首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
BACKGROUND: Ketamine blocks KATP channels in isolated cells and abolishes the cardioprotective effect of ischemic preconditioning in vitro. The authors investigated the effects of ketamine and S(+)-ketamine on ischemic preconditioning in the rabbit heart in vivo. METHODS: In 46 alpha-chloralose-anesthetized rabbits, left ventricular pressure (tip manometer), cardiac output (ultrasonic flow probe), and myocardial infarct size (triphenyltetrazolium staining) at the end of the experiment were measured. All rabbits were subjected to 30 min of occlusion of a major coronary artery and 2 h of subsequent reperfusion. The control group underwent the ischemia-reperfusion program without preconditioning. Ischemic preconditioning was elicited by 5-min coronary artery occlusion followed by 10 min of reperfusion before the 30 min period of myocardial ischemia (preconditioning group). To test whether ketamine or S(+)-ketamine blocks the preconditioning-induced cardioprotection, each (10 mg kg(-1)) was administered 5 min before the preconditioning ischemia. To test any effect of ketamine itself, ketamine was also administered without preconditioning at the corresponding time point. RESULTS: Hemodynamic baseline values were not significantly different between groups [left ventricular pressure, 107 +/- 13 mmHg (mean +/- SD); cardiac output, 183 +/- 28 ml/min]. During coronary artery occlusion, left ventricular pressure was reduced to 83 +/- 14% of baseline and cardiac output to 84 +/- 19%. After 2 h of reperfusion, functional recovery was not significantly different among groups (left ventricular pressure, 77 +/- 19%; cardiac output, 86 +/- 18%). Infarct size was reduced from 45 +/- 16% of the area at risk in controls to 24 +/- 17% in the preconditioning group (P = 0.03). The administration of ketamine had no effect on infarct size in animals without preconditioning (48 +/- 18%), but abolished the cardioprotective effects of ischemic preconditioning (45 +/- 19%, P = 0.03). S(+)-ketamine did not affect ischemic preconditioning (25 +/- 11%, P = 1.0). CONCLUSIONS: Ketamine, but not S(+)-ketamine blocks the cardioprotective effect of ischemic preconditioning in vivo.  相似文献   

2.
Background: Ketamine blocks KATP channels in isolated cells and abolishes the cardioprotective effect of ischemic preconditioning in vitro. The authors investigated the effects of ketamine and S (+)-ketamine on ischemic preconditioning in the rabbit heart in vivo.

Methods: In 46 [alpha]-chloralose-anesthetized rabbits, left ventricular pressure (tip manometer), cardiac output (ultrasonic flow probe), and myocardial infarct size (triphenyltetrazolium staining) at the end of the experiment were measured. All rabbits were subjected to 30 min of occlusion of a major coronary artery and 2 h of subsequent reperfusion. The control group underwent the ischemia-reperfusion program without preconditioning. Ischemic preconditioning was elicited by 5-min coronary artery occlusion followed by 10 min of reperfusion before the 30 min period of myocardial ischemia (preconditioning group). To test whether ketamine or S (+)-ketamine blocks the preconditioning-induced cardioprotection, each (10 mg kg-1) was administered 5 min before the preconditioning ischemia. To test any effect of ketamine itself, ketamine was also administered without preconditioning at the corresponding time point.

Results: Hemodynamic baseline values were not significantly different between groups [left ventricular pressure, 107 +/- 13 mmHg (mean +/- SD); cardiac output, 183 +/- 28 ml/min]. During coronary artery occlusion, left ventricular pressure was reduced to 83 +/- 14% of baseline and cardiac output to 84 +/- 19%. After 2 h of reperfusion, functional recovery was not significantly different among groups (left ventricular pressure, 77 +/- 19%; cardiac output, 86 +/- 18%). Infarct size was reduced from 45 +/- 16% of the area at risk in controls to 24 +/- 17% in the preconditioning group (P = 0.03). The administration of ketamine had no effect on infarct size in animals without preconditioning (48 +/- 18%), but abolished the cardioprotective effects of ischemic preconditioning (45 +/- 19%, P = 0.03). S (+)-ketamine did not affect ischemic preconditioning (25 +/- 11%, P = 1.0).  相似文献   


3.
BACKGROUND: This study examines whether the chronic administration of nipradilol, a nitric oxide-releasing beta-adrenergic blocker, decreases ischemia-reperfusion injury. METHODS: Rats were treated with nipradilol (10 mg/kg per day orally) or a vehicle alone for 4 weeks. Isolated rat hearts were assigned to one of five groups (each n = 6): global ischemia groups treated with the vehicle or with nipradilol were subjected to 20 minutes of ischemia; ischemic preconditioning groups treated with the vehicle or with nipradilol were subjected to 3 minutes of ischemic preconditioning; and the L-arginine group treated with the vehicle received 1 mmol/L of L-arginine before global ischemia. Hemodynamic variables and coronary flow were recorded continuously. Nitrites and nitrates levels were measured 60 minutes after reperfusion, and the infarct size was determined. In another series (each n = 6), lipid peroxidation was investigated. RESULTS: In the nipradilol group, significant preservation of the left ventricular pressure and coronary flow, as well as the level of nitrates and nitrites, was observed, compared with the global ischemia group. The infarct size was also significantly reduced in the ischemic preconditioning (23.5%+/-5.47%), L-arginine (25.6%+/-5.59%), and especially the nipradilol (10.7%+/-1.65%) groups. However, in the nipradilol plus ischemic preconditioning group, the protective effects were eliminated. Lipid peroxidation after nipradilol treatment was significantly reduced before and after global ischemia, compared with the global ischemia group. CONCLUSIONS: The chronic administration of nipradilol improves postischemic functional recovery and infarct size, partly by preventing the formation of lipid peroxides. These cardioprotective effects were, however, abolished by ischemic preconditioning.  相似文献   

4.
BACKGROUND: To determine the effect of the tolerable limitation time of prolonged ischemia after ischemic preconditioning on postischemic functional recovery and infarct size reduction in the rabbit heart. METHODS: White rabbits (n=30) were used for Langendorff perfusion. Control hearts were perfused at 37 degrees C for 180 min; 30 min global ischemia hearts (30GI) received 30 min global ischemia and 120 min reperfusion; IPC+30GI hearts received 5 min zero flow global ischemia and 5 min reperfusion prior to 30 min global ischemia; 20 min global ischemia hearts (20GI) received 20 min global ischemia and 120 min reperfusion; IPC+20GI hearts received 5 min zero flow global ischemia and 5 min reperfusion prior to 20 min global ischemia. RESULTS: Infarct size in the 30GI hearts was 33.5+/-4.0% and 1.7+/-0.5% in the control hearts. The 20GI hearts and IPC+30GI hearts decreased infarct size, as compared with the 30GI hearts (13.0+/-1.8% and 16.6+/-1.7%, respectively; p<0.001, 20GI vs 30GI; p<0.01, IPC+30GI vs 30GI; p>0.05, 20GI vs IPC+30GI) but did not enhance postischemic functional recovery. The IPC+20GI hearts (3.5+/-0.6%) significantly decreased infarct size as compared with the 20GI hearts (p<0.05, IPC+20GI vs 20GI), and there was no significant difference between the IPC+20GI and the control hearts (p>0.05), but the IPC+20GI hearts did not enhance postischemic functional recovery. CONCLUSIONS: A 20 min ischemia may be the tolerable limitation time of prolonged ischemia after ischemic preconditioning in an isolated rabbit heart model.  相似文献   

5.
OBJECTIVE: Our study was undertaken to clarify the impact of the shear stress-induced reactive hyperemia (associated with reperfusion) in preconditioning-mediated protection. METHODS: In control rat hearts, a 40-minute preischemic perfusion (constant pressure: 70 mm Hg) period was followed by 25-minute global low-flow ischemia (constant flow: 0.3 mL/min) and 30-minute reperfusion (constant pressure). As preconditioning protocol, hearts underwent 2 cycles of 5-minute no-flow ischemia/5-minute reperfusion. RESULTS: Although coronary vasodilation in response to shear stress is severely impaired after global low-flow ischemia and reperfusion, it is fully preserved by ischemic preconditioning concomitantly with an improvement of left ventricular developed pressure. Restricting coronary peak flow to 100% of baseline at reperfusion reduced left ventricular recovery to the control level. N(G)-nitro-l-arginine methyl ester affects the restoration of reperfusion-reactive hyperemia and the improvement of contractile recovery afforded by ischemic preconditioning. However, if the time course of hyperemia was restored by forcibly reperfusing to 150% of baseline for 10 minutes and, therefore, by restricting final peak flow to 80% of baseline for 20 minutes, contractile function recovered to a high degree despite the presence of N(G)-nitro-l-arginine methyl ester. CONCLUSION: We conclude that wall stretch and shear stress during reperfusion are necessary for the mediation phase of preconditioning.  相似文献   

6.
PURPOSE: Ischemic preconditioning protects the heart against subsequent prolonged ischemia by opening of adenosine triphosphate-sensitive potassium (K(ATP)) channels. Thiopentone blocks K(ATP) channels in isolated cells. Therefore, we investigated the effects of thiopentone on ischemic preconditioning. METHODS: Isolated rat hearts (n=56) were subjected to 30 min of global no-flow ischemia, followed by 60 min of reperfusion. Thirteen hearts underwent the protocol without intervention (control, CON) and in 11 hearts (preconditioning, PC), ischemic preconditioning was elicited by two five-minute periods of ischemia. In three additional groups, hearts received 1 (Thio 1, n=11), 10 (Thio 10, n=11) or 100 microg x mL(-1) (Thio 100, n=10) thiopentone for five minutes before preconditioning. Left ventricular (LV) developed pressure and creatine kinase (CK) release were measured as variables of myocardial performance and cellular injury, respectively. RESULTS: Recovery of LV developed pressure was improved by ischemic preconditioning (after 60 min of reperfusion, mean +/- SD: PC, 40 +/- 19% of baseline) compared with the control group (5 +/- 6%, P <0.01) and this improvement of myocardial function was not altered by administration of thiopentone (Thio 1, 37 +/- 15%; Thio 10, 36 +/- 16%; Thio 100, 38 +/- 16%, P=0.87-0.99 vs PC). Total CK release over 60 min of reperfusion was reduced by preconditioning (PC, 202 +/- 82 U x g(-1) dry weight) compared with controls (CON, 383 +/- 147 U x g(-1), P <0.01) and this reduction was not affected by thiopentone (Thio 1, 213 +/- 69 U x g(-1); Thio 10, 211 +/- 98 U x g(-1); Thio 100, 258 +/- 128 U x g(-1), P=0.62-1.0 vs PC). CONCLUSION: These results indicate that thiopentone does not block the cardioprotective effects of ischemic preconditioning in an isolated rat heart preparation.  相似文献   

7.
Kehl F  Pagel PS  Krolikowski JG  Gu W  Toller W  Warltier DC  Kersten JR 《Anesthesia and analgesia》2002,95(5):1162-8, table of contents
The administration of a volatile anesthetic shortly before a prolonged ischemic episode exerts protective effects against myocardial infarction similar to those of ischemic preconditioning. A second window of preconditioning (SWOP) against myocardial infarction can also be elicited by brief episodes of ischemia when this occurs 24 h before prolonged coronary artery occlusion. Whether remote exposure to a volatile anesthetic also causes delayed myocardial protection is unknown. We tested the hypothesis that the administration of isoflurane 24 h before ischemia produces a SWOP against infarction. Barbiturate-anesthetized dogs (n = 25) were instrumented for measurement of hemodynamics, including aortic and left ventricular (LV) pressures and LV +dP/dt(max), and subjected to a 60-min left anterior descending coronary artery occlusion followed by 3 h of reperfusion. Myocardial infarct size and coronary collateral blood flow were assessed with triphenyltetrazolium chloride staining and radioactive microspheres, respectively. Two groups of dogs received 1.0 minimum alveolar anesthetic concentration isoflurane for 30 min or 6 h that was discontinued 30 min (acute) or 24 h (delayed) before ischemia and reperfusion, respectively. A control group of dogs did not receive isoflurane. Infarct size was 27% +/- 3% of the LV area at risk in the absence of pretreatment with isoflurane. Acute, but not remote, administration of isoflurane reduced infarct size (12% +/- 1% and 31% +/- 3%, respectively). No differences in hemodynamics or transmural myocardial perfusion during or after occlusion were observed between groups. The results indicate that isoflurane does not produce a SWOP when administered 24 h before prolonged myocardial ischemia in vivo. IMPLICATIONS: Isoflurane mimics the beneficial effects of ischemic preconditioning by protecting myocardium against infarction when it is administered shortly before a prolonged ischemic episode. However, unlike ischemic preconditioning, isoflurane does not produce a second window of protection 24 h after administration in dogs.  相似文献   

8.
OBJECTIVE: Ischemic preconditioning combined with potassium cardioplegia does not always confer additive myocardial protection. This study tested the hypothesis that the efficacy of ischemic preconditioning under potassium cardioplegia is dependent on protein kinase C isoform. METHODS: Isolated and crystalloid-perfused rat hearts underwent 5 cycles of 1 minute of ischemia and 5 minutes of reperfusion (low-grade ischemic preconditioning) or 3 cycles of 5 minutes of ischemia and 5 minutes of reperfusion (high-grade ischemic preconditioning) or time-matched continuous perfusion. These hearts received a further 5 minutes of infusion of normal buffer or oxygenated potassium cardioplegic solution. The isoform nonselective protein kinase C inhibitor chelerythrine (5 micromol/L) was administered throughout the preischemic period. All hearts underwent 35 minutes of normothermic global ischemia followed by 30 minutes of reperfusion. Isovolumic left ventricular function and creatine kinase release were measured as the end points of myocardial protection. Distribution of protein kinase C alpha, delta, and epsilon in the cytosol and the membrane fractions were analyzed by Western blotting and quantified by a densitometric assay. RESULTS: Low-grade ischemic preconditioning was almost as beneficial as potassium cardioplegia in improving functional recovery; left ventricular developed pressure 30 minutes after reperfusion was 70 +/- 15 mm Hg (P <.01) in low-grade ischemic preconditioning and 77 +/- 14 mm Hg (P <.001) in potassium cardioplegia compared with values found in unprotected control hearts (39 +/- 12 mm Hg). Creatine kinase release during reperfusion was also equally inhibited by low-grade ischemic preconditioning (18.2 +/- 10.6 IU/g dry weight, P <.05) and potassium cardioplegia (17.6 +/- 6.7 IU/g, P <.01) compared with control values. However, low-grade ischemic preconditioning in combination with potassium cardioplegia conferred no significant additional myocardial protection; left ventricular developed pressure was 80 +/- 17 mm Hg, and creatine kinase release was 14.8 +/- 11.0 IU/g. In contrast, high-grade ischemic preconditioning with potassium cardioplegia conferred better myocardial protection than potassium cardioplegia alone; left ventricular developed pressure was 121 +/- 16 mm Hg (P <.001), and creatine kinase release was 8.3 +/- 5.8 IU/g (P <.05). Chelerythrine itself had no significant effect on functional recovery and creatine kinase release in the control hearts, but it did inhibit the salutary effects not only of low-grade and high-grade ischemic preconditioning but also those of potassium cardioplegia. Low-grade ischemic preconditioning and potassium cardioplegia enhanced translocation of protein kinase C alpha to the membrane, whereas high-grade ischemic preconditioning also enhanced translocation of protein kinase C delta and epsilon. Chelerythrine inhibited translocation of all 3 protein kinase C isoforms. CONCLUSIONS: These results suggest that myocardial protection by low-grade ischemic preconditioning and potassium cardioplegia are mediated through enhanced translocation of protein kinase C alpha to the membrane. It is therefore suggested that activation of the novel protein kinase C isoforms is necessary to potentiate myocardial protection under potassium cardioplegia.  相似文献   

9.
OBJECTIVE: Female gender is associated with reduced tolerance against acute ischemic events and a higher degree of left ventricular hypertrophy under chronic pressure overload. We tested whether female and male rats with left ventricular hypertrophy present the same susceptibility to demand ischemia. METHODS: Hearts from hypertrophied female and male salt-resistant and salt-sensitive Dahl rats (n=8 per group) underwent 30min of demand ischemia induced by rapid pacing (7Hz) and an 85% reduction of basal coronary blood flow, followed by 30min of reperfusion on an isovolumic red cell perfused Langendorff model. RESULTS: In female hearts, high-salt diet induced a pronounced hypertrophy of the septum (2.38+/-0.09 vs 2.17+/-0.08mm; p<0.01), whereas male hearts showed the greatest increase in the anterior/posterior wall of the left ventricle (LV) (3.19+/-0.22 vs 2.01+/-0.16mm; p<0.05) compared with salt-resistant controls. At baseline, LV-developed pressure/g LV was significantly higher in female than male hearts (200+/-13 and 196+/-14 vs 161+/-10 and 152+/-15mmHgg(-1); p<0.01), independent of hypertrophy, indicating greater contractility in females. During ischemia, LV-developed pressure decreased in all groups; at the end of reperfusion, hypertrophied female and male hearts showed higher developed pressures independent of gender (148+/-3 and 130+/-8 vs 100+/-7 and 85+/-6mmHg; p<0.01). In contrast, diastolic pressure was more pronounced in female than in male hypertrophied hearts during ischemia and reperfusion (24+/-3 vs 12+/-2mmHg; p<0.01). CONCLUSIONS: In the pressure overload model of the Dahl salt-sensitive rat, female gender is associated with a more pronounced concentric hypertrophy, whereas male hearts develop a more eccentric type of remodeling. Although present at baseline, after ischemia/reperfusion systolic function is gender-independent but more determined by hypertrophy. In contrast, diastolic function is gender-dependent and aggravated by hypertrophy, leading to pronounced diastolic dysfunction. We can conclude that in the malignant setting of demand ischemia/reperfusion gender differences in hypertrophied hearts are unmasked: female hypertrophied hearts are more susceptible to ischemia/reperfusion than males. To determine whether in female hypertensive patients with acute coronary syndromes, diastolic dysfunction could contribute to the worse clinical course, further experimental and clinical studies are needed.  相似文献   

10.
BACKGROUND: Preconditioning protects the heart from ischemic injury, but some of its effects are reversed by beta-adrenergic blockade. We hypothesize that because nitric oxide is known to precondition the heart, the nitric oxide-generating beta-blocker nipradilol may simultaneously precondition and provide clinically relevant beta-blockade. METHODS: Isolated, crystalloid-perfused rabbit hearts underwent 1 hour of left anterior descending coronary artery ischemia followed by 1 hour of reperfusion. Before ischemia, six hearts received nipradilol, six received the nitric oxide donor L-arginine, four hearts received the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester before L-arginine, nine underwent ischemic preconditioning, and six received beta-blockade by esmolol before ischemic preconditioning. Seven hearts received no pretreatment (control). Action potential duration and ventricular pressure were measured. Infarct size was determined at the end of reperfusion. RESULTS: Both L-arginine and ischemic preconditioning prolonged action potential duration significantly at 60 minutes of reperfusion. Compared with control, infarct size was reduced by ischemic preconditioning (26%+/-4% versus 49%+/-3%, IPC versus control; p<0.01), L-arginine (24%+/-2%; p<0.01 versus control), and nipradilol (24%+/-2%; p<0.01 versus control). Only nipradilol preserved peak developed pressure during reperfusion. CONCLUSIONS: Despite its properties as a beta-adrenergic blocking agent, nipradilol was able to precondition the heart, probably as a result of its ability to produce nitric oxide.  相似文献   

11.
BACKGROUND: Like ischemic preconditioning, certain volatile anesthetics have been shown to reduce the magnitude of ischemia/ reperfusion injury via activation of K+ adenosine triphosphate (ATP)-sensitive (K(ATP)) channels. The purpose of this study was (1) to determine if ischemic preconditioning (IPC) and sevoflurane preconditioning (SPC) increase nitric oxide release and improve coronary vascular function, as well as mechanical and electrical function, if given for only brief intervals before global ischemia of isolated hearts; and (2) to determine if K(ATP) channel antagonism by glibenclamide (GLB) blunts the cardioprotective effects of IPC and SPC. METHODS: Guinea pig hearts were isolated and perfused with Krebs-Ringer's solution at 55 mm Hg and randomly assigned to one of seven groups: (1) two 2-min total coronary occlusions (preconditioning, IPC) interspersed with 5 min of normal perfusion; (2) two 2-min occlusions interspersed with 5 min of perfusion while perfusing with GLB (IPC+GLB); (3) SPC (3.5%) for two 2-min periods; (4) SPC+GLB for two 2-min periods; (5) no treatment before ischemia (control [CON]); (6) CON+GLB; and (7) no ischemia (time control). Six minutes after ending IPC or SPC, hearts of ischemic groups were subjected to 30 min of global ischemia and 75 min of reperfusion. Left-ventricular pressure, coronary flow, and effluent NO concentration ([NO]) were measured. Flow and NO responses to bradykinin, and nitroprusside were tested 20-30 min before ischemia or drug treatment and 30-40 min after reperfusion. RESULTS: After ischemia, compared with before (percentage change), left-ventricular pressure and coronary flow, respectively, recovered to a greater extent (P<0.05) after IPC (42%, 77%), and treatment with SPC (45%, 76%) than after CON (30%, 65%), IPC+GLB (24%, 64%), SPC+GLB (20%, 65%), and CON+GLB (28%, 64%). Bradykinin and nitroprusside increased [NO] by 30+/-5 (means +/- SEM) and 29+/-4 nM, respectively, averaged for all groups before ischemia. [NO] increased by 26+/-6 and 27+/-7 nM, respectively, in SPC and IPC groups after ischemia, compared with an average [NO] increase of 8+/-5 nM (P<0.01) after ischemia in CON and each of the three GLB groups. Flow increases to bradykinin and nitroprusside were also greater after SPC and IPC. CONCLUSIONS: Preconditioning with sevoflurane, like IPC, improves not only postischemic contractility, but also basal flow, bradykinin and nitroprusside-induced increases in flow, and effluent [NO] in isolated hearts. The protective effects of both SPC and IPC are reversed by K(ATP) channel antagonism.  相似文献   

12.
PURPOSE: To determine whether sevoflurane or desflurane offer additional protective effects against myocardial reperfusion injury after protecting the heart against the ischemic injury by cardioplegic arrest. METHODS: Isolated rat hearts in a Langendorff-preparation (n = 9) were arrested by infusion of HTK cardioplegic solution and subjected to 30 min global ischemia followed by 60 min reperfusion (controls). An additional 18 hearts were subjected to the same protocol, and sevoflurane (n = 9) or desflurane (n = 9) was added to the perfusion medium during the first 30 min of reperfusion in a concentration corresponding to 1.5 MAC in rats. Left ventricular (LV) developed pressure and creatine kinase (CK) release were determined as indices of myocardial performance and cellular injury, respectively. RESULTS: The LV developed pressure recovered to 46+/-7% of baseline in controls. Functional recovery during reperfusion was improved by inhalational anesthetics to 67+/-3% (sevoflurane, P<0.05) and 61+/-5% of baseline (desflurane, P<0.05), respectively. Peak CK release during early reperfusion was reduced from 52+/-11 U x min(-1) x g(-1) in controls to 34+/-7 and 26+/-7 U x min(-1) x g(-1) in sevoflurane and desflurane treated hearts, respectively. The CK release during the first 30 min of reperfusion was reduced from 312+/-41 U x g(-1) in control hearts to 195+/-40 and 206+/-37 U x g(-1) in sevoflurane and desflurane treated hearts. CONCLUSION: After ischemic protection by cardioplegia, sevoflurane and desflurane given during the early reperfusion period offer additional protection against myocardial reperfusion injury.  相似文献   

13.
Gap junction uncoupling protects the heart against ischemia   总被引:4,自引:0,他引:4  
BACKGROUND: Many stimuli can successfully protect the heart against ischemia. We investigated whether gap junction uncoupling before ischemia was myoprotective. We also studied the function of the adenosine triphosphate-dependent potassium channel, which has been implicated in the mechanism of pharmacologic preconditioning, with respect to gap junction physiology. METHODS: Twenty-eight rabbit hearts were placed on a Langendorff perfusion apparatus. Five were given a 5-minute infusion of 1 mmol/L heptanol (a gap junction uncoupler), 5 were given 10 micromol/L 2,3-butanedione monoxime (an electromechanical uncoupler), and 6 were given no drug. The left anterior descending coronary artery was then occluded for 1 hour and reperfused for 2 hours. Six hearts received 10 micromol/L glybenclamide before heptanol to evaluate the role of the adenosine triphosphate-dependent potassium channel. Six hearts underwent ischemic preconditioning with 2 cycles of 5 minutes of global ischemia and reperfusion. Action-potential duration of the ischemic zone, left ventricular developed pressure, and coronary flow were measured continuously. Infarct size was determined at the end of reperfusion. RESULTS: Heptanol significantly reduced infarct size (from 46% +/- 2% to 22% +/- 5%, P <.01), an effect that was not prevented by glybenclamide. Butanedione monoxime decreased developed pressure but did not significantly reduce infarct size (46% +/- 5% vs 46% +/- 2%, P = not significant). There were no differences among groups with regard to developed pressure or action-potential duration. CONCLUSION: Directly blocking gap junctions preconditions the heart. This protection is not a direct result of a decrease in developed pressure before a prolonged ischemic period nor is it achieved through a mechanism involving the adenosine triphosphate-dependent potassium channel.  相似文献   

14.
BACKGROUND: Gender differences exist in the myocardial response to acute ischemia/reperfusion (I/R) injury and may be attributed to the effects of the sex hormones estrogen and testosterone. The role of estrogen in myocardial injury has been extensively studied but little information exists regarding the myocardial involvement of testosterone. Based on the deleterious effects of chronic endogenous and acute testosterone exposure observed in our previous studies, we postulated that chronic exogenous testosterone administration would also exhibit deleterious effects on myocardial function following I/R. METHODS: Langendorff perfused rat hearts were subjected to 25 min ischemia, 40 min reperfusion, and left ventricular developed pressure (LVDP) was recorded. Control and 5alpha-dihydrotestosterone (DHT) treated groups each consisted of normal males, castrated males, ovariectomized (OVX) females, and senescent females. P < 0.05 = significant. RESULTS: Chronic DHT replacement therapy showed no difference in functional ischemic recovery as measured by LVDP after 40 min reperfusion in castrated males (65.1 +/- 8.13% versus 66.3 +/- 4.54%), OVX females (64.5 +/- 10.6% versus 50.2 +/- 5.97%), and senescent females (42.1 +/- 0.04% versus 41 +/- 0.05%). Interestingly, LVDP was greater in DHT treated males than control males after I/R (65.2 +/- 8.20% versus 47.6 +/- 5.19%). Also, DHT treatment resulted in significantly increased recovery of LVDP after only 10 min reperfusion in castrated males, OVX females, and senescent females compared with their untreated counterparts (54.8 +/- 11.9% versus 32.9 +/- 5.75%, 66.7 +/- 11.5% versus 43.1 +/- 8.15%, 53.4 +/- 10.1% versus 32.9 +/- 5.75%, respectively). CONCLUSION: Contrary to the adverse effects we observed in earlier studies with both endogenous and brief exogenous testosterone in myocardium injured by I/R, the present study revealed that chronic exogenous testosterone neither improved nor worsened myocardial functional recovery following 25 min ischemia and 40 min reperfusion.  相似文献   

15.
The aim of this study is to investigate whether atrial natriuretic peptide can mimic preconditioning to protect ischemia or reperfusion injury in rabbit hearts. New Zealand white rabbits were randomized into 3 groups: (1) Controls. Hearts received a 60 minute-occlusion of the left anterior descending artery, followed by a 180 minute-reperfusion. (2) Preconditioning. Two 5-minute periods of ischemia separated by a 10-minute reperfusion, followed by a 60-minute ischemia and a 180-minute reperfusion. (3) Atrial natriuretic peptide treatment. Bolus injection of exogenous atrial natriuretic peptide (2.5 microg/kg) given intravenously at 15 minutes prior to 60 minute-ischemia followed by a 180-minute reperfusion. Myocardial necrotic area and area at risk of necrosis were determined by triphenyltetrazolium chloride staining. Ratio of necrotic area to area at risk was 49.95% +/- 1.15%, 7.95% +/- 0.33%, and 8.36% +/- 0.61% in the controls, preconditioning group, and atrial natriuretic peptide group, respectively. Both preconditioning and atrial natriuretic peptide significantly reduced the size of infarct caused by ischemia (preconditioning vs controls, P < .05; atrial natriuretic peptide vs controls, P < .05). Atrial natriuretic peptide can mimic ischemic preconditioning to protect rabbit hearts from prolonged ischemia and reperfusion injury. It may be involved in the cardioprotective mechanisms of preconditioning.  相似文献   

16.
Background: Brief ischemic periods render the myocardium resistant to infarction from subsequent ischemic insults by a process called ischemic preconditioning. Volatile anesthetics have also been shown to be cardioprotective if administered before ischemia. The effect of preconditioning alone and combined with halothane or isoflurane on hemodynamic recovery and preservation of adenosine triphosphate content in isolated rat hearts was evaluated.

Methods: Seven groups of isolated rat hearts (n = 6 each) were perfused in a retrograde manner at constant temperature and pressure. A latex balloon was placed in the left ventricle to obtain isovolumetric contraction. Heart rhythm, coronary flow, left ventricular pressure and its derivative dP/dt (positive and negative), and developed pressure were monitored. The hearts were paced at 300 beats per minute. Each heart was randomly allocated to (1) a time-control group that received no ischemia, (2) an untreated group that received 25 min of normothermic ischemia only, (3 and 4) an isoflurane group and a halothane group that received 40 min of anesthetic (2.2% and 1.5%, respectively) before ischemia; (5) a preconditioning group that received two 5-min periods of ischemia separated by 10 min of reperfusion before ischemia; or (6 and 7) a isoflurane + preconditioning group and a halothane + preconditioning group that received anesthetic for 10 min at concentrations of 2.2% or 1.5%, respectively, before two 5-min periods of ischemia separated by 10 min of reperfusion. All treated groups received 25 min of normothermic ischemia followed by 30 min of reperfusion.

Results: The time-control group remained hemodynamically stable for the entire experiment, and the adenosine triphosphate content was 18.3 +/- 1.7 (SEM) micro Meter/g at the end of 115 min. The untreated group had depressed recovery after 25 min of normothermic ischemia, and the developed pressure was significantly depressed and recovered only 30 +/- 9% (P < 0.001) of its preischemic value. There was also a significant increase in the incidence of ventricular fibrillation (P < 0.001). Adenosine triphosphate content was significantly lower in this group than in all other groups. Five minutes of ischemia in the preconditioning group had little effect on hemodynamics and decreased developed pressure only 6.4%. Halothane depressed developed pressure by 16 +/- 5% (P < 0.001), and isoflurane increased coronary flow by 145 +/- 9% (P < 0.001) but had no significant hemodynamic effect. The treated groups had significantly better recovery of postischemic function than did the untreated group. In the preconditioning group, developed pressure recovered to 85% of control and dP/dt+ to 87% of control. The addition of halothane or isoflurane to preconditioning did not provide additional functional recovery but did increase the level of adenosine triphosphate preservation (13.1 +/- 1.1 and 12.4 +/- 1.1 micro Meter/g, respectively).  相似文献   


17.
Background: Like ischemic preconditioning, certain volatile anesthetics have been shown to reduce the magnitude of ischemia/ reperfusion injury viaactivation of K+ adenosine triphosphate (ATP)-sensitive (KATP) channels. The purpose of this study was (1) to determine if ischemic preconditioning (IPC) and sevoflurane preconditioning (SPC) increase nitric oxide release and improve coronary vascular function, as well as mechanical and electrical function, if given for only brief intervals before global ischemia of isolated hearts; and (2) to determine if KATP channel antagonism by glibenclamide (GLB) blunts the cardioprotective effects of IPC and SPC.

Methods: Guinea pig hearts were isolated and perfused with Krebs-Ringer's solution at 55 mmHg and randomly assigned to one of seven groups: (1) two 2-min total coronary occlusions (preconditioning, IPC) interspersed with 5 min of normal perfusion; (2) two 2-min occlusions interspersed with 5 min of perfusion while perfusing with GLB (IPC+GLB); (3) SPC (3.5%) for two 2-min periods; (4) SPC+GLB for two 2-min periods; (5) no treatment before ischemia (control [CON]); (6) CON+GLB; and (7) no ischemia (time control). Six minutes after ending IPC or SPC, hearts of ischemic groups were subjected to 30 min of global ischemia and 75 min of reperfusion. Left-ventricular pressure, coronary flow, and effluent NO concentration ([NO]) were measured. Flow and NO responses to bradykinin, and nitroprusside were tested 20-30 min before ischemia or drug treatment and 30-40 min after reperfusion.

Results: After ischemia, compared with before (percentage change), left-ventricular pressure and coronary flow, respectively, recovered to a greater extent (P < 0.05) after IPC (42%, 77%), and treatment with SPC (45%, 76%) than after CON (30%, 65%), IPC+GLB (24%, 64%), SPC+GLB (20%, 65%), and CON+GLB (28%, 64%). Bradykinin and nitroprusside increased [NO] by 30 +/- 5 (means +/- SEM) and 29 +/-4 nM, respectively, averaged for all groups before ischemia. [NO] increased by 26 +/- 6 and 27 +/- 7 nM, respectively, in SPC and IPC groups after ischemia, compared with an average [NO] increase of 8 +/- 5 nM (P < 0.01) after ischemia in CON and each of the three GLB groups. Flow increases to bradykinin and nitroprusside were also greater after SPC and IPC.  相似文献   


18.
BACKGROUND: In skeletal muscle, dantrolene reduces free cytosolic calcium by inhibiting calcium release from the sarcoplasmic reticulum. A similar effect in ischemic-reperfused heart cells would protect myocardial tissue against reperfusion injury. We tested the hypothesis that dantrolene infusion during reperfusion protects the heart against reperfusion injury. METHODS: Isovolumetric beating rat hearts were subjected to 30 min of ischemia followed by 60 min of reperfusion. Left ventricular (LV) developed pressure (LVDP) and creatine kinase release (CKR) were determined as indices of myocardial performance and cellular injury, respectively. In the treatment groups, dantrolene (25 (DAN25) or 100 (DAN100) micromol l(-1)) was infused during the first 15 min of reperfusion; control hearts received the respective concentration of the vehicle (mannitol (CON25, CON100), each group n=7). To investigate the effects of dantrolene on reperfusion injury in vivo, 18 chloralose-anesthetized rabbits were subjected to 30 min occlusion and 180 min reperfusion of a major coronary artery. LV pressure (LVP), cardiac output (CO), and infarct size were determined. During the last 5 min of ischemia, nine rabbits received 10 mg kg(-1) dantrolene intravenously (DAN). Another nine rabbits received the vehicle (dimethylsulfoxide) and served as controls (CON). RESULTS: In isolated rat hearts, there was no recovery of LVDP in any group. Total CKR during 1 h of reperfusion was 845+/-76 (CON100) and 550+/-81 U g(-1) dry mass (DAN100, P<0.05). In rabbits in vivo, hemodynamic baseline values were similar between groups (CON vs. DAN: LVP, 99+/-6 (mean+/-SEM) vs. 91+/-6mm Hg, P=0.29; CO, 252+/-26 vs. 275+/-23 ml min(-1), P= 0.53). During coronary artery occlusion, LVP and CO were reduced in both groups (CON: LVP, 89+/-3%; CO, 90+/-5% of baseline values) and LVP did not recover to baseline values during reperfusion (51+/-5% (CON) vs. 67+/-7% (DAN) of baseline, P=0.10). Infarct size was 41+/-4% of the area at risk in controls and 37+/-6% in dantrolene treated hearts (P=0.59). CONCLUSIONS: Dantrolene reduced CKR, indicating an attenuation of lethal cellular reperfusion injury in isolated rat hearts. However, in the rabbit in vivo, there was no effect on the extent of reperfusion injury after regional myocardial ischemia.  相似文献   

19.
Objectives: Brief episodes of myocardial ischemia-reperfusion employed during reperfusion after a prolonged ischemic insult may attenuate the total ischemia-reperfusion injury. This phenomenon has been termed ischemic postconditioning. In the present study, we studied the possible effect of postconditioning on persistent reperfusion-induced ventricular fibrillation (VF) in the isolated rat heart model. Methods: Isolated Langendorff-perfused rat hearts (n=46) were subjected to 30 min of regional ischemia and reperfusion. The hearts with persistent VF (n=11) present after 15 min of reperfusion were then randomly assigned into one of the two groups: (1) control hearts (n=6), in which perfusion was continued without intervention; (2) postconditioned hearts (n=5) subjected to 2 min of global ischemia followed by reperfusion. Left ventricular pressures, heart rate, coronary flow, and electrogram were monitored throughout the experiment. Results: Conversion of VF into regular rhythm was observed in all hearts subjected to postconditioning. Regular beating was maintained by all postconditioned hearts during the subsequent reperfusion. None of the hearts in the control group had normal rhythm at the end of the experiment. At the end of reperfusion, the left ventricular developed pressure was lower in beating postconditioned hearts compared to the hearts that did not develop persistent VF. Conclusions: Ischemic postconditioning possesses strong antiarrhythmic effect against persistent reperfusion-induced tachyarrhythmias. Postconditioning may be an interesting, novel adjunct strategy to protect the heart.  相似文献   

20.
BACKGROUND: Short administration of volatile anesthetics preconditions myocardium and protects the heart against the consequences of subsequent ischemia. Activation of tyrosine kinase is implicated in ischemic preconditioning. The authors investigated whether desflurane-induced preconditioning depends on activation of tyrosine kinase. METHODS: Sixty-four rabbits were instrumented for measurement of left ventricular pressure, cardiac output, and myocardial infarct size (IS). All rabbits were subjected to 30 min of occlusion of a major coronary artery and 2 h of subsequent reperfusion. Rabbits underwent a treatment period consisting of either no intervention for 35 min (control group, n = 12) or 15 min of 1 minimum alveolar concentration desflurane inhalation followed by a 10-min washout period (desflurane group, n = 12). Four additional groups received the tyrosine kinase inhibitor genistein (5 mg/kg) or lavendustin A (1.3 mg/kg) at the beginning of the treatment period with (desflurane-genistein group, n = 11; desflurane-lavendustin A group, n = 12) or without desflurane inhalation (genistein group, n = 9; lavendustin A group, n = 8). RESULTS: Hemodynamic values were similar in all groups during baseline (left ventricular pressure, 87 +/- 14 mmHg (mean +/- SD]; cardiac output, 198 +/- 47 ml/min), during coronary artery occlusion (left ventricular pressure, 78 +/- 12 mmHg; cardiac output, 173 +/- 39 ml/min), and after 2 h of reperfusion (left ventricular pressure, 59 +/- 17; cardiac output, 154 +/- 43 ml/min). IS in the control group was 55 +/- 10% of the area at risk. The tyrosine inhibitors had no effect on IS (genistein group, 56 +/- 13%; lavendustin A group, 49 +/- 13%; each P = 1.0 vs. control group). Desflurane preconditioning reduced IS to 40 +/- 15% (P = 0.04 vs. control group). Tyrosine kinase inhibitor administration had no effect on IS reduction (desflurane-genistein group, 44 +/- 13%; desflurane-lavendustin A group, 44 +/- 16%; each P = 1.0 vs. desflurane group). CONCLUSION: Desflurane-induced preconditioning does not depend on tyrosine kinase activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号