首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 913 毫秒
1.
Parkinson's disease (PD) is the most common movement disorder affecting more than 4 million people worldwide. The primary motor symptoms of the disease are due to degeneration of dopaminergic nigrostriatal neurons. Dopamine replacement therapies have therefore revolutionised disease management by partially controlling these symptoms. However these drugs can produce debilitating side effects when used long term and do not protect degenerating neurons against death. Recent evidence has highlighted a pathological imbalance in PD between the acetylation and deacetylation of the histone proteins around which deoxyribonucleic acid (DNA) is coiled, in favour of excessive histone deacetylation. This mechanism of adding/removing acetyl groups to histone lysine residues is one of many epigenetic regulatory processes which control the expression of genes, many of which will be essential for neuronal survival. Hence, such epigenetic modifications may have a pathogenic role in PD. It has therefore been hypothesised that if this pathological imbalance can be corrected with the use of histone deacetylase inhibiting agents then neurodegeneration observed in PD can be ameliorated. This article will review the current literature with regard to epigenetic changes in PD and the use of histone deacetylase inhibitors (HDACIs) in PD: examining the evidence of the neuroprotective effects of numerous HDACIs in cellular and animal models of Parkinsonian cell death. Ultimately answering the question: does epigenetic targeting of histone deacetylases hold therapeutic potential in PD?  相似文献   

2.
Peripheral nerve injuries that provoke neuropathic pain are associated with microglial activation in the spinal cord. We have investigated the characteristics of spinal microglial activation in three distinct models of peripheral neuropathic pain in the rat: spared nerve injury (SNI), chronic constriction injury, and spinal nerve ligation. In all models, dense clusters of cells immunoreactive for the microglial marker CD11b formed in the ipsilateral dorsal horn 7 days after injury. Microglial expression of ionised calcium binding adapter molecule 1 (Iba1) increased by up to 40% and phosphorylation of p38 mitogen-activated protein kinase, a marker of microglial activity, by 45%. Expression of the lysosomal ED1-antigen indicated phagocytic activity of the cells. Unlike the peripheral nerve lesions, rhizotomy produced only a weak microglial reaction within the spinal gray matter but a strong activation of microglia and phagocytes in the dorsal funiculus at lumbar and thoracic spinal cord levels. This suggests that although degeneration of central terminals is sufficient to elicit microglial activation, it does not account for the inflammatory response in the dorsal horn after peripheral nerve injury. Early intrathecal treatment with low-dose methotrexate, beginning at the time of injury, decreased microglial activation, reduced p38 phosphorylation, and attenuated pain-like behavior after SNI. In contrast, systemic or intrathecal delivery of the glucocorticoid dexamethasone did not inhibit the activation of microglia or reduce pain-like behavior. We confirm that microglial activation is crucial for the development of pain after nerve injury, and demonstrates that suppression of this cellular immune response is a promising approach for preventing neuropathic pain.  相似文献   

3.
《The journal of pain》2020,21(1-2):146-160
Numerous studies have demonstrated a physiological interaction between the mu opioid receptor (MOR) and delta opioid receptor (DOR) systems. A few studies have shown that dual MOR-DOR agonists could be beneficial, with reduced tolerance and addiction liability, but are nearly untested in chronic pain models, particularly neuropathic pain. In this study, we tested the MOR-DOR agonist SRI-22141 in mice in the clinically relevant models of HIV Neuropathy and Chemotherapy-Induced Peripheral Neuropathy (CIPN). SRI-22141 was more potent than morphine in the tail flick pain test and had equal or enhanced efficacy versus morphine in both neuropathic pain models, with significantly reduced tolerance. SRI-22141 also produced no jumping behavior during naloxone-precipitated withdrawal in CIPN or naïve mice, suggesting that SRI-22141 produces little to no dependence. SRI-22141 also reduced tumor necrosis factor-α and cyclooxygenase-2 in CIPN in the spinal cord, suggesting an anti-inflammatory mechanism of action. The DOR-selective antagonist naltrindole strongly reduced CIPN efficacy and anti-inflammatory activity in the spinal cord, without affecting tail flick antinociception, suggesting the importance of DOR activity in these models. Overall, these results provide compelling evidence that MOR-DOR agonists could have strong efficacy with reduced side effects and an anti-inflammatory mechanism in the treatment of neuropathic pain.PerspectiveThis study demonstrates that a MOR-DOR dual agonist given chronically in chronic neuropathic pain models has enhanced efficacy with strongly reduced tolerance and dependence, with a further anti-inflammatory effect in the spinal cord. This suggests that MOR-DOR dual agonists could be effective treatments for neuropathic pain with reduced side effects.  相似文献   

4.
Boroujerdi A  Zeng J  Sharp K  Kim D  Steward O  Luo ZD 《Pain》2011,152(3):649-655
Spinal cord injury (SCI) commonly results in the development of neuropathic pain, which can dramatically impair the quality of life for SCI patients. SCI-induced neuropathic pain can be manifested as both tactile allodynia (a painful sensation to a non-noxious stimulus) and hyperalgesia (an enhanced sensation to a painful stimulus). The mechanisms underlying these pain states are poorly understood. Clinical studies have shown that gabapentin, a drug that binds to the voltage-gated calcium channel alpha-2-delta-1 subunit (Cavα2δ-1) proteins is effective in the management of SCI-induced neuropathic pain. Accordingly, we hypothesized that tactile allodynia post SCI is mediated by an upregulation of Cavα2δ-1 in dorsal spinal cord. To test this hypothesis, we examined whether SCI-induced dysregulation of spinal Cavα2δ-1 plays a contributory role in below-level allodynia development in a rat spinal T9 contusion injury model. We found that Cavα2δ-1 expression levels were significantly increased in L4-6 dorsal, but not ventral, spinal cord of SCI rats that correlated with tactile allodynia development in the hind paw plantar surface. Furthermore, both intrathecal gabapentin treatment and blocking SCI-induced Cavα2δ-1 protein upregulation by intrathecal Cavα2δ-1 antisense oligodeoxynucleotides could reverse tactile allodynia in SCI rats. These findings support that SCI-induced Cavα2δ-1 upregulation in spinal dorsal horn is a key component in mediating below-level neuropathic pain states, and selectively targeting this pathway may provide effective pain relief for SCI patients.  相似文献   

5.
Kohno T  Ji RR  Ito N  Allchorne AJ  Befort K  Karchewski LA  Woolf CJ 《Pain》2005,117(1-2):77-87
In both the spared nerve injury (SNI) and spinal nerve ligation (SNL) rat peripheral neuropathic pain models the presynaptic inhibitory effect of the mu opioid receptor (MOR) agonist (DAMGO) on primary afferent-evoked excitatory postsynaptic currents (EPSCs) and miniature EPSCs in superficial dorsal horn neurons is substantially reduced, but only in those spinal cord segments innervated by injured primary afferents. The two nerve injury models also reduce the postsynaptic potassium channel opening action of DAMGO on lamina II spinal cord neurons, but again only in segments receiving injured afferent input. The inhibitory action of DAMGO on ERK (extracellular signal-regulated kinase) activation in dorsal horn neurons is also reduced in affected segments following nerve injury. MOR expression decreases substantially in injured dorsal root ganglion neurons (DRG), while intact neighboring DRGs are unaffected. Decreased activation of MOR on injured primary afferent central terminals and the second order neurons they innervate may minimize any reduction by opioids of the spontaneous pain mediated by ectopic input from axotomized small diameter afferents. Retention of MOR expression and activity in nearby non-injured afferents will enable, however, an opioid-mediated reduction of stimulus-evoked and spontaneous pain carried by intact nociceptor afferents and we find that intrathecal DAMGO (1000 ng) reduces mechanical hypersensitivity in rats with SNL. Axotomy-induced changes in MOR may contribute to opioid- insensitive components of neuropathic pain while the absence of these changes in intact afferents may contribute to the opioid sensitive components.  相似文献   

6.
Repeated administration of opioids such as morphine induces persistent behavioral changes including opioid-induced hyperalgesia (OIH), tolerance, and physical dependence. In the current work we explored how the balance of histone acetyltransferase (HAT) versus histone deacetylase (HDAC) might regulate these morphine-induced changes. Nociceptive thresholds, analgesia, and physical dependence were assessed during and for a period of several weeks after morphine exposure. To probe the roles of histone acetylation, the HAT inhibitor curcumin or a selective HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) was administered daily to groups of animals. Histone acetylation in spinal cord was assessed by Western blot and immunohistochemistry. Concurrent administration of curcumin with morphine for 4 days significantly reduced development of opioid-induced mechanical allodynia, thermal hyperalgesia, tolerance, and physical dependence. Conversely, the HDAC inhibitor SAHA enhanced these responses. Interestingly, SAHA treatment after the termination of opioid administration sustained these behavioral changes for at least 4 weeks. Histone H3 acetylation in the dorsal horn of the spinal cord was increased after chronic morphine treatment, but H4 acetylation was unchanged. Moreover, we observed a decrease in HDAC activity in the spinal cords of morphine-treated mice while overall HAT activity was unchanged, suggesting a shift toward a state of enhanced histone acetylation.PerspectiveThe current study indicates that epigenetic mechanisms play a crucial role in opioid-induced long-lasting neuroplasticity. These results provide new sight into understanding the mechanisms of opioid-induced neuroplasticity and suggest new strategies to limit opioid abuse potential and increase the value of these drugs as analgesics.  相似文献   

7.
Schmidtko A  Luo C  Gao W  Geisslinger G  Kuner R  Tegeder I 《Pain》2008,139(3):632-643
The synaptic vesicle protein synapsin II is specifically expressed in synaptic terminals of primary afferent nociceptive neurons and regulates transmitter release in the spinal cord dorsal horn. Here, we assessed its role in nerve injury-evoked molecular and behavioral adaptations in models of peripheral neuropathic pain using mice genetically lacking synapsin II. Deficiency of synapsin II resulted in reduced mechanical and cold allodynia in two models of peripheral neuropathic pain. This was associated with decreased glutamate release in the dorsal horn of the spinal cord upon sciatic nerve injury or capsaicin application onto the sciatic nerve and reduced calcium signals in spinal cord slices upon persistent activation of primary afferents. In addition, the expression of the vesicular glutamate transporters, VGLUT1 and VGLUT2, was strongly reduced in synapsin II knockout mice in the spinal cord. Conversely, synapsin II knockout mice showed a stronger and longer-lasting increase of GABA in lamina II of the dorsal horn after nerve injury than wild type mice. These results suggest that synapsin II is involved in the regulation of glutamate and GABA release in the spinal cord after nerve injury, and that a imbalance between glutamatergic and GABAergic synaptic transmission contributes to the manifestation of neuropathic pain.  相似文献   

8.
Increased glutamatergic input to spinal dorsal horn neurons constitutes an important mechanism for neuropathic pain. However, the role of group III metabotropic glutamate receptors (mGluRs) in regulation of nociception and dorsal horn neurons in normal and neuropathic pain conditions is not fully known. In this study, we determined the effect of the group III mGluR specific agonist L(+)-2-amino-4-phosphonobutyric acid (L-AP4) on nociception and dorsal horn projection neurons in normal rats and a rat model of neuropathic pain. Tactile allodynia was induced by ligation of L5/L6 left spinal nerves in rats. Allodynia was determined by von Frey filaments in nerve-injured rats. The nociceptive threshold was tested using a radiant heat and a Randall-Selitto pressure device in normal rats. Single-unit activity of ascending dorsal horn neurons was recorded from the lumbar spinal cord in anesthetized rats. An intrathecal (5-30 microg) L-AP4 dose-dependently attenuated allodynia in nerve-injured rats but had no antinociceptive effect in normal rats. Topical spinal application of 5 to 50 microM L-AP4 also significantly inhibited the evoked responses of ascending dorsal horn neurons in nerve-ligated but not normal rats. Furthermore, blockade of spinal group III mGluRs significantly decreased the withdrawal threshold and increased the evoked responses of dorsal horn neurons in normal but not nerve-injured rats. These data suggest that group III mGluRs play distinct roles in regulation of nociception and dorsal horn neurons in normal and neuropathic pain states. Activation of spinal group III mGluRs suppresses allodynia and inhibits the hypersensitivity of dorsal horn projection neurons associated with neuropathic pain.  相似文献   

9.
Glial cell line-derived neurotrophic factor (GDNF), a survival-promoting factor for a subset of nociceptive small-diameter neurons, has been shown to exert analgesic effects on neuropathic pain. However, its detailed mechanisms of action are still unknown. In the present study, we investigated the site-specific analgesic effects of GDNF in the neuropathic pain state using lentiviral vector-mediated GDNF overexpression in mice with left fifth lumbar (L5) spinal nerve ligation (SNL) as a neuropathic pain model. A lentiviral vector expressing both GDNF and enhanced green fluorescent protein (EGFP) was constructed and injected into the left dorsal spinal cord, uninjured fourth lumbar (L4) dorsal root ganglion (DRG), injured L5 DRG, or plantar skin of mice. In SNL mice, injection of the GDNF-EGFP-expressing lentivirus into the dorsal spinal cord or uninjured L4 DRG partially but significantly reduced the mechanical allodynia in association with an increase in GDNF protein expression in each virus injection site, whereas injection into the injured L5 DRG or plantar skin had no effects. These results suggest that GDNF exerts its analgesic effects in the neuropathic pain state by acting on the central terminals of uninjured DRG neurons and/or on the spinal cells targeted by the uninjured DRG neurons.

Perspective

This article shows that GDNF exerts its analgesic effects on neuropathic pain by acting on the central terminals of uninjured DRG neurons and/or on the spinal cells targeted by these neurons. Therefore, research focusing on these GDNF-dependent neurons in the uninjured DRG would provide a new strategy for treating neuropathic pain.  相似文献   

10.
ObjectiveIn order to refine therapeutic strategies for spinal cord injury (SCI) patients with chronic neuropathic pain, it appears essential to assess the impact of socioenvironmental factors on the onset of pain or its chronic nature. The aim of this article is to answer the following question regarding these factors: is there any evidence that managing these social and environmental factors could have a positive impact on the treatment of chronic neuropathic pain in SCI patients?MethodologyThe English keywords were: Chronic neuropathic pain in spinal cord injury/human/adult and rehabilitation; functional independence; community integration; family support; employment; social environment; social support; life satisfaction; quality of life.ResultsThirty-four articles were selected, the data extracted from the literature highlighted several socioenvironmental factors that could have a potential impact on the onset of neuropathic pain in spinal cord injury patients.ConclusionIt was impossible to directly answer this question based on the literature review only. Nonetheless, some socioenvironmental factors can be considered as potential triggering factors for the onset of chronic pain in spinal cord injury patients, i.e. a low degree of independence (C), low socioeconomic status (B), unemployment (B), and family and friends with a “negative attitude” (C).  相似文献   

11.
Dey DD  Landrum O  Oaklander AL 《Pain》2005,113(1-2):233-237
Cavernous hemangiomas (cavernomas) of the spinal cord are rare congenital malformations that comprise less than 5% of all intramedullary lesions. Despite this rarity, we describe the third case of central neuropathic itch associated with intramedullary cavernoma. Since fewer than 10 cases of central spinal itch from all causes have been published, this concurrence suggests the possibility of a specific association. A middle-aged man developed chronic disabling neuropathic itch and pain affecting his left shoulder and arm after frank hemorrhage of a midcervical cavernoma. We hypothesize that the relatively rostro-dorsal location of his lesion increased its likelihood of causing itch as well as pain. The microscopic pathology of cavernomas, specifically their gliotic rim containing hemosiderin-laden phagocytes, fosters ectopic firing of nearby neurons and makes cranial cavernomas highly epileptogenic. We hypothesize that these pathological features predispose cavernomas to cause central itch if they are located near, but spare, the central itch projection neurons in lamina I of the dorsal horn. Quisqualate injections into the deeper layers (neck) of the dorsal horns of rats produce pathologically similar lesions. Such rats develop unilateral dermatomal hyperalgesia and self-injurious scratching and biting (autotomy). Although this pathological grooming is currently interpreted as a response to chronic pain, we propose that it more likely models scratching provoked by central neuropathic itch, as seen in our patient and others. Study of quisqualate-injected rats may provide leads towards new treatments for neuropathic itch.  相似文献   

12.
《The journal of pain》2014,15(5):516-526
Lumbar disc herniation (LDH) is a major cause of sciatica, but the underlying mechanisms are not well understood. Chemokine CCL2 has been implicated to play a vital role in the neuroinflammation and central sensitization after spinal nerve ligation. Here we investigated the expression and the role of CCL2 and its receptor CCR2 in LDH-induced pain. Implantation of autologous nucleus pulposus induced persistent pain hypersensitivity, associated with increased mRNA expression of CCL2 and CCR2 in the dorsal root ganglion and spinal cord. Interestingly, CCL2 was increased in neurons and CCR2 was mainly increased in macrophages in the dorsal root ganglion, whereas CCL2 and CCR2 were increased in astrocytes and neurons, respectively, in the spinal cord. Intrathecal injection of CCR2 antagonist RS504393 at 3 days or 10 days significantly attenuated nucleus pulposus–induced mechanical allodynia. The results suggest that CCL2/CCR2 in the dorsal root ganglion and spinal cord is involved in the maintenance of LDH-induced pain. Targeting CCL2/CCR2 signaling may be a potential treatment for chronic radicular neuropathic pain.PerspectiveThese results suggest that CCL2/CCR2 signaling in the dorsal root ganglion and spinal cord is involved in LDH-induced pain via distinct mechanisms. These findings provide evidence of the antinociceptive effect of CCR2 antagonist on radicular neuropathic pain.  相似文献   

13.
The molecular modification of the pain pathway represents one of the major mechanisms underlying neuropathic pain. Recently, gene array studies have been carried out to identify the genes that are regulated at the spinal cord level after peripheral nerve injury. These studies demonstrate that peripheral nerve injury causes marked changes in gene expression in both the dorsal root ganglion (DRG) and the dorsal spinal cord. The markedly regulated molecules include, for example, neuropeptides, receptors, ion channels, signal transduction molecules and synaptic vesicle proteins. Upregulation of the Ca2+ channel alpha2/delta1 subunit, gamma-aminobutyric acid A receptor alpha5 subunit, Na+ channels and nicotinic acetylcholine receptors in the DRG and dorsal spinal cord indicates their potential roles in neuropathic pain control.  相似文献   

14.
Gao X  Kim HK  Chung JM  Chung K 《Pain》2007,131(3):262-271
Recent studies indicate that reactive oxygen species (ROS) play an important role in neuropathic pain, predominantly through spinal mechanisms. Since the data suggest that ROS are involved in central sensitization, the present study examines the levels of activated N-methyl-d-aspartate (NMDA) receptors in the dorsal horn before and after removal of ROS with a ROS scavenger, phenyl-N-t-butyl nitrone (PBN), in animal models of pain. Tight ligation of the L5 spinal nerve was used for the neuropathic pain model and intradermal injection of capsaicin was used for the inflammatory pain model. Foot withdrawal thresholds to von Frey stimuli to the paw were measured as pain indicators. The number of neurons showing immunoreactivity to phosphorylated NMDA-receptor subunit 1 (pNR1) and the total amount of pNR1 proteins in the spinal cord were determined using immunohistochemical and Western blotting techniques, respectively. Hyperalgesia and increased pNR1 expression were observed in both neuropathic and capsaicin-treated rats. A systemic injection of PBN (100 mg/kg, i.p.) dramatically reduced hyperalgesia and blocked the enhancement of spinal pNR1 in both pain models within 1h after PBN treatment. The data suggest that ROS are involved in NMDA-receptor activation, an essential step in central sensitization, and thus contribute to neuropathic and capsaicin-induced pain.  相似文献   

15.
16.
Recent studies have indicated an important role of chemokines such as CCL2 in the development of chronic pain. However, the distinct roles of different chemokines in the development and maintenance of neuropathic pain and in their interactions with neurons have not been clearly elucidated. We found that spinal nerve ligation (SNL) not only induced persistent neuropathic pain symptoms, including mechanical allodynia and heat hyperalgesia, but also produced sustained CXCL1 upregulation in the spinal cord. Double staining of immunofluorescence and in situ hybridization revealed that CXCL1 was primarily induced in spinal astrocytes. In cultured astrocytes, tumor necrosis factor-α induced robust CXCL1 expression via the activation of the c-jun N-terminal kinase. Intrathecal administration of CXCL1 neutralizing antibody transiently reduced SNL-induced pain hypersensitivity, suggesting an essential role of CXCL1 in neuropathic pain sensitization. In particular, intraspinal delivery of CXCL1 shRNA lentiviral vectors, either before or after SNL, persistently attenuated SNL-induced pain hypersensitivity. Spinal application of CXCL1 not only elicited pain hypersensitivity but also induced rapid neuronal activation, as indicated by the expression of phosphorylated extracellular signal-regulated kinase and cAMP response element binding protein, and c-Fos in spinal cord neurons. Interestingly, CXCR2, the primary receptor of CXCL1, was upregulated in dorsal horn neurons after SNL, and the CXCR2 antagonist SB225002 completely blocked the CXCL1-induced heat hyperalgesia. SB225002 also attenuated SNL-induced pain hypersensitivity. Collectively, our results have demonstrated a novel form of chemokine-mediated glial-neuronal interaction in the spinal cord that can drive neuropathic pain. Inhibition of the CXCL1-CXCR2 signaling may offer a new therapy for neuropathic pain management.  相似文献   

17.
Abstract: Spinal cord stimulation (SCS) is a valuable treatment for chronic intractable neuropathic pain. Although SCS has gone through a technological revolution over the last four decades, the neurophysiologic and biochemical mechanisms of action have only been partly elucidated. Animal experimental work has provided some evidence for spinal as well as supraspinal mechanisms of neuropathic pain relief of SCS. A SCS computer model of the electrical properties of the human spinal cord revealed many basic neurophysiologic principles that were clinically validated later on. The main question in clinical SCS is how to further improve the effectiveness of SCS as there is still a significant failure rate of 30%. In this context, experimental studies are needed to elucidate which target pain neuron(s) are involved, as well as with what exact electrical stimulation this target neuron can be influenced to produce an optimal supapression of neuropathic pain. This article reviews the basic clinical and experimental technical aspects in relation to the effectiveness of SCS in view of recent understanding of the dorsal horn pain circuit involved. These data may then result in experiments needed for an improved understanding of the mechanisms underlying SCS and consequently lead to improvement and increased effectiveness of SCS in neuropathic pain as a clinical therapy.  相似文献   

18.
The rationale of spinal administration of endothelin-1(ET-1) mediated anti-nociceptive effect has not been elucidated. ET-1 is reported to promote nuclear effluxion of histone deacetylase 5 (HDAC5) in myocytes, and spinal HDAC5 is implicated in modulation of pain processing. In this study, we aimed to investigate whether central ET-1 plays an anti-nociceptive role by facilitating spinal HDAC5 nuclear shuttling under neuropathic pain. Here, we demonstrate that upregulating spinal ET-1 attenuated the nociception induced by partial sciatic nerve ligation surgery and this analgesic effect mediated by ET-1 was attenuated by intrathecal injection of endothelin A receptor selective inhibitor (BQ123) or by blocking the exportation of nuclear HDAC5 by adeno-associated viruses targeting neuronal HDAC5 (AVV-HDAC5 S259/498A Mutant). Notably, ET-1 administration increased spinal glutamate acid decarboxylases (GAD65/67) expression via initiating HDAC5 nuclear exportation and increased the acetylation of histone 3 at lysine 9 (Acetyl-H3K9) in the promotor regions of spinal Gad1 and Gad2 genes. This was reversed by blocking endothelin A receptor function or by inhibiting the spinal neuronal nuclear exportation of HDAC5. Therefore, inducing spinal GABAergic neuronal HDAC5 nuclear exportation may be a novel therapeutic approach for managing neuropathic pain.PerspectiveNeuropathic pain is intractable in a clinical setting, and epigenetic regulation is considered to contribute to this processing. Characterizing the anti-nociceptive effect of ET-1 and investigating the associated epigenetic mechanisms in animal models may lead to the development of new therapeutic strategies and targets for treating neuropathic pain.  相似文献   

19.
组蛋白乙酰化,主要由组蛋白乙酰化酶(HAT)与组蛋白去乙酰化酶(HDAC)催化完成.HAT与HDAC能够调控组蛋白乙酰化/去乙酰化平衡,从而在基因表达调控、DNA复制及修复等过程中起着重要作用,参与多种基因的转录调控,在多种血液系统恶性肿瘤发生、发展中发挥了关键作用.组蛋白去乙酰化酶抑制剂(HDACI)通过抑制HDAC发挥生物学效应.HDACI具有明确的抗肿瘤作用,在实体瘤及血液系统恶性肿瘤的治疗中,尤其在急性髓细胞白血病(AML)、多发性骨髓瘤(MM)、非霍奇金淋巴瘤(NHL)、皮肤性T细胞淋巴瘤(CTCL)等血液系统恶性肿瘤的治疗中,取得了较好的疗效.  相似文献   

20.
Using the chronic constriction injury (CCI) model of neuropathic pain, we profiled gene expression in the rat spinal cord, and identified SIP30 as a gene whose expression was elevated after CCI. SIP30 was previously shown to interact with SNAP25, but whose function was otherwise unknown. We now show that in the spinal cord, SIP30 was present in the dorsal horn laminae where the peripheral nociceptive inputs first synapse, co-localizing with nociception-related neuropeptides CGRP and substance P. With the onset of neuropathic pain after CCI surgery, SIP30 mRNA and protein levels increased in the ipsilateral side of the spinal cord, suggesting a potential association between SIP30 and neuropathic pain. When CCI-upregulated SIP30 was inhibited by intrathecal antisense oligonucleotide administration, neuropathic pain was attenuated. This neuropathic pain-reducing effect was observed both during neuropathic pain onset following CCI, and after neuropathic pain was fully established, implicating SIP30 involvement in the development and maintenance phases of neuropathic pain. Using a secretion assay in PC12 cells, anti-SIP30 siRNA decreased the total pool of synaptic vesicles available for exocytosis, pointing to a potential function for SIP30. These results suggest a role of SIP30 in the development and maintenance of peripheral nerve injury-induced neuropathic pain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号