首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A DNA structure is described that can cleave single-stranded DNA oligonucleotides in the presence of ionic copper. This “deoxyribozyme” can self-cleave or can operate as a bimolecular complex that simultaneously makes use of duplex and triplex interactions to bind and cleave separate DNA substrates. Bimolecular deoxyribozyme-mediated strand scission proceeds with a kobs of 0.2 min−1, whereas the corresponding uncatalyzed reaction could not be detected. The duplex and triplex recognition domains can be altered, making possible the targeted cleavage of single-stranded DNAs with different nucleotide sequences. Several small synthetic DNAs were made to function as simple “restriction enzymes” for the site-specific cleavage of single-stranded DNA.  相似文献   

2.
Eukaryotic genome similarity relationships are inferred using sequence information derived from large aggregates of genomic sequences. Comparisons within and between species sample sequences are based on the profile of dinucleotide relative abundance values (The profile is ρ*XY = f*XY/f*Xf*Y for all XY, where f*X denotes the frequency of the nucleotide X and f*XY denotes the frequency of the dinucleotide XY, both computed from the sequence concatenated with its inverted complement). Previous studies with respect to prokaryotes and this study document that profiles of different DNA sequence samples (sample size ≥50 kb) from the same organism are generally much more similar to each other than they are to profiles from other organisms, and that closely related organisms generally have more similar profiles than do distantly related organisms. On this basis we refer to the collection {ρ*XY} as the genome signature. This paper identifies ρ*XY extremes and compares genome signature differences for a diverse range of eukaryotic species. Interpretations on the mechanisms maintaining these profile differences center on genome-wide replication, repair, DNA structures, and context-dependent mutational biases. It is also observed that mitochondrial genome signature differences between species parallel the corresponding nuclear genome signature differences despite large differences between corresponding mitochondrial and nuclear signatures. The genome signature differences also have implications for contrasts between rodents and other mammals, and between monocot and dicot plants, as well as providing evidence for similarities among fungi and the diversity of protists.  相似文献   

3.
A two-step gene replacement procedure was developed that generates infectious adenoviral genomes through homologous recombination in Escherichia coli. As a prerequisite, a human adenovirus serotype 5 (Ad5)-derived genome was first introduced as a PacI restriction fragment into an incP-derived replicon which, in contrast to ColE1-derivatives (e.g., pBR322 or pUC plasmids), is functional in a polA mutant of E. coli. Any modification can be introduced at will following two consecutive homologous recombinations between the incP/Ad5 replicon and the ColE1 plasmid. The overall procedure requires only the in vitro engineering of the ColE1-derivative by flanking the desired modification with small stretches of identical sequences. In the first step, a cointegrate between the tetracycline-resistant incP/Ad5 replicon and the kanamycin-resistant ColE1-derivative is selected by growing the polA host in the presence of both antibiotics. Resolution of this cointegrate is further selected in sucrose growth conditions due to the loss of a conditional suicide marker (the sacB gene of Bacillus subtilis) present in the ColE1 plasmid, leading to unmodified and modified incP/Ad5 replicons that can be differentiated upon restriction analysis. Consecutive rounds of this two-step cloning procedure allowed the introduction of multiple independent modifications within the virus genome, with no requirement for an intermediate virus. The potential of this procedure is demonstrated by the recovery of several E1E3E4-deleted adenoviruses following transfection of the corresponding E. coli-derived genomes in IGRP2 cells.  相似文献   

4.
A detailed quantitative kinetic model for the polymerase chain reaction (PCR) is developed, which allows us to predict the probability of replication of a DNA molecule in terms of the physical parameters involved in the system. The important issue of the determination of the number of PCR cycles during which this probability can be considered to be a constant is solved within the framework of the model. New phenomena of multimodality and scaling behavior in the distribution of the number of molecules after a given number of PCR cycles are presented. The relevance of the model for quantitative PCR is discussed, and a novel quantitative PCR technique is proposed.  相似文献   

5.
Simple sequence repeats in prokaryotic genomes   总被引:1,自引:0,他引:1  
Simple sequence repeats (SSRs) in DNA sequences are composed of tandem iterations of short oligonucleotides and may have functional and/or structural properties that distinguish them from general DNA sequences. They are variable in length because of slip-strand mutations and may also affect local structure of the DNA molecule or the encoded proteins. Long SSRs (LSSRs) are common in eukaryotes but rare in most prokaryotes. In pathogens, SSRs can enhance antigenic variance of the pathogen population in a strategy that counteracts the host immune response. We analyze representations of SSRs in >300 prokaryotic genomes and report significant differences among different prokaryotes as well as among different types of SSRs. LSSRs composed of short oligonucleotides (1-4 bp length, designated LSSR(1-4)) are often found in host-adapted pathogens with reduced genomes that are not known to readily survive in a natural environment outside the host. In contrast, LSSRs composed of longer oligonucleotides (5-11 bp length, designated LSSR(5-11)) are found mostly in nonpathogens and opportunistic pathogens with large genomes. Comparisons among SSRs of different lengths suggest that LSSR(1-4) are likely maintained by selection. This is consistent with the established role of some LSSR(1-4) in enhancing antigenic variance. By contrast, abundance of LSSR(5-11) in some genomes may reflect the SSRs' general tendency to expand rather than their specific role in the organisms' physiology. Differences among genomes in terms of SSR representations and their possible interpretations are discussed.  相似文献   

6.
7.
The process of DNA strand exchange during general genetic recombination is initiated within protein-stabilized synaptic filaments containing homologous regions of interacting DNA molecules. The RecA protein in bacteria and its analogs in eukaryotic organisms start this process by forming helical filamentous complexes on single-stranded or partially single-stranded DNA molecules. These complexes then progressively bind homologous double-stranded DNA molecules so that homologous regions of single- and double-stranded DNA molecules become aligned in register while presumably winding around common axis. The topological assay presented herein allows us to conclude that in synaptic complexes containing homologous single- and double-stranded DNA molecules, all three DNA strands have a helicity of approximately 19 nt per turn.  相似文献   

8.
9.
The goals of this study were to assess the extent to which bulk genomic DNA sequences contribute to their own packaging in nucleosomes and to reveal the relationship between nucleosome packaging and positioning. Using a competitive nucleosome reconstitution assay, we found that at least 95% of bulk DNA sequences have an affinity for histone octamer in nucleosomes that is similar to that of randomly synthesized DNA; they contribute little to their own packaging at the level of individual nucleosomes. An equation was developed that relates the measured free energy to the fractional occupancy of specific nucleosome positions. Evidently, the bulk of eukaryotic genomic DNA is also not evolved or constrained for significant sequence-directed nucleosome positioning at the level of individual nucleosomes. Implications for gene regulation in vivo are discussed.  相似文献   

10.
Megalin is a large cell surface receptor that mediates the binding and internalization of a number of structurally and functionally distinct ligands from the lipoprotein and protease:protease inhibitor families. To begin to address how megalin is able to bind ligands with unique structurally properties, we have mapped a binding site for apolipoprotein E (apoE)-β very low density lipoprotein (βVLDL), lipoprotein lipase, aprotinin, lactoferrin, and the receptor-associated protein (RAP) within the primary sequence of the receptor. RAP is known to inhibit the binding of all ligands to megalin. We identified a ligand-binding site on megalin by raising mAb against purified megalin, selected for a mAb whose binding to megalin is inhibited by RAP, and mapped the epitope for this mAb. mAb AC10 inhibited the binding of apoE-βVLDL, lipoprotein lipase, aprotinin, and lactoferrin to megalin in a concentration-dependent manner. When cDNA fragments encoding the four cysteine-rich ligand-binding repeats in megalin were expressed in a baculovirus system and immunoblotted with AC10, it recognized only the second cluster of ligand-binding repeats. The location of the epitope recognized by mAb AC10 within this domain was pinpointed to amino acids 1111–1210. From these studies we conclude that the binding of apoE-βVLDL, lactoferrin, aprotinin, lipoprotein lipase, and RAP to megalin is either competitively or sterically inhibited by mAb AC10 suggesting that these ligands bind to the same or closely overlapping sites within the second cluster of ligand-binding repeats.  相似文献   

11.
12.
Tertiary structure of supercoiled DNA is a significant factor in a number of genetic functions and is apparently affected by environmental conditions. We applied atomic force microscopy (AFM) for imaging the supercoiled DNA deposited at different ionic conditions. We have employed a technique for the sample preparation that permits high-resolution AFM imaging of DNA bound to the surface in buffer solutions without drying the sample (AFM in situ). The AFM data show that at low ionic strength, DNA molecules are loosely interwound supercoils with an irregular shape. Plectonemic superhelices are formed in high-concentration, near-physiological salt solutions. At such ionic conditions, superhelical loops are typically separated by regions of close helix–helix contacts. The data obtained show directly and unambiguously that overall geometry of supercoiled DNA depends dramatically on ionic conditions. This fact and the formation of close contacts between DNA helices are important features of supercoiled DNA related to its biological functions.  相似文献   

13.
Repetitive DNA sequences have been demonstrated to play an important role for centromere function of eukaryotic chromosomes, including those from fission yeast, Drosophila melanogaster, and humans. Here we report on the isolation of a repetitive DNA element located in the centromeric regions of cereal chromosomes. A 745-bp repetitive DNA clone, pSau3A9, was isolated from sorghum (Sorghum bicolor). This DNA element is located in the centromeric regions of all sorghum chromosomes, as demonstrated by fluorescence in situ hybridization. Repetitive DNA sequences homologous to pSau3A9 also are present in the centromeric regions of chromosomes from other cereal species, including rice, maize, wheat, barley, rye, and oats. Probe pSau3A9 also hybridized to the centromeric region of B chromosomes from rye and maize. The repetitive nature and its conservation in distantly related plant species indicate that the pSau3A9 family may be associated with centromere function of cereal chromosomes. The absence of DNA sequences homologous to pSau3A9 in dicot species suggests a faster divergence of centromere-related sequences compared with the telomere-related sequences in plants.  相似文献   

14.
We perform a generalized-ensemble simulation of a small peptide taking the interactions among all atoms into account. From this simulation we obtain thermodynamic quantities over a wide range of temperatures. In particular, we show that the folding of a small peptide is a multistage process associated with two characteristic temperatures, the collapse temperature Tθ and the folding temperature Tƒ. Our results give supporting evidence for the energy landscape picture and funnel concept. These ideas were previously developed in the context of studies of simplified protein models, and here are checked in an all-atom Monte Carlo simulation.  相似文献   

15.
16.
In mammalian cells, double-strand break repair and V(D)J recombination require DNA-dependent protein kinase (DNA-PK), a serine/threonine kinase that is activated by DNA. DNA-PK consists of a 460-kDa subunit (p460) that contains a putative kinase domain and a heterodimeric subunit (Ku) that binds to double-stranded DNA ends. Previous reports suggested that the activation of DNA-PK requires the binding of Ku to DNA. To investigate this further, p460 and Ku were purified separately to homogeneity. Surprisingly, p460 was capable of binding to DNA in the absence of Ku. The binding of p460 to double-stranded DNA ends was salt-labile and could be disrupted by single-stranded or supercoiled DNA, properties distinct from the binding of Ku to DNA. Under low salt conditions, which permitted the binding of p460 to DNA ends, the kinase was activated. Under higher salt conditions, which inhibited the binding of p460, activation of the kinase required the addition of Ku. Significantly, when the length of DNA decreased to 22 bp, Ku competed with p460 for DNA binding and inhibited kinase activity. These data demonstrate that p460 is a self-contained kinase that is activated by direct interaction with double-stranded DNA and that the role of Ku is to stabilize the binding of p460 to DNA ends.  相似文献   

17.
Both cis-diamminedichloroplatinum(II) (cisplatin or cis-DDP) and trans-diamminedichloroplatinum(II) form covalent adducts with DNA. However, only the cis isomer is a potent anticancer agent. It has been postulated that the selective action of cis-DDP occurs through specific binding of nuclear proteins to cis-DDP-damaged DNA sites and that binding blocks DNA repair. We find that a very abundant nuclear protein, the linker histone H1, binds much more strongly to cis-platinated DNA than to trans-platinated or unmodified DNA. In competition experiments, H1 is shown to bind much more strongly than HMG1, which had been previously considered a major candidate for such binding in vivo.  相似文献   

18.
A novel atomic force microscope with a magnetically oscillated tip has provided unprecedented resolution of small DNA fragments spontaneously adsorbed to mica and imaged in situ in the presence of divalent ions. Kinks (localized bends of average angle 78°) were observed in axially strained minicircles consisting of tandemly repeated d(A)5 and d(GGGCC[C]) sequences. The frequency of kinks in identical minicircles increased 4-fold in the presence of 1 mM Zn2+ compared with 1 mM Mg2+. Kinking persisted in mixed Mg2+/Zn2+ electrolytes until the Zn2+ concentration dropped below 100 μM, indicating that this type of kinking may occur under physiological conditions. Kinking appears to replace intrinsic bending, and statistical analysis shows that kinks are not localized within any single sequence element. A surprisingly small free energy is associated with kink formation.  相似文献   

19.
We have synthesized DNA segments with different handedness, twisting and radii of curvature, and have analyzed the effect of untwisting on them. The results indicate that the dynamic behavior of curved DNA upon untwisting is strongly determined by the initial sequence-dependent DNA trajectory. In particular, DNA with the same radii but with opposite handedness of superhelix twisting can show very different conformational responses to ethidium bromide untwisting. Upon treatment with ethidium bromide, right-handed superhelixes decrease their twist and increase the planarity of the superhelix, while left-handed superhelixes increase twisting and decrease their degree of planarity.  相似文献   

20.
Although polyomavirus JC (JCV) is the proven pathogen of progressive multifocal leukoencephalopathy, the fatal demyelinating disease, this virus is ubiquitous as a usually harmless symbiote among human beings. JCV propagates in the adult kidney and excretes its progeny in urine, from which JCV DNA can readily be recovered. The main mode of transmission of JCV is from parents to children through long cohabitation. In this study, we collected a substantial number of urine samples from native inhabitants of 34 countries in Europe, Africa, and Asia. A 610-bp segment of JCV DNA was amplified from each urine sample, and its DNA sequence was determined. A worldwide phylogenetic tree subsequently constructed revealed the presence of nine subtypes including minor ones. Five subtypes (EU, Af2, B1, SC, and CY) occupied rather large territories that overlapped with each other at their boundaries. The entire Europe, northern Africa, and western Asia were the domain of EU, whereas the domain of Af2 included nearly all of Africa and southwestern Asia all the way to the northeastern edge of India. Partially overlapping domains in Asia were occupied by subtypes B1, SC, and CY. Of particular interest was the recovery of JCV subtypes in a pocket or pockets that were separated by great geographic distances from the main domains of those subtypes. Certain of these pockets can readily be explained by recent migrations of human populations carrying these subtypes. Overall, it appears that JCV genotyping promises to reveal previously unknown human migration routes: ancient as well as recent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号