients with hemophilia occurs from deficiency of intrinsic blood coagulation pathway factor VIII or IX, pharmacological agents that inactivate TFPI and, therefore, restore thrombin generation via the extrinsic pathway, are being developed for treatment of hemophilia. Murine models of combined TFPI and factor VIII deficiency were used to examine the impact of TFPI deficiency on bleeding and clotting in hemophilia. In breeding studies, Factor VIII null (F8(-/-)) did not rescue the embryonic death of TFPI null (Tfpi(-/-)) mice. Tfpi(+/-) did not alter the bleeding phenotype of F8(-/-) mice. However, total inhibition of intravascular TFPI through injection of anti-TFPI antibody mitigated tail vein bleeding. Interestingly, tail blood loss progressively decreased at doses greater than needed to totally inhibit plasma TFPI, suggesting that inhibition of a sequestered pool of TFPI released at the injury site mitigates bleeding. Because TFPI is sequestered within platelets and released following their activation, the function of platelet TFPI was examined in F8(-/-) mice lacking hematopoietic cell TFPI that was generated by fetal liver transplantation. Blood loss after tail transection significantly decreased in Tfpi(+/-);F8(-/-) mice with hematopoietic Tfpi(-/-) cells compared with Tfpi(+/-);F8(-/-) mice with Tfpi(+/+) hematopoietic cells. Additionally, following femoral vein injury, Tfpi(+/-);F8(-/-) mice with Tfpi(-/-) hematopoietic cells had increased fibrin deposition compared with identical-genotype mice with Tfpi(+/+) hematopoietic cells. These findings implicate platelet TFPI as a primary physiological regulator of bleeding in hemophilia.  相似文献   

12.
Relevance of tissue factor in cardiovascular disease   总被引:11,自引:0,他引:11  
Overexpression and exposition of tissue factor (TF) in atherosclerotic plaques and/or arterial thrombi are critical events in atherothrombosis. TF, the receptor for factor VII (FVII) and activated factor VII (FVIIa), is the principal initiator of blood coagulation and induces thrombin generation leading to fibrin formation and platelet activation. TF also plays a major role in cell migration and angiogenesis. TF activity is downregulated by Tissue Factor Pathway Inhibitor (TFPI), a Kunitz-type inhibitor, which forms a neutralizing complex with TF, FVIIa and activated factor X. In physiological conditions, TF is absent from vascular cells which come into contact with flowing blood and is present as an inactive pool in fibroblasts and smooth muscle cells (SMC). In contrast, TF is widely expressed in atherosclerotic plaques and is found in macrophages, SMCs, and foam-cells and also in extracellular matrix and acellular lipid-rich core. TF expression is up-regulated by inflammatory cytokines and oxidized lipids. Plaque thrombogenicity is directly correlated to their TF content. After fibrous cap disruption, TF is exposed on plaque surface and triggers thrombus formation leading to arterial lumen occlusion and/or downstream embolization. In coronary and carotid plaques, TF content was found to be higher in plaques from symptomatic than asymptomatic patients. Soluble forms of TF and microparticles of monocyte and platelet origin, and bearing TF, constitute "blood-born TF". The contribution of this TF pool to arterial thrombosis is still under discussion. TF pathway is a target for new therapeutic agents that can decrease TF activity, such as active site-inactivated factor VIIa, recombinant TFPI and antibodies against TF or peptides interfering with TF-FVIIa complex activity.  相似文献   

13.
The tissue factor (TF)/factor (F)VIIa complex is the primary initiator of coagulation in vivo. Tissue factor pathway inhibitor (TFPI) is the physiological inhibitor of the TF/FVIIa complex. Deficiencies of either TF or TFPI have not been reported in humans, and a complete absence of either of these two proteins in mice is embryonically lethal. To maintain normal hemostasis, levels of TF and TFPI need to be balanced. Increased levels of TF can overwhelm the inhibitory capacity of TFPI, resulting in thrombosis. Decreased levels of TF are associated with bleeding. Global assays of coagulation are defined as tests capable of evaluating all components of the clotting cascade that are present in plasma. In these tests the thrombogenic surface is either provided by platelets or exogenous phospholipids. Clotting assays currently used in clinical practice are not designed to measure endogenous levels of TF and TFPI. Therefore, there is a need to develop sensitive and specific assays for measuring levels of functional TF and TFPI in whole blood and plasma. These assays could be useful in patient management in many scenarios.  相似文献   

14.
Sutherland MR  Ruf W  Pryzdial EL 《Blood》2012,119(15):3638-3645
The coagulation system provides physiologic host defense, but it can also be exploited by pathogens for infection. On the HSV1 surface, host-cell-derived tissue factor (TF) and virus-encoded glycoprotein C (gC) can stimulate protease activated receptor 1 (PAR1)-enhanced infection by triggering thrombin production. Using novel engineered HSV1 variants deficient in either TF and/or gC, in the present study, we show that activated coagulation factors X (FXa) or VII (FVIIa) directly affect HSV1 infection of human umbilical vein endothelial cells in a manner that is dependent on viral TF and gC. The combination of FXa and FVIIa maximally enhanced infection for TF(+)/gC(+) HSV1 and receptor desensitization and Ab inhibition demonstrated that both proteases act on PAR2. Inhibitory TF Abs showed that the required TF source was viral. Individually, TF or gC partly enhanced the effect of FXa, but not FVIIa, revealing gC as a novel PAR2 cofactor for FVIIa. In sharp contrast, thrombin enhanced infection via PAR1 independently of viral TF and gC. Thrombin combined with FXa/FVIIa enhanced infection, suggesting that PAR1 and PAR2 are independently involved in virus propagation. These results show that HSV1 surface cofactors promote cellular PAR2-mediated infection, indicating a novel mode by which pathogens exploit the initiation phase of the host hemostatic system.  相似文献   

15.
Lupu C  Zhu H  Popescu NI  Wren JD  Lupu F 《Blood》2011,118(16):4463-4471
Thrombosis and cardiovascular disease (CVD) represent major causes of morbidity and mortality. Low androgen correlates with higher incidence of CVD/thrombosis. Tissue Factor Pathway Inhibitor (TFPI) is the major inhibitor of tissue factor-factor VIIa (TF-FVIIa)-dependent FXa generation. Because endothelial cell (EC) dysfunction leading to vascular disease correlates with low EC-associated TFPI, we sought to identify mechanisms that regulate the natural expression of TFPI. Data mining of NCBI's GEO microarrays revealed strong coexpression between TFPI and the uncharacterized protein encoded by C6ORF105, which is predicted to be multispan, palmitoylated and androgen-responsive. We demonstrate that this protein regulates both the native and androgen-enhanced TFPI expression and activity in cultured ECs, and we named it androgen-dependent TFPI-regulating protein (ADTRP). We confirm ADTRP expression and colocalization with TFPI and caveolin-1 in ECs. ADTRP-shRNA reduces, while over-expression of ADTRP enhances, TFPI mRNA and activity and the colocalization of TF-FVIIa-FXa-TFPI with caveolin-1. Imaging and Triton X-114-extraction confirm TFPI and ADTRP association with lipid rafts/caveolae. Dihydrotestosterone up-regulates TFPI and ADTRP expression, and increases FXa inhibition by TFPI in an ADTRP- and caveolin-1-dependent manner. We conclude that the ADTRP-dependent up-regulation of TFPI expression and activity by androgen represents a novel mechanism of increasing the anticoagulant protection of the endothelium.  相似文献   

16.
Up to 20% of patients develop venographically proven deep-vein thrombosis after elective orthopedic surgery even under the cover of heparin or low molecular weight heparin. The extent to which the chronic inflammation of osteoarthritis requiring elective orthopedic surgery alters in-vivo coagulation and whether any specific alteration influences the development of postoperative thrombosis are unknown. This study compared the concentrations of activated factor VII (FVIIa), tissue factor pathway inhibitor (TFPI), activated factor X (FXa)-TFPI, thrombin-antithrombin, and prothrombin fragment 1+2 (F1+2) in plasmas of 535 healthy individuals (ages 17-76) with those in the preoperative plasmas of 306 arthritis patients (ages 30-92) scheduled for elective knee or hip replacement surgery. C-reactive protein was also measured in the plasmas of approximately 15% of the participants. Age-adjusted concentrations of FVIIa, F1+2, and C-reactive protein were higher in patients than controls, while the concentrations of thrombin-antithrombin, TFPI and FXa-TFPI were similar. Chronic inflammation in the patients was thus associated with increased coagulation in vivo. Without compensatory increases in the concentrations of TFPI (natural inhibitor of prothrombinase), the elevated concentrations of FVIIa in the preoperative plasmas and the trauma associated with surgery may enhance the risk for developing postoperative deep-vein thrombosis.  相似文献   

17.
Major surgery in hemophilia patients has been facilitated by the development of coagulation concentrates. However, it is still difficult to manage bleeding during major surgery in patients with inhibitors to FVIII/IX. In addition, there have been few reports of major surgery in hemophilia B with high responding inhibitors. We report a 26-year-old hemophilia B patient with high responding factor IX inhibitor who demonstrated severe hemophiliac arthropathy in his left hip joint. Total hip arthroplasty was performed with a high dose of FIX followed by recombinant FVIIa. His inhibitor titer was decreased from 111 BU/ml to 1.0 BU/ml at surgery by avoiding the use of FIX concentrates. Thus, we could use high dose FIX for the management of surgical bleeding. Anamnestic response occurred on the 7th day after surgery and FIX concentrates were switched to recombinant FVIIa. The whole process was safely managed without any excess bleeding or adverse effects. The successful use of high dose FIX followed by recombinant FVIIa suggests that even major surgery could be safely performed in hemophilia B patients with a low titer of high responding inhibitors.  相似文献   

18.
Changes in plasma tissue factor (TF)-activated factor VII (FVIIa) and plasma tissue factor pathway inhibitor (TFPI) in type II diabetes mellitus are assessed, vascular complicated and noncomplicated patients compared, and whether these novel hemostatic activity markers predict vascular complications in diabetic patients, improving risk assessment, is determined. Fifty type II diabetic patients and 20 healthy controls (age, sex and body mass matched) underwent medical history and examination, fasting plasma glucose level, glycosylated hemoglobin (HbA1c), lipid profile, hemostatic parameters, plasma TF activity, and TFPI and TF expression on blood monocytes. Mean TF, TF activity, TFPI, and FVIIa significantly increased among hyperlipidemic compared with normolipidemic diabetic patients, and normolipidemic diabetic patients compared with controls. Mean percentage TF-positive monocytes with and without lipopolysaccharide, plasma TF activity, TFPI and FVIIa were significantly higher among complicated than noncomplicated diabetic patients. Mean percentage TF-positive monocytes without and with lipopolysaccharide, plasma TF activity, plasma TFPI and FVIIa were higher among diabetic patients with macrovascular compared with microvascular complications. High significant correlation occurred between HbA1c, triglycerides and percentage TF-positive monocytes with and without lipopolysaccharide stimulation, plasma TF activity and both FVIIa and TFPI. High activity levels of plasma TF and FVIIa with increased circulating TF-positive monocytes occurred in type II diabetic patients, especially with vascular complications. Results reflect high procoagulant activity possibly involved in diabetic vascular complications. Elevated TFPI levels were observed, but were not sufficient to balance high procoagulant activity. Correlation of procoagulant activity markers with HbA1c reinforces the importance of optimal glycemic control in type II diabetes.  相似文献   

19.
Tissue factor (TF) assembled with activated factor VII (FVIIa) initiates the coagulation cascade. We recently showed that TF was essential for FVIIa-induced vascular endothelial growth factor (VEGF) production by human fibroblasts. We investigated whether this production resulted from TF activation by its binding to FVIIa or from the production of clotting factors activated downstream. Incubation of fibroblasts with a plasma-derived FVIIa concentrate induced the generation of activated factor X (FXa) and thrombin and the secretion of VEGF, which was inhibited by hirudin and FXa inhibitors. By contrast, the addition of recombinant FVIIa to fibroblasts did not induce VEGF secretion unless factor X was present. Moreover, thrombin and FXa induced VEGF secretion and VEGF mRNA accumulation, which were blocked by hirudin and FXa inhibitors, respectively. The effect of thrombin was mediated by its specific receptor, protease-activated receptor-1; in contrast, the effect of FXa did not appear to involve effector cell protease receptor-1, because it was not affected by an anti-effector cell protease receptor-1 antibody. An increase in intracellular calcium with the calcium ionophore A23187 or intracellular calcium chelation by BAPTA-AM had no effect on either basal or FXa-induced VEGF secretion, suggesting that the calcium signaling pathway was not sufficient to induce VEGF secretion. Finally, FVIIa, by itself, had no effect on mitogen-activated protein (MAP) kinase activation, contrary to thrombin and FXa, which activate the p44/p42 MAP kinase pathway, as shown by the blocking effect of PD 98059 and by Western blotting of activated MAP kinases. These findings indicate that FVIIa protease induction of VEGF expression is mediated by thrombin and FXa generated in response to FVIIa binding to TF-expressing fibroblasts; they also exclude a direct signaling involving MAP kinase activation via the intracellular domain of TF when expressed by these cells.  相似文献   

20.
Factor VIIa (FVIIa) and thrombin generation occur in patients suffering an acute coronary event. We studied the effect of treatment with enoxaparin on FVIIa and prothrombin activation in patients with unstable angina. Anti-Xa activity, FVIIa, FVII coagulant activity (FVII:C) and FVII antigen (FVII:Ag), free tissue factor pathway inhibitor (TFPI), and prothrombin fragments 1 + 2 (F1+2) were measured in patients' plasma, over a 24-h treatment period with enoxaparin. All 14 patients recruited in the study (mean age 68 years) were treated with a subcutaneous injection of enoxaparin, 1 mg/kg twice daily. Blood was drawn just before, and at different time intervals after, the first injection. Before enoxaparin administration, the levels of FVIIa (4.02 +/- 0.8 ng/ml) and F1+2 (2.68 +/- 0.2 nmol/l) were significantly increased as compared with control subjects (2.3 +/- 0.3 ng/ml and 0.9 +/- 0.1 nmol/l respectively, P < 0.05). Free TFPI, FVII:C and FVII:Ag were within normal ranges. One hour after the first injection of enoxaparin, FVIIa and F1+2 levels decreased by 65% and 50%, respectively, and no significant fluctuations were noted throughout the observation period. The concentrations of FVII:C and FVII:Ag were not modified as compared with baseline values. After each injection, the peak concentrations of free TFPI and anti-Xa activity were observed at 2 and 4 h respectively. The kinetics of FVIIa and F1+2 inhibition did not follow those of anti-Xa activity and TFPI release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号