首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Dendritic cells (DCs) are the central players in cancer immunotherapy because of their distinct ability to prime immune responses. In previous work with DNA vaccines, we described an intracellular targeting approach that routed a nuclear/cytoplasmic antigen, human papillomavirus (HPV) type 16 E7, into the endosomal and lysosomal compartments. It does so by linking E7 with the sorting signal of lysosome-associated membrane protein 1 (Sig/LAMP-1) to enhance the presentation of E7 antigen to MHC class I-restricted CD8(+) T cells, as well as to MHC class II-restricted CD4(+) T cells. To date, the Sig/LAMP-1 targeting strategy has not been tested in the context of DC-based vaccines. This study was designed to determine whether targeting HPV-16 E7 to the endosomal/lysosomal compartment can enhance the potency of DC vaccines. In immunological studies, DC-Sig/E7/LAMP-1 dramatically increased in vitro activation and in vivo expansion of E7-specific CD4(+) and CD8(+) T cells, compared with DC-E7 and DC-No insert. More importantly, in both tumor prevention and tumor treatment assays, DC-Sig/E7/LAMP-1 generated greater anti-tumor immunity against TC-1 than DC-E7. Our results demonstrate that linkage of the antigen gene to an endosomal/lysosomal targeting signal may greatly enhance the potency of DC-based vaccines.  相似文献   

2.
A persistent human papillomavirus (HPV) infection is considered causal and necessary for the continued growth of cervical cancer. Thus, vaccination against HPV represents a plausible approach to prevent and treat cervical cancer. A report in the current issue of the European Journal of Immunology describes a therapeutic HPV DNA vaccination strategy using the HPV-16 E7 antigen fused to the invariant chain to enhance the E7-specific CD8+ and CD4+ T cell immune responses, resulting in a potent anti-tumor effect against E7-expressing tumors. Continued exploration of HPV therapeutic DNA vaccines may lead to eventual clinical application.  相似文献   

3.
Viral recombinant vaccines to the E6 and E7 antigens of HPV-16   总被引:16,自引:0,他引:16  
Most cancerous lesions of the uterine cervix are linked to persistent infections with human papillomaviruses (HPV), most notably HPV-16 or -18. Vaccine-induced immune responses to the HPV early antigens E6 and E7, which contribute to cell transformation and are thus expressed in these cervical cancers, could potentially eradicate malignant cells. We generated recombinant vaccines based on E1-deleted adenovirus human strain 5 or on vaccinia virus strain Copenhagen expressing either the E6 or E7 oncoproteins of HPV-16. The different vaccines were compared in two experimental mouse tumor models employing Balb/c or C57Bl/6 mice. Data presented here demonstrate that depending on the model either CD4(+) or CD8(+) T cells provide protection to tumor cell challenge, resulting in striking differences in the efficacy of the four vaccines under investigation.  相似文献   

4.
Enhanced immunogenicity of HPV 16 E7 fusion proteins in DNA vaccination   总被引:12,自引:0,他引:12  
DNA vaccination is a promising approach for inducing both humoral and cellular immune responses. For immunotherapy of HPV-16-associated diseases the E7 protein is considered a prime candidate, as it is expressed in all HPV-16-positive tumors. Unfortunately, the E7 protein is a very poor inducer of a cytotoxic T-cell response, when being used as antigen in DNA vaccination. Here we demonstrate that after fusion to protein export/import signals such as the herpes simplex virus ferry protein VP22, E7 can translocate in vitro from VP22-E7-expressing cells to neighboring cells that do not carry the VP22-E7 gene. In vivo, the VP22-E7 fusion shows significantly increased efficiency in inducing a cytotoxic T-cell response. Our data suggest that the export function of VP22 plays a major role in this phenomenon, since VP22 can be replaced by classical protein export signals, without impairing the induction of the E7-specific cellular immune response. However, all E7 fusion constructs showed significantly elevated protein steady-state levels, which might also account for the observed boost in immunogenicity.  相似文献   

5.
We have investigated whether poly(I:C) Toll-like receptor 3 (TLR3) and resiquimod Toll-like receptor 7 (TLR7) agonists can serve as vaccine adjuvants and promote the efficiency of therapeutic DNA vaccination against tumors expressing the human papilloma virus 16 (HPV-16) E7 protein. For this purpose, C57BL/6 mice were inoculated with 2 × 105 TC-1 cells, and they were then immunized with HPV-16 E7 DNA vaccine alone or with 50 μg of resiquimod or poly(I:C) individually. We found that poly(I:C) and resiquimod could induce more antigen-specific lymphocyte proliferation and cytolytic activity compared to vaccination with E7 DNA alone. While E7 DNA had no significant inhibitory effect on tumor growth, co-administration of poly(I:C) and resiquimod with E7 DNA induced significant tumor regression. Peripheral and local cytokine assays demonstrated that co-administration of poly(I:C) and resiquimod with E7 DNA induced circulating antigen-specific IFN-γ and nonspecific intratumoral IL-12. TLR3 and TLR7 agonists can be used to enhance the immune response to DNA vaccine immunogens. Taken together, these data indicate that combined vaccination with DNA encoding HPV-16 E7 plus TLR agonists provides a strategy for improving the efficacy of a vaccine as a possible immunotherapeutic strategy for cervical cancer.  相似文献   

6.
It has been suggested that tumour cell lysis by gamma-radiation induces a tumoral antigen release eliciting an immune response. It is not clear how a specific immune response in cervical cancer patients is developed after radiotherapy. This study is an attempt to investigate the role of the human papillomavirus type 16 (HPV-16) E7-specific T helper response before and after radiotherapy. Lymphocytes were isolated from 32 cervical cancer patients before and after radiotherapy and from 16 healthy women. They were stimulated for 12 hr with autologous HPV-16 E7-pulsed monocyte-derived dendritic cells or directly with HPV-16 E7 synthetic peptides: E7(51-70), E7(65-84) and E7(79-98). The cells were stained for CD4, CD69, intracellular interferon-gamma (IFN-gamma) and interleukin-4 (IL-4) cytokines and analysed by flow cytometry. A specific CD4(+) CD69(+) IFN-gamma(+) immune response against HPV-16 E7(79-98) peptide was observed in 10 of 14 patients (71.4%) after treatment, compared with 4 of 14 (28.5%) before radiotherapy (P = 0.039); however, this response was not associated with a successful clinical response. Before treatment, 5 of 31 patients showed a HPV-16 E7(79-98)-specific T helper type 2 (Th2) response. Interestingly, this response was significantly associated with a decrease in disease-free survival (P = 0.027). These results suggest that a Th2-type cellular response could be useful as a predictor of recurrence and poor prognosis. An increase of the HPV-specific immune response was observed after radiotherapy; however, it is not enough to control completely the disease after treatment. Our results support that the E7-specific T-cell IFN-gamma response in cervical cancer patients, rather than reflecting the host's capability of controlling tumour growth, might be an indicator for disease severity.  相似文献   

7.
Although DNA vaccines represent an attractive approach for generating antigen-specific immunity, improvement of their potency is highly demanded. In the present study, three strategies including linkage to immunostimulatory molecules (N-terminal of gp96), co-administration of chemokines (IP-10 or RANTES) and PEI600-Tat as non-viral gene delivery system have been applied to enhance DNA vaccine efficacy against HPV infections. We found that C57BL/6 immunization with E7-NT-gp96 fusion gene led to increased level of IFN-γ compared to E7 alone. The fused genes showed considerable protective potency in tumor mice model. In addition, E7-NT-gp96 delivered with PEI600-Tat was more protective against E7-expressing tumors comparing with E7-NT-gp96 alone. Our results showed that co-administration of IP-10 with E7-NT-gp96 delivered by PEI600-Tat elicits significant IFN-γ production and consequently a strong preventive response against TC-1 tumor cells in contrast to increased tumor growth by RANTES co-delivery. Also in therapeutic experiment, our data showed that co-immunization of IP-10 at the same inoculation site of TC-1 along with E7-NT-gp96 delivery by PEI600-Tat is able to significantly suppress TC-1 tumor growth. The successful treatment by this immunization protocol was associated with the elevated levels of IFN-γ and IL-2 production in the lymph nodes. These data indicated that fusion of NT-gp96 to E7 in combination with IP-10 co-administration and PEI600-Tat delivery system can synergistically enhance the potency of HPV DNA vaccines. Therefore, this approach suggests a combinational therapeutic strategy against cervical and other HPV-related cancers.  相似文献   

8.
Infection with human papillomavirus type 16 (HPV16) is strongly associated with a number of disease states, of which cervical and anal cancers represent the most drastic endpoints. Induction of T-cell-mediated immunity, particularly cytotoxic T lymphocytes (CTL), is important in eradication of HPV-induced lesions. Studies have shown that heat shock protein fusion proteins are capable of inducing potent antigen-specific CTL activity in experimental animal models. In addition, E7-expressing tumors in C57BL/6 mice can be eradicated by treatment with HspE7, an Hsp fusion protein composed of Mycobacterium bovis BCG Hsp65 linked to E7 protein of HPV16. More importantly, HspE7 has also displayed significant clinical benefit in phase II clinical trials for the immunotherapy of HPV-related diseases. To delineate the mechanisms underlying the therapeutic effects of HspE7, we investigated the capability of HspE7 to induce antigen-specific protective immunity. Here, we demonstrate that HspE7 primes potent E7-specific CD8(+) T cells with cytolytic and cytokine secretion activities. These CD8(+) T cells can differentiate into memory T cells with effector functions in the absence of CD4(+) T-cell help. The HspE7-induced memory CD8(+) T cells persist for at least 17 weeks and confer protection against E7-positive murine tumor cell challenge. These results indicate that HspE7 is a promising immunotherapeutic agent for treating HPV-related disease. Moreover, the ability of HspE7 to induce memory CD8(+) T cells in the absence of CD4(+) help indicates that HspE7 fusion protein may have activity in individuals with compromised CD4(+) functions, such as those with invasive cancer and/or human immunodeficiency virus infection.  相似文献   

9.
10.
A method was developed to compare the lymphocytic infiltrates in regressing vs. progressing experimental mouse tumors using a model for human papillomavirus-16 (HPV-16) oncoprotein-linked cancer. Tumor cells mixed with matrigel, composed of natural matrix substances that provide a basement membrane structure for adherent cells, were inoculated into mice vaccinated with an efficacious vaccine to the E7 oncoprotein or a vaccine to a control antigen. The tumor cells remained within the solidified gel and recruited a cellular infiltrate that could readily be analyzed upon removal of the gelatinous mass containing progressing or regressing tumors. The results show that tumors recruit activated CD8(+) T cells regardless of their antigen specificity. In regressing tumors expressing an appropriate target antigen for the vaccine-induced CD8(+) T cells, a strong increase of the tumor antigen-specific T cell population was observed over time. Progressing tumors that lacked the target antigen for the activated CD8(+) T cell population did not show this selective enrichment.  相似文献   

11.
The loss of immunogenic epitopes by tumors has urged the development of vaccines against multiple epitopes. Recombinant DNA technologies have opened the possibility to develop multiepitope vaccines in a relatively rapid and efficient way. In this study, several DNA fragments encoding multiple cytotoxic T lymphocyte (CTL) and T helper (Th) cell epitopes were selected from human prostate-specific membrane antigen (hPSM), mouse prostatic acid phosphatase (mPAP), and human prostate-specific antigen (hPSA), These DNA fragments were ligated together to form a novel fusion gene, termed 3P gene. The 3P gene and human IgG Fc gene were inserted into pcDNA3.1 to construct a DNA vaccine designated psig-3P-Fc. Vaccination with psig-3P-Fc by gene gun inoculation induced strong antitumor response in a mouse tumor model, which significantly inhibited tumor growth and prolonged survival time of the tumor-bearing mice. In vitro, when lymphocytes were stimulated by psig-3P-Fc-transfected autologous peripheral blood mononuclear cells (PBMC), CTLs were induced which could specifically kill hPSM-, hPAP-, or hPSA-expressing tumor cells. These observations provide a new vaccine strategy for cancer therapy through concomitant enhancement of antigen specific CD4(+) helper and CD8(+) cytotoxic T-cell responses against tumors.  相似文献   

12.
Here we report a novel strategy for the induction of CD8+ T cell adaptive immune response against viral and tumor antigens. This approach relies on high levels of incorporation in HIV-1 VLPs of a mutant of HIV-1 Nef (Nefmut) which can act as anchoring element for foreign proteins. By in vitro assay, we found that VLP-associated Nefmut is efficiently cross-presented by antigen presenting cells. Inoculation in mice of VLPs incorporating the HPV-16 E7 protein fused to Nefmut led to an anti-E7 CD8+ T cell response much stronger than that elicited by E7 recombinant protein inoculated with incomplete Freund's adjuvant and correlating with well-detectable anti-E7 CTL activity. Most relevantly, mice immunized with Nefmut-E7 VLPs developed a protective immune response against tumors induced by E7 expressing tumor cells. These results make Nefmut VLPs a promising candidate for new vaccine strategies focused on the induction of CD8+ T cell immunity.  相似文献   

13.
Due to the strong relationship between the Human Papillomavirus (HPV) "high-risk" subtypes and cervical cancers, most HPV-related studies have been focusing on the "high-risk" HPV subtypes 16 and 18. However, it has been suggested that the "low-risk" subtypes of HPV, HPV6 and HPV11, are the major cause of recurrent respiratory papillomatosis and genital warts. In addition, HPV 6 and 11 are also associated with otolaryngologic malignancies, carcinoma of the lung, tonsil, larynx and low-grade cervical lesions. Therefore, development of HPV therapeutic vaccines targeting on subtypes 6 and 11 E6 or E7 are in great need. In this report, we describe two novel engineered DNA vaccines that encode HPV 6 and 11 consensus E6/E7 fusion proteins (p6E6E7 and p11E6E7) by utilizing a multi-phase strategy. Briefly, after generating consensus sequences, several modifications were performed to increase the expression of both constructs, including codon/RNA optimization, addition of a Kozak sequence and a highly efficient leader sequence. An endoproteolytic cleavage site was also introduced between E6 and E7 protein for proper protein folding and for better CTL processing. The expressions of both constructs were confirmed by western blot analysis and immunofluorescence assay. Vaccination with these DNA vaccines could elicit robust cellular immune responses. The epitope mapping assay was performed to further characterize the cellular immune responses induced by p6E6E7 and p11E6E7. The HPV 6 and 11 E6 or E7-specific immunodominant and subdominant epitopes were verified, respectively. The intracellular cytokine staining revealed that the magnitude of IFN-γ and TNF-α secretion in antigen-specific CD8(+) cells was significantly enhanced, indicating that the immune responses elicited by p6E6E7 and p11E6E7 was heavily skewed toward driving CD8(+) T cells. Such DNA immunogens are interesting candidates for further studies on HPV 6 and 11-associated diseases.  相似文献   

14.
More effective vaccines against Mycobacterium tuberculosis may contribute to the control of this major human pathogen. DNA vaccines encoding single mycobacterial proteins stimulate antimycobacterial T-cell responses and induce partial protection against M. tuberculosis in animal models. The protective efficacy of these vaccines encoding a single antigen, however, has been less than that afforded by the current vaccine, Mycobacterium bovis bacillus Calmette-Guérin (BCG). The heterodimeric cytokine interleukin-12 (IL-12) potentiates the induction and maintenance of the type 1 helper T-cell response. We have developed a novel self-splicing vector based on the 2A protein of foot-and-mouth disease virus that permits the coordinate expression of both chains of IL-12 (p2AIL12). Coimmunization with this vector and DNA expressing M. tuberculosis antigen 85B or MPT64 enhanced the specific lymphocyte proliferative response and increased the frequency of specific gamma interferon-secreting T cells against the whole protein and a defined CD8(+) T-cell epitope on MPT64. Further, coimmunizing with p2AIL12 significantly increased the protective efficacy of DNA-85 in the lung against an aerosol challenge with M. tuberculosis to the level achieved with BCG. Therefore, codelivery of an IL-12-secreting plasmid may be a potent strategy for enhancing the protective efficacy of vaccines against M. tuberculosis.  相似文献   

15.
An effective malaria vaccine which protects against all stages of Plasmodium infection may need to elicit robust CD8(+) and CD4(+) T cell and antibody responses. To achieve this, we have investigated strategies designed to improve the immunogenicity of DNA vaccines encoding the Plasmodium yoelii pre-erythrocytic stage antigens PyCSP and PyHEP17, by targeting the encoded proteins to the MHC Classes I and II processing and presentation pathways. For enhancement of CD8(+) T cell responses, we targeted the antigens for degradation by the ubiquitin (Ub)/proteosome pathway following the N-terminal rule. We constructed plasmids containing PyCSP or PyHEP17 genes fused to the Ub gene: plasmids where the N-terminal antigen residues were mutated from the stabilizing amino acid methionine to destabilizing arginine, plasmids where the C-terminal residues of Ub were mutated from glycine to alanine, and plasmids in which the potential hydrophobic leader sequences of the antigens were deleted. For enhancement of CD4(+) T cell and antibody responses, we targeted the antigens for degradation by the endosomal/lysosomal pathway by linking the antigen to the lysosome-associated membrane protein (LAMP). We found that immunization with DNA vaccine encoding PyHEP17 fused to Ub and bearing arginine induced higher IFN-gamma, cytotoxic and proliferative T cell responses than unmodified vaccines. However, no effect was seen for PyCSP using the same targeting strategies. Regarding Class II antigen targeting, fusion to LAMP did not enhance antibody responses to either PyHEP17 or PyCSP, and resulted in a marginal increase in lymphoproliferative CD4(+) T cell responses. Our data highlight the antigen dependence of immune enhancement strategies that target antigen to the MHC Class I and II pathways for vaccine development.  相似文献   

16.
Recombinant adenovirus or DNA vaccines encoding herpes simplex virus type 1 (HSV-1) glycoprotein D (gD) genetically fused to human papillomavirus type 16 (HPV-16) oncoproteins (E5, E6, and E7) induce antigen-specific CD8+ T-cell responses and confer preventive resistance to transplantable murine tumor cells (TC-1 cells). In the present report, we characterized some previously uncovered aspects concerning the induction of CD8+ T-cell responses and the therapeutic anticancer effects achieved in C57BL/6 mice immunized with pgD-E7E6E5 previously challenged with TC-1 cells. Concerning the characterization of the immune responses elicited in mice vaccinated with pgD-E7E6E5, we determined the effect of the CD4+ T-cell requirement, longevity, and dose-dependent activation on the E7-specific CD8+ T-cell responses. In addition, we determined the priming/boosting properties of pgD-E7E6E5 when used in combination with a recombinant serotype 68 adenovirus (AdC68) vector encoding the same chimeric antigen. Mice challenged with TC-1 cells and then immunized with three doses of pgD-E7E6E5 elicited CD8+ T-cell responses, measured by intracellular gamma interferon (IFN-γ) and CD107a accumulation, to the three HPV-16 oncoproteins and displayed in vivo antigen-specific cytolytic activity, as demonstrated with carboxyfluorescein diacetate succinimidyl ester (CFSE)-labeled target cells pulsed with oligopeptides corresponding to the H-2Db-restricted immunodominant epitopes of the E7, E6, or E5 oncoprotein. Up to 70% of the mice challenged with 5 × 105 TC-1 cells and immunized with pgD-E7E6E5 controlled tumor development even after 3 days of tumor cell challenge. In addition, coadministration of pgD-E7E6E5 with DNA vectors encoding pGM-CSF or interleukin-12 (IL-12) enhanced the therapeutic antitumor effects for all mice challenged with TC-1 cells. In conclusion, the present results expand our previous knowledge on the immune modulation properties of the pgD-E7E6E5 vector and demonstrate, for the first time, the strong antitumor effects of the DNA vaccine, raising promising perspectives regarding the development of immunotherapeutic reagents for the control of HPV-16-associated tumors.Cancers pose unique challenges to therapeutic vaccines. Tumor-associated antigens are often self-antigens to which the patient is tolerant. In the case of virus-associated tumors, the viral oncoproteins commonly lack high-avidity T-cell epitopes and thus can evade immune surveillance. Cancer patients frequently show immunological abnormalities, such as T-cell anergy, peripheral and central tolerance, regulatory T cell (Treg)-mediated immunosuppression, and functional T-cell exhaustion (9, 31, 36). Therapeutic cancer vaccines, unlike prophylactic vaccines, thus need to be formulated not only to induce T-cell responses but also to overcome immunological unresponsiveness to tumor antigens.Cervical cancer is the second most common cause of cancer death in women, claiming approximately 400,000 to 500,000 lives each year worldwide (32). Cervical cancer affects ∼1% of all women and is the most common cause of cancer death in women under the age of 50. Virtually all cases of cervical cancers are associated with human papillomavirus (HPV) infections (2, 37). Prevalence of sexually transmitted infections with oncogenic genotypes of HPV varies from 20 to 80% of sexually active adults depending on the study population, with HPV type 16 (HPV-16) representing the most epidemiological relevant oncogenic virus type (2, 37). Two vaccines that express the major capsid protein-inducing serotype-specific HPV neutralizing antibodies have recently become available for preventive vaccination (14). While these vaccines can prevent virus infections with the corresponding HPV genotypes, they cannot affect viral clearance in already infected women or inhibit the development of HPV-associated malignancies. In contrast, therapeutic vaccines targeting HPV oncoproteins, mainly E6 and E7, which are expressed by all transformed epithelial cells, can activate antigen-specific cytotoxic CD8+ T-cell responses and eradicate infected cells before or after the malignant transformation event (18, 21, 27). In contrast to the conventional vaccines, such oncoprotein-based anti-HPV vaccine formulations may be used under either preventive or therapeutic conditions regarding the establishment and uncontrolled growth of the cancer cells under both experimental or clinical conditions (18).Although DNA vaccines have been intensively studied as a promising immunization strategy for the control of HPV-associated tumors, vectors expressing HPV-16 E7 or E6 oncoprotein alone have shown low antigen-specific CD8+ T-cell activation and lack of protective antitumor effects in mice (5, 21, 30). Improved activation of antigen-specific CD8+ T-cell responses by anti-HPV DNA vaccines were achieved after genetic fusion of the E7 or E6 oncoprotein with different carrier proteins carrying cell targeting signals or mediators of immune responses (8-19). The focus of our DNA vaccines targeting HPV-induced cancers has been the augmentation of adaptive immune responses through the blockade of an immune inhibitory pathway based on the expression of hybrid proteins genetically fused with glycoprotein D (gD) of herpes simplex virus (HSV) (24,25). HSV gD binds the herpes virus entry mediator (HVEM) and competes for the same binding site as the B- and T-lymphocyte attenuator (BTLA). BTLA provides inhibitory signals to T and B cells upon binding to HVEM (7, 38). Blockade of the HVEM-BTLA pathway during activation of an adaptive immune response has been associated with increased immune responses, particularly E7-specific CD8+ T-cell responses, to the antigen encoded by the DNA vaccine (25).We reported previously that expression of HPV-16 E5, E6, and E7 oncoproteins within HSV type 1 (HSV-1) gD, either by an adenovirus vector or a DNA vaccine, induces a potent CD8+ T-cell response that confers preventive protection to mice challenged with transplantable E6- and E7-expressing TC-1 cells (25). Herein we characterized previously unknown aspects of the antigen-specific immune responses elicited in mice immunized with the DNA vaccine and report, for the first time, the therapeutic antitumor effects of the pgD-E7E6E5 vector in mice. The results indicate that the DNA vaccine encoding chimeric oncoproteins genetically fused to the HSV-1 gD protein represents a promising approach for the therapeutic control of HPV-associated tumors.  相似文献   

17.
Cho HJ  Han SE  Im S  Lee Y  Kim YB  Chun T  Oh YK 《Biomaterials》2011,32(20):4621-4629
To improve vaccine delivery, we herein designed a co-delivery system using a protein antigen and its encoding plasmid linked in nanocomplexes via maltosylated PEI (mPEI). Cationic mPEI was electrostatically complexed to a plasmid encoding the human papillomavirus (HPV) type 16L1 protein (pHPV16L1), and further complexed to a maltose binding protein (MBP)-fused human papillomavirus type 16L1 fusion protein (HPV16L1-MBP). The HPV16L1-MBP/mPEI/pHPV16L1 complexes were characterized by gel-retardation properties, zeta potentials and sizes. The intracellular co-delivery of protein and plasmid DNA vaccines was significantly higher for mPEI-based triple nanocomplexes than for a simple physical mixture of the proteins and DNA. Moreover, the cellular delivery of plasmid DNA using mPEI-based triple nanocomplexes resulted in higher expression levels comparable to those obtained using dual complexes of mPEI and the plasmid DNA. In vivo, co-immunization of mice with HPV16L1-MBP/mPEI/pHPV16L1 nanocomplexes triggered the highest levels of humoral immune responses among various vaccination groups. Moreover, the mPEI-based nanocomplexes significantly enhanced the number of interferon-γ producing CD8(+) T cells compared with the use of mixed proteins and plasmid DNA. These results suggest that the effective cellular co-delivery of MBP-fused antigen proteins and plasmid DNA using maltosylated PEI-based triple nanocomplexes could enhance the immunogenicity of HPV16L1 vaccines.  相似文献   

18.
Kim MS  Sin JI 《Immunology》2005,116(2):255-266
DNA immunization is a new approach for cancer immune therapy. In this study, we constructed human papillomavirus (HPV) 16 E7 expression vector cassettes and then compared the abilities of these constructs to induce antitumour protection. Lysosome-targeted E7 antigens, and to a lesser degree signal sequence-conjugated and transmembrane region sequence-conjugated E7 antigens in a DNA form, displayed tumour protection significantly higher than wild-type E7 antigens. This enhanced tumour protection was mediated by CD8+ cytotoxic T lymphocytes (CTL), as determined by in vivo T-cell depletion and in vitro interferon-gamma (IFN-gamma) production. Subsequent co-injection with interleukin-12-expressing cDNA showed insignificantly enhanced antitumour protection. However, E7 codon optimization plus lysosomal targeting resulted in a dramatic enhancement in antitumour protection both prophylactically and therapeutically through augmentation of the E7-specific CTL population, compared to either one of them alone. However, wild-type or codonoptimized E7 antigens without intracellular targeting displayed no protection against tumour challenge. Thus, these data suggest that antigen codon optimization plus lysosomal targeting strategy could be important in crafting more efficacious E7 DNA vaccines for tumour protection.  相似文献   

19.
We are developing recombinant attenuated vesicular stomatitis virus (VSV) as a vaccine vector to generate humoral and cell-mediated immune responses. Here, we explore the use of VSV vaccines for cancer immunotherapy. Immunotherapy targeting high-risk human papillomavirus (HPV) lesions has the potential to benefit HPV-infected individuals and cervical cancer patients by generating cytotoxic T cells that kill tumor cells that express viral antigens. A single dose of VSV expressing the HPV type 16 (HPV16) E7 oncogene was used for therapeutic vaccination of mice bearing TC-1 syngeneic tumors, which express HPV16 E7. HPV16 E7-specific T cells were generated and displayed cytotoxic activity against the tumor cells. By 14 days postvaccination, average tumor volumes were 10-fold less in the vaccinated group than in mice that received the empty-vector VSV, and regression of preexisting tumors occurred in some cases. This antitumor effect was CD8 T-cell dependent. Our results demonstrate antitumor responses to HPV16 E7 and suggest that recombinant-VSV-based vaccination should be explored as a therapeutic strategy for cervical carcinoma and other HPV-associated cancers.  相似文献   

20.
Although the presence of serum antibodies against the human papillomavirus type 16 (HPV-16) E7 protein has been linked with cervical cancer, currently available assays detect antibodies in only ca. 40% of carcinoma patients. The dependence of these serological assays on synthetic target antigens which present only linear epitopes may be a limiting factor. In order to produce a more realistic target antigen for use in serological assays, we have expressed the HPV-16 E7 protein in insect cells using a recombinant baculovirus vector. Two major E7 forms of ca. 18kDa and 16kDa were produced and characterised. The 16kDa component was shown to be truncated at the N-terminus. A radioimmunoprecipitation assay was developed for the detection of anti-E7 antibodies in human sera. This assay showed a marked increase in detection rate compared with a western blotting method based on bacterially derived E7 fusion proteins. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号