首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
MAGE-type genes are expressed by many tumors of different histological types and not by normal cells, except for male germline cells, which do not express major histocompatibility complex (MHC) molecules. Therefore, the antigens encoded by MAGE-type genes are strictly tumor specific and common to many tumors. We describe here the identification of the first MAGE-encoded epitopes presented by histocompatibility leukocyte antigen (HLA) class II molecules to CD4(+) T lymphocytes. Monocyte-derived dendritic cells were loaded with a MAGE-3 recombinant protein and used to stimulate autologous CD4(+) T cells. We isolated CD4(+) T cell clones that recognized two different MAGE-3 epitopes, MAGE-3114-127 and MAGE-3121-134, both presented by the HLA-DR13 molecule, which is expressed in 20% of Caucasians. The second epitope is also encoded by MAGE-1, -2, and -6. Our procedure should be applicable to other proteins for the identification of new tumor-specific antigens presented by HLA class II molecules. The knowledge of such antigens will be useful for evaluation of the immune response of cancer patients immunized with proteins or with recombinant viruses carrying entire genes coding for tumor antigens. The use of antigenic peptides presented by class II in addition to peptides presented by class I may also improve the efficacy of therapeutic antitumor vaccination.  相似文献   

2.
The goal of tumor immunotherapy is to elicit immune responses against autologous tumors. It would be highly desirable that such responses include multiple T cell clones against multiple tumor antigens. This could be obtained using the antigen presenting capacity of dendritic cells (DCs) and cross-priming. That is, one could load the DC with tumor lines of any human histocompatibility leukocyte antigen (HLA) type to elicit T cell responses against the autologous tumor. In this study, we show that human DCs derived from monocytes and loaded with killed melanoma cells prime naive CD45RA(+)CD27(+)CD8(+) T cells against the four shared melanoma antigens: MAGE-3, gp100, tyrosinase, and MART-1. HLA-A201(+) naive T cells primed by DCs loaded with HLA-A201(-) melanoma cells are able to kill several HLA-A201(+) melanoma targets. Cytotoxic T lymphocyte priming towards melanoma antigens is also obtained with cells from metastatic melanoma patients. This demonstration of cross-priming against shared tumor antigens builds the basis for using allogeneic tumor cell lines to deliver tumor antigens to DCs for vaccination protocols.  相似文献   

3.
T helper type 1 (Th1)-type CD4(+) antitumor T cell help appears critical to the induction and maintenance of antitumor cytotoxic T lymphocyte (CTL) responses in vivo. In contrast, Th2- or Th3/Tr-type CD4(+) T cell responses may subvert Th1-type cell-mediated immunity, providing a microenvironment conducive to disease progression. We have recently identified helper T cell epitopes derived from the MAGE-6 gene product; a tumor-associated antigen expressed by most melanomas and renal cell carcinomas. In this study, we have assessed whether peripheral blood CD4(+) T cells from human histocompatibility leukocyte antigens (HLA)-DRbeta1*0401(+) patients are Th1- or Th2-biased to MAGE-6 epitopes using interferon (IFN)-gamma and interleukin (IL)-5 enzyme-linked immunospot assays, respectively. Strikingly, the vast majority of patients with active disease were highly-skewed toward Th2-type responses against MAGE-6-derived epitopes, regardless of their stage (stage I versus IV) of disease, but retained Th1-type responses against Epstein-Barr virus- or influenza-derived epitopes. In marked contrast, normal donors and cancer patients with no current evidence of disease tended to exhibit either mixed Th1/Th2 or strongly Th1-polarized responses to MAGE-6 peptides, respectively. CD4(+) T cell secretion of IL-10 and transforming growth factor (TGF)-beta1 against MAGE-6 peptides was not observed, suggesting that specific Th3/Tr-type CD4(+) subsets were not common events in these patients. Our data suggest that immunotherapeutic approaches will likely have to overcome or complement systemic Th2-dominated, tumor-reactive CD4(+) T cell responses to provide optimal clinical benefit.  相似文献   

4.
Ectopic gene expression in tumors versus normal somatic tissues provides opportunities for the specific immunotargeting of cancer cells. SSX gene products are expressed in tumors of different histological types and can be recognized by tumor-reactive CTLs from cancer patients. Here, we report the identification of an SSX-2-derived immunodominant T cell epitope recognized by CD4(+) T cells from melanoma patients in association with HLA-DR. The epitope maps to the 37-58 region of the protein, encompassing the sequence of the previously defined HLA-A2-restricted immunodominant epitope SSX-2(41-49). SSX-2(37-58)-specific CD4(+) T cells were detected among circulating lymphocytes from the majority of melanoma patients analyzed and among tumor-infiltrating lymphocytes, but not in healthy donors. Together, our data suggest a dominant role of the 37-58 sequence in the induction of cellular CD4(+) T cell responses against SSX antigens and will be instrumental for both the onset and the monitoring of upcoming cancer-vaccine trials using SSX-derived immunogens.  相似文献   

5.
The clonotypic surface Ig receptor expressed by malignant B cells, idiotype, is a tumor-specific antigen and an attractive target for active immunotherapy. While Ab's specific for tumor idiotype have been well described in patients with B cell malignancies, the precise antigenic epitopes in human idiotype recognized by autologous T cells remain largely unknown. We report here that T cell lines generated from lymphoma patients actively immunized with idiotype protein specifically recognized multiple, unique immunodominant epitopes in autologous tumor idiotype. Synthetic peptides corresponding to hypervariable, but not framework, regions of Ig heavy chain specifically stimulated CD4(+) and CD8(+) T cells to proliferate and secrete proinflammatory cytokines in an MHC-associated manner. Detailed analysis revealed a minimal determinant of an immunodominant epitope, comprising critical residues at the amino terminus that may be a product of somatic hypermutation. Association of idiotype-specific T cell responses with previously documented molecular remissions in idiotype-vaccinated patients suggests that the newly identified T cell epitopes may be clinically relevant. Such antigenic epitopes may serve as candidates for novel peptide-vaccine strategies, and as tools to selectively expand tumor antigen-specific T cells for adoptive immunotherapy and for monitoring T cell immunity in vaccinated patients.  相似文献   

6.
There is evidence that dendritic cell (DC) vaccines induce tumor-specific immune responses that correlate with clinical responses. Little is known, however, about the kinetics of T-cell responses to antigens presented on DC vaccines. The authors vaccinated 18 HLA A*0201+ patients with stage IV melanoma with CD34 HPC-derived DCs pulsed with six antigens: influenza matrix peptide (Flu-MP), KLH, and peptides derived from the four melanoma antigens: MART-1/Melan A, gp100, tyrosinase, and MAGE-3. A single DC vaccination was sufficient for induction of KLH-specific CD4 T-cell responses in five patients and Flu-MP-specific CD8 T-cell responses in eight patients. A single DC vaccine was sufficient for induction of tumor-specific effectors to at least one melanoma antigen in five patients. Thus, a single injection of CD34 HPC-derived DCs can lead to rapid immune response to CD4 epitopes or to melanoma antigens.  相似文献   

7.
Dendritic cells (DCs) are considered to be promising adjuvants for inducing immunity to cancer. We used mature, monocyte-derived DCs to elicit resistance to malignant melanoma. The DCs were pulsed with Mage-3A1 tumor peptide and a recall antigen, tetanus toxoid or tuberculin. 11 far advanced stage IV melanoma patients, who were progressive despite standard chemotherapy, received five DC vaccinations at 14-d intervals. The first three vaccinations were administered into the skin, 3 x 10(6) DCs each subcutaneously and intradermally, followed by two intravenous injections of 6 x 10(6) and 12 x 10(6) DCs, respectively. Only minor (less than or equal to grade II) side effects were observed. Immunity to the recall antigen was boosted. Significant expansions of Mage-3A1-specific CD8(+) cytotoxic T lymphocyte (CTL) precursors were induced in 8/11 patients. Curiously, these immune responses often declined after the intravenous vaccinations. Regressions of individual metastases (skin, lymph node, lung, and liver) were evident in 6/11 patients. Resolution of skin metastases in two of the patients was accompanied by erythema and CD8(+) T cell infiltration, whereas nonregressing lesions lacked CD8(+) T cells as well as Mage-3 mRNA expression. This study proves the principle that DC "vaccines" can frequently expand tumor-specific CTLs and elicit regressions even in advanced cancer and, in addition, provides evidence for an active CD8(+) CTL-tumor cell interaction in situ as well as escape by lack of tumor antigen expression.  相似文献   

8.
Tumor-specific CD8(+) T cells can potentially be activated by two distinct mechanisms of major histocompatibility complex class I-restricted antigen presentation as follows: direct presentation by tumor cells themselves or indirect presentation by professional antigen-presenting cells (APCs). However, controversy still exists as to whether indirect presentation (the cross-priming mechanism) can contribute to effective in vivo priming of tumor-specific CD8(+) T cells that are capable of eradicating cancer in patients. A clinical trial of vaccination with granulocyte macrophage-colony stimulating factor-transduced pancreatic cancer lines was designed to test whether cross-presentation by locally recruited APCs can activate pancreatic tumor-specific CD8(+) T cells. Previously, we reported postvaccination delayed-type hypersensitivity (DTH) responses to autologous tumor in 3 out of 14 treated patients. Mesothelin is an antigen demonstrated previously by gene expression profiling to be up-regulated in most pancreatic cancers. We report here the consistent induction of CD8(+) T cell responses to multiple HLA-A2, A3, and A24-restricted mesothelin epitopes exclusively in the three patients with vaccine-induced DTH responses. Importantly, neither of the vaccinating pancreatic cancer cell lines expressed HLA-A2, A3, or A24. These results provide the first direct evidence that CD8 T cell responses can be generated via cross-presentation by an immunotherapy approach designed to recruit APCs to the vaccination site.  相似文献   

9.
10.
By stimulating human CD8(+) T lymphocytes with autologous dendritic cells infected with an adenovirus encoding MAGE-3, we obtained a cytotoxic T lymphocyte (CTL) clone that recognized a new MAGE-3 antigenic peptide, AELVHFLLL, which is presented by HLA-B40. This peptide is also encoded by MAGE-12. The CTL clone recognized MAGE-3--expressing tumor cells only when they were first treated with IFN-gamma. Since this treatment is known to induce the exchange of the three catalytic subunits of the proteasome to form the immunoproteasome, this result suggested that the processing of this MAGE-3 peptide required the immunoproteasome. Transfection experiments showed that the substitution of beta5i (LMP7) for beta5 is necessary and sufficient for producing the peptide, whereas a mutated form of beta5i (LMP7) lacking the catalytically active site was ineffective. Mass spectrometric analyses of in vitro digestions of a long precursor peptide with either proteasome type showed that the immunoproteasome produced the antigenic peptide more efficiently, whereas the standard proteasome more efficiently introduced cleavages destroying the antigenic peptide. This is the first example of a tumor-specific antigen exclusively presented by tumor cells expressing the immunoproteasome.  相似文献   

11.
We tested 154 peptides spanning the entire length of core histones of nucleosomes for the ability to stimulate an anti-DNA autoantibody-inducing T helper (Th) clone, as well as CD4(+) T-cell lines and T cells, in fresh PBMCs from 23 patients with lupus erythematosus. In contrast to normal T cells, lupus T cells responded strongly to certain histone peptides, irrespective of the patient's disease status. Nucleosomal peptides in histone regions H2B(10-33), H4(16-39) (and overlapping H4(14-28)), H4(71-94), and H3(91-105) (and overlapping H3(100-114)) were recurrently recognized by CD4 T cells from the patients with lupus. Remarkably, these same peptides overlap with major epitopes for the Th cells that induce anti-DNA autoantibodies and nephritis in lupus-prone mice. We localized 2 other recurrent epitopes for human lupus T cells in H2A(34-48) and H4(49-63). All the T-cell autoepitopes have multiple HLA-DR binding motifs, and the epitopes are located in histone regions recognized by lupus autoantibodies, suggesting a basis for their immunodominance. Native nucleosomes and their peptides H4(16-39), H4(71-94), and H3(91-105) induced a stronger IFN-gamma response, whereas others, particularly, H2A(34-48), favored an IL-10- and/or IL-4-positive T-cell response. The major autoepitopes may reveal the mechanism of autoimmune T-cell expansion and lead to antigen-specific therapy of human lupus.  相似文献   

12.
CD4+ T helper cells may play a critical role in the induction and maintenance of a therapeutic immune response to cancer. To evaluate the efficacy with which a recombinant tumor-associated protein can induce antigen-reactive CD4+ T cells, we stimulated peripheral blood lymphocytes from patients with melanoma in vitro with the purified melanoma antigen gp100 produced in Escherichia coli. In preliminary experiments, we observed that peripheral blood mononuclear cells could process and present known HLA-DRbeta1*0401 and HLA-DRbeta1*0701 restricted epitopes to gp100-reactive CD4+ T cell lines after being loaded exogenously with protein. Therefore, we used autologous protein-loaded peripheral blood mononuclear cells as antigen presenting cells. From four of nine patients who expressed both HLA-DRbeta1*0401 and HLA-DRbeta1*0701, we raised five gp100-reactive CD4+ T cell populations that secreted TH1 type cytokines in response to exogenously loaded protein as well as target cells that endogenously expressed gp100 and MHC class II molecules, including transfectants and melanoma cells. Four of the five cultures specifically recognized the known HLA-DRbeta1*0401 and HLA-DRbeta1*0701 restricted epitopes gp100:44-59 and gp100:170-190, respectively. The fifth culture, and 30 T cell clones derived from it, specifically recognized a new peptide, gp100:420-435, in the context of HLA-DRbeta1*0701. These results suggest that recombinant tumor-associated proteins may be clinically applicable for the generation of CD4+ T helper cells in active vaccination strategies or adoptive cellular immunotherapies.  相似文献   

13.
Concomitant tumor immunity describes immune responses in a host with a progressive tumor that rejects the same tumor at a remote site. In this work, concomitant tumor immunity was investigated in mice bearing poorly immunogenic B16 melanoma. Progression of B16 tumors did not spontaneously elicit concomitant immunity. However, depletion of CD4(+) T cells in tumor-bearing mice resulted in CD8(+) T cell-mediated rejection of challenge tumors given on day 6. Concomitant immunity was also elicited by treatment with cyclophosphamide or DTA-1 monoclonal antibody against the glucocorticoid-induced tumor necrosis factor receptor. Immunity elicited by B16 melanoma cross-reacted with a distinct syngeneic melanoma, but not with nonmelanoma tumors. Furthermore, CD8(+) T cells from mice with concomitant immunity specifically responded to major histocompatibility complex class I-restricted epitopes of two melanocyte differentiation antigens. RAG1(-/-) mice adoptively transferred with CD8(+) and CD4(+) T cells lacking the CD4(+)CD25(+) compartment mounted robust concomitant immunity, which was suppressed by readdition of CD4(+)CD25(+) cells. Naturally occurring CD4(+)CD25(+) T cells efficiently suppressed concomitant immunity mediated by previously activated CD8(+) T cells, demonstrating that precursor regulatory T cells in naive hosts give rise to effective suppressors. These results show that regulatory T cells are the major regulators of concomitant tumor immunity against this weakly immunogenic tumor.  相似文献   

14.
Solid tumors are complex masses with a local microenvironment, or stroma, that supports tumor growth and progression. Among the diverse tumor-supporting stromal cells is a heterogeneous population of myeloid-derived cells. These cells are alternatively activated and contribute to the immunosuppressive environment of the tumor; overcoming their immunosuppressive effects may improve the efficacy of cancer immunotherapies. We recently found that engineering tumor-specific CD8(+) T cells to secrete the inflammatory cytokine IL-12 improved their therapeutic efficacy in the B16 mouse model of established melanoma. Here, we report the mechanism underlying this finding. Surprisingly, direct binding of IL-12 to receptors on lymphocytes or NK cells was not required. Instead, IL-12 sensitized bone marrow-derived tumor stromal cells, including CD11b(+)F4/80(hi) macrophages, CD11b(+)MHCII(hi)CD11c(hi) dendritic cells, and CD11b(+)Gr-1(hi) myeloid-derived suppressor cells, causing them to enhance the effects of adoptively transferred CD8(+) T cells. This reprogramming of myeloid-derived cells occurred partly through IFN-γ. Surprisingly, direct presentation of antigen to the transferred CD8(+) T cells by tumor was not necessary; however, MHCI expression on host cells was essential for IL-12-mediated antitumor enhancements. These results are consistent with a model in which IL-12 enhances the ability of CD8(+) T cells to collapse large vascularized tumors by triggering programmatic changes in otherwise suppressive antigen-presenting cells within tumors and support the use of IL-12 as part of immunotherapy for the treatment of solid tumors.  相似文献   

15.
NY-ESO-1 is a member of the cancer-testis family of tumor antigens that elicits strong humoral and cellular immune responses in patients with NY-ESO-1-expressing cancers. Since CD4(+) T lymphocytes play a critical role in generating antigen-specific cytotoxic T lymphocyte and antibody responses, we searched for NY-ESO-1 epitopes presented by histocompatibility leukocyte antigen (HLA) class II molecules. Autologous monocyte-derived dendritic cells of cancer patients were incubated with recombinant NY-ESO-1 protein and used in enzyme-linked immunospot (ELISPOT) assays to detect NY-ESO-1-specific CD4(+) T lymphocyte responses. To identify possible epitopes presented by distinct HLA class II alleles, overlapping 18-mer peptides derived from NY-ESO-1 were synthetized and tested for recognition by CD4(+) T lymphocytes in autologous settings. We identified three NY-ESO-1-derived peptides presented by DRB4*0101-0103 and recognized by CD4(+) T lymphocytes of two melanoma patients sharing these HLA class II alleles. Specificity of recognition was confirmed by proliferation assays. The characterization of HLA class II-restricted epitopes will be useful for the assessment of spontaneous and vaccine-induced immune responses of cancer patients against defined tumor antigens. Further, the therapeutic efficacy of active immunization using antigenic HLA class I-restricted peptides may be improved by adding HLA class II-presented epitopes.  相似文献   

16.
Adoptive T-cell therapy (ACT) using expanded tumor-infiltrating lymphocytes (TIL) with high-dose interleukin-2 is a promising form of immunotherapy for stage IV melanoma having clinical response rates of 50% or more. One of the major problems preventing further success of this therapy is that the current protocols used to highly expand TIL for infusion drive CD8(+) T cells to differentiate into effector cells losing key costimulatory molecules such as CD28 and CD27. This has been associated with a lack of persistence in vivo for reasons not entirely clear. In this study, we demonstrate that while human melanoma CD8(+) TIL lost CD27 and CD28 expression during the rapid expansion for ACT, they gained expression of the alternative costimulatory molecule CD137/4-1BB, and to a lesser extent CD134/OX40. Postrapid expansion protocol (REP) TIL were found to be highly sensitive to activation-induced cell death when reactivated through the T-cell receptor with low levels of OKT3 antibody. However, coligation of 4-1BB using 2 different agonistic anti-4-1BB antibodies potently prevented activation-induced cell death of post-REP CD8(+) TIL, including those specific for melanoma antigen recognized by T cells, and facilitated even further cell expansion. This was correlated with increased levels of bcl-2 and bcl-xL together with decreased bim expression. 4-1BB costimulated post-REP TIL also expressed increased levels of the cytolytic granule proteins and exhibited enhanced cytotoxic T-cell activity against melanoma cells. Lastly, post-REP CD8(+) TIL were protected from cell death by anti-4-1BB ligation when exposed to human leukocyte antigen-matched melanoma cells. Our results indicate that 4-1BB costimulation may significantly improve TIL survival during melanoma ACT and boost antitumor cytolytic activity.  相似文献   

17.
Severe hemophilia A patients treated with factor (F)VIII may develop antibodies (Ab) that block FVIII function (inhibitors). Autoimmune inhibitors may develop in subjects without congenital hemophilia, and cause acquired hemophilia. Hemophiliacs without inhibitors and healthy subjects may also have small amounts of antiFVIII Ab. FVIII-specific CD4(+) T cells induce antiFVIII Ab synthesis. Here, we have examined their epitope repertoire in hemophilia patients and healthy subjects. We used overlapping synthetic peptides, spanning the sequence of the FVIII A3 domain, to challenge blood CD4(+) T cells in proliferation assays. The epitopes recognized in hemophilia A patients with or without inhibitors, acquired hemophilia patients, or healthy subjects overlapped, yet had characteristic differences. Most members of one or more study groups recognized the sequence regions 1691-1710, 1801-1820, 1831-1850, and 1941-60. In the proposed three-dimensional structure of the A3 domain, these sequences are largely exposed to the solvent and flanked by flexible sequence loops: these are structural features characteristic of 'universal' CD4(+) T epitopes. Hemophilia A patients with inhibitors recognized prominently only the sequence 1801-1820, which overlaps a known inhibitor binding site. This is consistent with the possibility that CD4(+) T cells recognizing epitopes within residues 1801-1820 have a role in inducing inhibitor synthesis. In contrast, CD4(+) T cells sensitized to sequences 1691-1710 and 1941-60, which are recognized by healthy subjects and hemophilia A patients without inhibitors, might curb inhibitor synthesis.  相似文献   

18.
Aire-expressing medullary thymic epithelial cells (mTECs) play a key role in preventing autoimmunity by expressing tissue-restricted antigens to help purge the emerging T cell receptor repertoire of self-reactive specificities. Here we demonstrate a novel role for a CD4(+)3(-) inducer cell population, previously linked to development of organized secondary lymphoid structures and maintenance of T cell memory in the functional regulation of Aire-mediated promiscuous gene expression in the thymus. CD4(+)3(-) cells are closely associated with mTECs in adult thymus, and in fetal thymus their appearance is temporally linked with the appearance of Aire(+) mTECs. We show that RANKL signals from this cell promote the maturation of RANK-expressing CD80(-)Aire(-) mTEC progenitors into CD80(+)Aire(+) mTECs, and that transplantation of RANK-deficient thymic stroma into immunodeficient hosts induces autoimmunity. Collectively, our data reveal cellular and molecular mechanisms leading to the generation of Aire(+) mTECs and highlight a previously unrecognized role for CD4(+)3(-)RANKL(+) inducer cells in intrathymic self-tolerance.  相似文献   

19.
T cells recognizing self antigens expressed by cancer cells are prevalent in the immune repertoire. However, activation of these autoreactive T cells is limited by weak signals that are incapable of fully priming naive T cells, creating a state of tolerance or ignorance. Even if T cell activation occurs, immunity can be further restricted by a dominant response directed at only a single epitope. Enhanced antigen presentation of multiple epitopes was investigated as a strategy to overcome these barriers. Specific point mutations that create altered peptide ligands were introduced into the gene encoding a nonimmunogenic tissue self antigen expressed by melanoma, tyrosinase-related protein-1 (Tyrp1). Deficient asparagine-linked glycosylation, which was caused by additional mutations, produced altered protein trafficking and fate that increased antigen processing. Immunization of mice with mutated Tyrp1 DNA elicited cross-reactive CD8(+) T cell responses against multiple nonmutated epitopes of syngeneic Tyrp1 and against melanoma cells. These multi-specific anti-Tyrp1 CD8(+) T cell responses led to rejection of poorly immunogenic melanoma and prolonged survival when immunization was started after tumor challenge. These studies demonstrate how rationally designed DNA vaccines directed against self antigens for enhanced antigen processing and presentation reveal novel self epitopes and elicit multi-specific T cell responses to nonimmunogenic, nonmutated self antigens, enhancing immunity against cancer self antigens.  相似文献   

20.
We have directly compared the efficacy of two immunotherapeutic strategies for the treatment of cancer: "vaccination" of tumor-bearing mice with genetically modified dendritic cells (DCs), and vaccination with genetically modified tumor cells. Using several different preexisting tumor models that make use of B16F10 melanoma cells expressing a target tumor antigen (human melanoma-associated gene [MAGE]-1), we found that vaccination with bone marrow-derived DCs engineered to express MAGE-1 via adenoviral-mediated gene transfer led to a dramatic decrease in the number of metastases in a lung metastasis model, and led to prolonged survival and some long-term cures in a subcutaneous preexisting tumor model. In contrast, vaccination with granulocyte/macrophage colony-stimulating factor (GM-CSF)-transduced tumor cells, previously shown to induce potent antitumor immunity in standard tumor challenge assays, led to a decreased therapeutic effect in the metastasis model and no effect in the subcutaneous tumor model. Further engineering of DCs to express either GM-CSF, tumor necrosis factor alpha, or CD40 ligand via retroviral-mediated gene transfer, led to a significantly increased therapeutic effect in the subcutaneous tumor model. The immunological mechanism, as shown for GM-CSF-transduced DCs, involves MAGE-1-specific CD4(+) and CD8(+) T cells. Expression of GM-CSF by DCs led to enhanced cytotoxic T lymphocyte activity, potentially mediated by increased numbers of DCs in draining lymph nodes. Our results suggest that clinical studies involving the vaccination with genetically modified DCs may be warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号