首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interstitial cells of Cajal (ICC) are located in most parts of the digestive system. Although they were discovered over 100 years ago, their function began to be unravelled only recently. Morphological observations have led to a number of hypotheses on the possible physiological roles of ICC: (1) these cells may be the source of slow electrical waves recorded in gastrointestinal (GI) muscles; (2) they participate in the conduction of electrical currents, and (3) mediate neural signals between enteric nerves and muscles. These hypotheses were supported by experiments in which the ICC-containing layer was removed surgically, or when ICC were ablated chemically, and as a consequence the slow waves were absent. Electrophysiological experiments on isolated cells confirmed that ICC can generate rhythmic electrical activity and can also respond to messenger molecules known to be released from enteric nerves. In mice mutants deficient in ICC, or in mice treated with antibody against the protein c-Kit, slow wave activity was impaired. These results support the role of ICC as pacemaker cells. Physiological studies have shown that ICC in certain GI regions are important for signal transmission between nerves and smooth muscle. There is evidence that pathological changes in ICC may be associated with GI motility disorders. The full interpretation of the role of ICC in disease conditions will require much further study on the physiology and pharmacology of these cells.  相似文献   

2.
Kit mutants and gastrointestinal physiology   总被引:6,自引:1,他引:6  
There has been considerable speculation about the function of interstitial cells of Cajal (ICC) since their discovery more than 100 years ago. It has been difficult to study these cells under native conditions, but great insights about the function of ICC have come from studies of genetic models with loss-of function mutations in the Kit signalling pathway. First it was discovered that signalling via Kit (a receptor tyrosine kinase) was vital for the development and maintenance of the ICC phenotype in gastrointestinal (GI) muscles. In compound heterozygotes ( W/WV and Sl/Sld animals), where there are partial loss-of-function mutations in Kit receptors or Kit ligand (stem cell factor), ICC failed to develop in various regions of the GI tract, but no major changes in the smooth muscle layers or enteric nervous system occurred in the absence of these cells. Animals with these mutations provided an unprecedented opportunity to understand the role of ICC in GI motor function, and it is now clear from these studies that ICC serve as: (i) pacemaker cells, generating the spontaneous electrical rhythms of the gut known as slow waves; (ii) a propagation pathway for slow waves so that large areas of the musculature can be entrained to a dominant pacemaker frequency; (iii) mediators of excitatory cholinergic and inhibitory nitrergic neural inputs from the enteric nervous system, and (iv) stretch receptors that modulate membrane potential and electrical slow wave frequency. This review describes the use of genetic models to understand the important physiological role of ICC in the GI tract.  相似文献   

3.
We have investigated whether migrating motor complexes (MMCs) are impaired or absent in the small intestine of W/Wv mutant mice, which lack pacemaker interstitial cells of Cajal (ICC) and electrical slow waves. The intracellular electrical and mechanical activities of the small intestines of wild-type (+/+) and W/Wv mutant mice were recorded. Electrical recordings from circular muscle cells confirmed the absence of slow waves in W/Wv mice, whereas slow waves were always recorded from +/+ muscle cells. Spontaneous phasic contractions were recorded from W/Wv muscles in the absence of slow waves, but these events occurred at a lower frequency than in +/+ tissues. MMC activity was recorded consistently from the ileum of +/+ mice, and normal MMCs were also recorded from W/Wv mice. MMCs in both +/+ and W/Wv mice were abolished by tetrodotoxin (1 μ m ), hexamethonium (300 μ m ) or atropine (1 μ m ), suggesting that the neural control mechanisms responsible for MMCs in +/+ mice are intact and are responsible for MMCs in W/Wv mice. Transmural nerve stimulation demonstrated intact inhibitory and excitatory neural regulation of W/Wv intestinal muscles. Prolonged trains of cholinergic motor nerve stimulation failed to activate slow waves in the intestinal muscles of W/Wv mice. Our findings show that the generation and directional propagation of MMC activity in mouse small intestine does not require slow-wave activity or an intact network of myenteric ICC. The generation and propagation of MMCs appear to be an intrinsic capability of the enteric nervous system and are not related to slow waves or the gradient in slow-wave frequency.  相似文献   

4.
5.
Specialized cells known as interstitial cells of Cajal (ICC) are distributed in specific locations within the tunica muscularis of the gastrointestinal (GI) tract. ICC serve as electrical pacemakers, provide pathways for the active propagation of slow waves, are mediators of enteric motor neurotransmission and play a role in afferent neural signalling. Morphological studies have provided evidence that motor neurotransmission in the GI tract does not occur through poorly defined structures between nerves and smooth muscle, but rather via specialized synapses that exist between enteric nerve terminals and intramuscular ICC or ICC-IM. ICC-IM are coupled to smooth muscle cells via gap junctions and post-junctional responses elicited in ICC-IM are conducted to neighbouring smooth muscle cells. Electrophysiological studies from the stomachs and sphincters of wild-type and mutant animals that lack ICC-IM have provided functional evidence for the importance of ICC in cholinergic excitatory and nitrergic inhibitory motor neurotransmission. Intraperitoneal injection of animals with Kit neutralizing antibody or organ culture of gastrointestinal tissues in the presence of neutralizing antibody, which blocks the development and maintenance of ICC, has provided further evidence for the role of ICC in enteric motor transmission. ICC-IM also generate an ongoing discharge of unitary potentials in the gastric fundus and antrum that contributes to the overall excitability of the stomach.  相似文献   

6.
7.
Cellular mechanisms of myogenic activity in gastric smooth muscle   总被引:13,自引:0,他引:13  
In many regions of the intestine, a thin layer of interstitial cells of Cajal (ICC) lie in the myenteric region, between the circular and longitudinal muscle layers. ICC are connected by gap junctions to surrounding ICC and also with circular and longitudinal smooth muscle cells, forming a large electrical syncytium. Damage of the ICC causes a disorder in the patterns of rhythmic activity. Isolated ICC produce a rhythmic oscillation of the membrane potential. All these observations have led to the suggestion that ICC may be the pacemaker cell responsible for intestinal activity. Gastric smooth muscles generate slow oscillatory membrane potential changes (slow waves) and spike potentials. The activity is considered to be linked to the metabolism in the cell. Three types of cells located in the gastric wall (circular and longitudinal smooth muscle cells and ICC) produce synchronized electrical responses with different shapes. The electrical responses appear to originate in ICC and then spread to the smooth muscle layers, indicating that ICC may also be the pacemaker cells responsible for gastric activity. However, isolated circular smooth muscle tissues spontaneously generate regenerative potentials, suggesting that there are at least two sites for the initiation of spontaneous activity in the stomach. Regenerative potentials persist in the presence of Ca-antagonists and are inhibited by agents which disrupt intracellular Ca(2+) homeostasis. Depolarization of the membrane elicits regenerative potentials after a long delay and the potentials have long refractory periods. This suggests that an unidentified 2nd messenger may be formed during the delay between membrane depolarization and the initiation of a regenerative potential. In gastric muscles of mutant mice which do not express inositol trisphosphate (InsP(3)) receptors, spike potentials but not slow waves are generated, suggesting the possible involvement of InsP(3) in the initiation of spontaneous activity.  相似文献   

8.
Interstitial cells of Cajal (ICC) provide important regulatory functions in the motor activity of the gastrointestinal tract. In the small intestine, ICC in the myenteric region (ICC-MY), between the circular and longitudinal muscle layers, generate and propagate electrical slow waves. Another population of ICC lies in the plane of the deep muscular plexus (ICC-DMP), and these cells are closely associated with varicose nerve terminals of enteric motor neurons. Here we tested the hypothesis that ICC-DMP mediate excitatory and inhibitory neural inputs in the small bowel. ICC-DMP develop largely after birth. ICC-DMP, with receptor tyrosine kinase Kit-like immunoreactivity, appear first in the jejunum and then in the ileum. We performed electrophysiological experiments on mice immediately after birth (P0) or at 10 days post partum (P10) to determine whether neural responses follow development of ICC-DMP. At P0, slow-wave activity was present in the jejunum, but neural responses were poorly developed. By P10, after ICC-DMP developed, both cholinergic excitatory and nitrergic inhibitory neural responses were intact. Muscles of P0 mice were also put into organotypic cultures and treated with a neutralizing Kit antibody. Neural responses developed in culture within 3–6 days in control muscles, but blocking Kit caused loss of ICC and loss of cholinergic and nitrergic neural responses. Non-cholinergic excitatory responses remained after loss of ICC-DMP. Our observations are consistent with the idea that cholinergic and nitrergic motor neural inputs are mediated, to a large extent, via ICC-DMP. Thus, ICC-DMP appear to serve a function in the small intestine that is similar to the role of the intramuscular ICC in the stomach.  相似文献   

9.
Electrical slow waves in gastrointestinal (GI) muscles are generated by interstitial cells of Cajal (ICC), and these events actively propagate through networks of ICC within the walls of GI organs. The mechanism by which spontaneously active pacemaker sites throughout ICC networks are entrained to produce orderly propagation of slow waves is unresolved. A three-chambered partition bath was used to test the effects of agents that affect metabolism, membrane potential and voltage-dependent Ca2+ entry on slow wave propagation in canine antral smooth muscle strips. Slow waves evoked by electrical field stimulation actively propagated from end to end of antral muscle strips with a constant latency between two points of recording. When the central chamber of the bath was perfused with low-temperature solutions, mitochondrial inhibitors, reduced extracellular Ca2+ or blockers of voltage-dependent Ca2+ channels, active propagation failed. Depolarization or hyperpolarization of the tissue within the central chamber also blocked propagation. Blockade of propagation by reduced extracellular Ca2+ and inhibitors of dihydropyridine-resistant Ca2+ channels suggests that voltage-dependent Ca2+ entry may be the 'entrainment factor' that facilitates active propagation of slow waves in the gastric antrum.  相似文献   

10.
Many smooth muscles display spontaneous electrical and mechanical activity, which persists in the absence of any stimulation. In the past this has been attributed largely to the properties of the smooth muscle cells. Now it appears that in several organs, particularly in the gastrointestinal tract, activity in smooth muscles arises from a separate group of cells, known as interstitial cells of Cajal (ICC), which are distributed amongst the smooth muscle cells. Thus in the gastrointestinal tract, a network of interstitial cells, usually located near the myenteric plexus, generates pacemaker potentials that are conducted passively into the adjacent muscle layers where they produce rhythmical membrane potential changes. The mechanical activity of most smooth muscle cells, can be altered by autonomic, or enteric, nerves innervating them. Previously it was thought that neuroeffector transmission occurred simply because neurally released transmitters acted on smooth muscle cells. However, in several, but not all, regions of the gastrointestinal tract, it appears that nerve terminals, rather than communicating directly with smooth muscle cells, preferentially form synapses with ICC and these relay information to neighbouring smooth muscle cells. Thus a set of ICC, which are distributed amongst the smooth muscle cells of the gut, are the targets of transmitters released by intrinsic enteric excitatory and inhibitory nerve terminals: in some regions of the gastrointestinal tract, the same set of ICC also augment the waves of depolarisation generated by pacemaker ICC. Similarly in the urethra, ICC, distributed amongst the smooth muscle cells, generate rhythmic activity and also appear to be the targets of autonomic nerve terminals.  相似文献   

11.
Interstitial cells of Cajal (ICCs) are a fundamental component of the pacemaker apparatus of the gastrointestinal (GI) tract. They have special properties that make them unique in their ability to generate and propagate slow waves in gastrointestinal smooth muscle. The pacemaker current that generates slow waves is initially due to a voltage-independent, Ca(2+)-inhibited, non-selective cationic conductance in ICC. The classical transient receptor potential (TRPC) channel 4 was suggested as a molecular candidate for the nonselective cation channel (NSCC) responsible for the pacemaker activity. We have shown that TRPC4-/- mice display normal slow waves and suggest that TRPC4 might be an essential component of the NSCC activated by muscarinic stimulation. Finally, we suggest that TRPM7 is the molecular candidate for the NSCC responsible for pacemaker activity in ICCs on the basis of electrophysiological, molecular biological, and immunohistochemical experiments.  相似文献   

12.
In vitro functional gut-like organ formation from mouse embryonic stem cells.   总被引:11,自引:0,他引:11  
BACKGROUND AND AIMS: Embryonic stem (ES) cells have a pluripotent ability to differentiate into a variety of cell lineages in vitro. We have recently found that ES cells can give rise to a functional gut-like unit, which forms a three-dimensional dome-like structure with lumen and exhibits mechanical activity, such as spontaneous contraction and peristalsis. The aim of the present study was to investigate the electrophysiological and morphological properties of ES cell-derived contracting clusters. METHODS: Electrical activity was examined by an extracellular recording. Morphology and cellular components were investigated by immunohistochemistry and electron microscopy. RESULTS: Clusters with rhythmic contractions displayed electrical slow waves at a regular rhythm, and clusters with highly coordinated peristalsis showed regular slow waves and spontaneous spike action potentials. Immunoreactivity for c-Kit, a marker of interstitial cells of Cajal (ICC), was observed in dense network structures. Neuronal marker PGP9.5 immunoreactivity was observed only in clusters with peristalsis. The topographical structure of the wall was organized by an inner epithelial layer and outer smooth muscle layer. The smooth muscle layer was provided with an ICC network and innervated with enteric neurons. CONCLUSIONS: ES cells can differentiate into a functional gut-like organ in vitro that exhibits physiological and morphological properties characteristic of the gastrointestinal (GI) tract. This ES cell-derived gut provides a powerful tool for studying GI motility and gut development in vitro, and has potential for elucidating and treating a variety of motility disorders.  相似文献   

13.
Interstitial cells of Cajal (ICC) are unique cells that generate electrical pacemaker activity in gastrointestinal (GI) muscles. Many previous studies have attempted to characterize the conductances responsible for pacemaker current and slow waves in the GI tract, but the precise mechanism of electrical rhythmicity is still debated. We used a new transgenic mouse with a bright green fluorescent protein (copGFP) constitutively expressed in ICC to facilitate study of these cells in mixed cell dispersions. We found that ICC express a specialized 'slow wave' current. Reversal of tail current analysis showed this current was due to a Cl selective conductance. ICC express ANO1, a Ca2+-activated Cl channel. Slow wave currents are not voltage dependent, but a secondary voltage-dependent process underlies activation of these currents. Removal of extracellular Ca2+, replacement of Ca2+ with Ba2+, or extracellular Ni2+ (30 μ m ) blocked the slow wave current. Single Ca2+-activated Cl channels with a unitary conductance of 7.8 pS were resolved in excised patches of ICC. These are similar in conductance to ANO1 channels (8 pS) expressed in HEK293 cells. Slow wave current was blocked in a concentration-dependent manner by niflumic acid (IC50= 4.8 μ m ). Slow wave currents are associated with transient depolarizations of ICC in current clamp, and these events were blocked by niflumic acid. These findings demonstrate a role for a Ca2+-activated Cl conductance in slow wave current in ICC and are consistent with the idea that ANO1 participates in pacemaker activity.  相似文献   

14.
Interstitial cells of Cajal: primary targets of enteric motor innervation   总被引:26,自引:0,他引:26  
For many years morphologists have noted the close relationship between interstitial cells of Cajal (ICC) and nerve fibers within the tunica muscularis of gastrointestinal (GI) organs. These observations led to speculations about a role for ICC in mediating neural inputs to the GI tract. Immunohistochemical and functional studies demonstrated the presence of receptors for the neurotransmitters utilized by enteric motor neurons, and changes in second messengers in ICC after field stimulation of intrinsic enteric neurons showed that ICC were functionally innervated in GI muscles. Recent double labeling experiments have shown that both excitatory and inhibitory enteric motor neurons are closely associated with ICC in the deep muscular plexus (IC-DMP) of the small intestine and intramuscular ICC (IC-IM) of the proximal and distal GI tract. Enteric motor neurons form synaptic-like structures with IC-IM and IC-DMP. Far fewer close contacts are found between enteric motor neurons and smooth muscle cells. Experiments on W/W(V) mutants that lack IC-IM in the stomach, lower esophageal sphincter, and pylorus have shown that these ICC are critical components of the neuromuscular junction. Cholinergic excitatory and nitrergic inhibitory neurotransmission are severely decreased in tissues lacking IC-IM, yet there is no loss of cholinergic or nitrergic neurons in W/W(V) mutants. These data suggest that either the post-junctional mechanisms responsible for receiving and transducing neurotransmitter signals are specifically expressed by ICC, or that the large extracellular spaces typically between nerve terminals and smooth muscle cells may not allow effective concentrations of neurotransmitters to reach receptors expressed by smooth muscle cells. These findings indicate an important role for certain classes of ICC in enteric neurotransmission and predict that loss of ICC in human motor disturbances may significantly compromise neural regulation of GI motility.  相似文献   

15.
Regulation of pacemaker frequency in the murine gastric antrum   总被引:6,自引:8,他引:6  
PGE2 has been linked to the production of gastric arrhythmias such as tachygastria. The interstitial cells of Cajal (ICC) generate electrical rhythmicity in gastrointestinal muscles, and may therefore be a target for PGE2 in gastric muscles. We cultured ICC from the murine gastric antrum, verified that cells were Kit immunoreactive, and measured spontaneous slow waves. These events were caused by spontaneous inward (pacemaker) currents that were not blocked by nifedipine. Forskolin and 8-bromoadenosine 3':5'-cyclic monophosphate (8-Br-cAMP) reduced the frequency of pacemaker currents in ICC and of slow waves in intact antral muscles. The effects of forskolin and 8-Br-cAMP were not blocked by inhibitors of protein kinase A, suggesting that cAMP has direct effects on pacemaker activity. PGE2 mimicked the effects of forskolin and 8-Br-cAMP on ICC, but increased slow-wave frequency in intact muscles. Therefore, the chronotropic effects of specific prostaglandin EP receptor agonists were examined. Butaprost and ONO-AE1-329, EP2 and EP4 receptor agonists, mimicked the effects of forskolin and 8-Br-cAMP on ICC and intact muscles. Sulprostone (EP3>EP1 agonist), GR63799, and ONO-AE-248 (EP3 agonists) enhanced the frequencies of pacemaker currents in ICC and slow waves in intact muscles. The effects of sulprostone were not blocked by SC-19220, an EP1 receptor antagonist. These observations suggest that the positive chronotropic effects of PGE2 in intact muscles are mediated by EP3 receptor stimulation. The effects of PGE2 in intact muscles may be dependent upon the relative expression of EP receptors and/or proximity of receptors to sources of PGE2.  相似文献   

16.
17.
In the gastrointestinal (GI) tract electrical slow waves yield oscillations in membrane potential that periodically increase the open probability of voltage-dependent Ca2+ channels and facilitate phasic contractions. Slow waves are generated by the interstitial cells of Cajal (ICC), and these events actively propagate through ICC networks within the walls of GI organs. The mechanism that entrains spontaneously active pacemaker sites throughout ICC networks to produce regenerative propagation of slow waves is unresolved. Agents that block inositol 1,4,5-trisphosphate (IP3) receptors and mitochondrial Ca2+ uptake were tested on the generation of slow waves in the canine colon. A partitioned chamber apparatus was used to test the effects of blocking slow-wave generation on propagation. We found that active propagation occurred along strips of colonic muscle, but when the pacemaker mechanism was blocked in a portion of the tissue, slow waves decayed exponentially from the point where the pacemaker mechanism was inhibited. An IP3 receptor inhibitor, mitochondrial inhibitors, low external Ca2+, and divalent cations (Mn2+ and Ni2+) caused exponential decay of the slow waves in regions of muscle exposed to these agents. These data demonstrate that the mechanism that initiates slow waves is reactivated from cell-to-cell during the propagation of slow waves. Voltage-dependent conductances present in smooth muscle cells are incapable of slow-wave regeneration. The data predict that partial loss of or disruptions to ICC networks observed in human motility disorders could lead to incomplete penetration of slow waves through GI organs and, thus, to defects in myogenic regulation.  相似文献   

18.
Peristaltic contractions in the stomach are regulated by the spread of electrical slow waves from the corpus to the pylorus. Gastric slow waves are generated and propagated by the interstitial cells of Cajal (ICC). All regions distal to the dominant pacemaker area in the corpus are capable of generating slow waves, but orderly gastric peristalsis depends upon a frequency gradient in which the corpus pacemaker frequency exceeds the antral frequency. Cholinergic, muscarinic stimulation enhances pacemaker frequency. We investigated this phenomenon using intact murine gastric muscles and cultured ICC. Acetylcholine (ACh) increased the frequency of slow waves in antrum and corpus muscles. The increase was significantly greater in the antrum. ACh and carbachol (CCh) increased the pacemaker currents in cultured ICC. At high doses of CCh, transient pacemaker currents fused into sustained inward currents that persisted for the duration of stimulation. The effects of CCh were blocked by low doses of the M3 receptor antagonist 1-dimethyl-4-diphenylacetoxypiperidinium. Frequency enhancement by CCh was not affected by forskolin, but the phospholipase C inhibitor U-73122 inhibited both the increase in frequency and the development of tonic inward currents. 2-Aminoethyldiphenyl borate also blocked the chronotropic responses to CCh. Inhibitors of protein kinase C did not block responses to CCh. These studies show that mice are an excellent model for studying mechanisms that regulate gastric slow-wave frequency. CCh, apparently via production of inositol 1,4,5-trisphosphate, accelerates the frequency of pacemaker activity. High concentrations of CCh may block the entrainment of pacemaker currents, resulting in a tonic inward current.  相似文献   

19.
梁国刚  李毅  齐清会 《解剖学报》2010,41(2):257-261
目的 观察细菌性腹膜炎大鼠小肠神经-Cajal 间质细胞(ICC)网络的形态学变化,探讨细菌性腹膜炎致胃肠运动障碍的产生机制。 方法 成年Wistar大鼠60只,雌雄不限,随机分为对照组和实验组。实验组大鼠建立细菌性腹膜炎模型。大鼠小肠在体肌电慢波频率和振幅的变化检测胃肠运动功能;存活大鼠取距幽门20cm的上段小肠100cm制作肠肌层全厚组织标本,进行cKit和乙酰胆碱转运体(VAChT)/一氧化氮合酶(nNOS)免疫荧光双标染色后用于激光扫描共焦显微镜检测、分析。 结果 与正常组大鼠比较,小肠肌电慢波频率和振幅较正常组均明显减慢和降低;共焦显微镜检测ICC网络,与对照组相比,大鼠小肠ICC数量明显减少(P <0.01),ICC突触数量减少,相互间的连接不连续,完整的网络样结构消失,细胞荧光强度减弱(P <0.01)。共焦显微镜检测肠神经ICC网络,与对照组相比,胆碱能/氮能神经数目明显减少(P <0.01),神经网结构紊乱,彼此间的连接减少,神经网络的荧光强度减弱(P <0.01);ICC与肠神经纤维两者间失去紧密连接,肠神经ICC网络的完整结构受到破坏。 结论 细菌性腹膜炎时小肠胆碱能/氮能神经和ICC数量减少,肠神经ICC网络结构受到破坏,可能是引起胃肠运动障碍的原因。  相似文献   

20.
Interstitial cells of Cajal (ICC) provide pacemaker activity in some smooth muscles. The nature of the pacemaker conductance is unclear, but studies suggest that pacemaker activity is due to a voltage-independent, Ca2+-regulated, non-selective cation conductance. We investigated Ca2+-regulated conductances in murine intestinal ICC and found that reducing cytoplasmic Ca2+ activates whole-cell inward currents and single-channel currents. Both the whole-cell currents and single-channel currents reversed at 0 mV when the equilibrium potentials of all ions present were far from 0 mV. Recordings from on-cell patches revealed oscillations in unitary currents at the frequency of pacemaker currents in ICC. Voltage-clamping cells to −60 mV did not change the oscillatory activity of channels in on-cell patches. Depolarizing cells with high external K+ caused loss of resolvable single-channel currents, but the oscillatory single-channel currents were restored when the patches were stepped to negative potentials. Unitary currents were also resolved in excised patches. The single-channel conductance was 13 pS, and currents reversed at 0 mV. The channels responsible were strongly activated by 10−7 m Ca2+, and 10−6 m Ca2+ reduced activity. The 13 pS channels were strongly activated by the calmodulin inhibitors calmidazolium and W-7 in on-cell and excised patches. Calmidazolium and W-7 also activated a persistent inward current under whole-cell conditions. Murine ICC express Ca2+-inhibited, non-selective cation channels that are periodically activated at the same frequency as pacemaker currents. This conductance may contribute to the pacemaker current and generation of electrical slow waves in GI muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号