首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was initiated to see if defects in the ability of physiological hyperinsulinemia (approximately 60 microU/mL) to stimulate glucose uptake in healthy, nondiabetic volunteers are associated with increases in concentrations of plasma glucose and free fatty acid (FFA) when measured at basal insulin concentrations (approximately 10 microU/mL). We recruited 22 volunteers (12 women and 10 men) for these studies, with a (mean +/- SEM) body mass index of 24.8 +/- 0.5 kg/m2. Resistance to insulin-mediated glucose disposal during physiological hyperinsulinemia was determined by suppressing endogenous insulin and determining the steady-state plasma glucose (SSPG) and steady-state plasma insulin (SSPI) concentrations at the end of a 3-h infusion, period during which glucose (267 mg/m2 x min) and insulin (32 mU/m2 x min) were infused at a constant rate. Glucose, insulin and FFA concentrations were also measured in response to infusion rates of glucose (50 mg/m2 x min) and insulin (6 mU/m2 x min). The SSPI concentration (mean +/- SEM) during physiological hyperinsulinemia was 64 +/- 3 microU/mL), in contrast to 12 +/- 0.4 microU/mL during the basal insulin study. The results demonstrated a significant relationship between SSPG concentration in response to physiological hyperinsulinemia (SSPG60) and SSPG(Basal) (r = 0.57, P < 0.01) and FFA(Basal) (r = 0.73, P < 0.001). Furthermore, FFA(Basal) and SSPG(Basal) were significantly correlated (r = 0.47, P < 0.05). Comparison of the seven most insulin-resistant and seven most insulin sensitive individuals (SSPG60 values of 209 +/- 16 vs. 64 +/- 8 mg/dL) revealed that the insulin-resistant group also had significantly higher SSPG(Basal) (105 +/- 5 vs. 78 +/- 7 mg/dL, P < 0.01) and FFA(Basal) (394 +/- 91 vs. 104 +/- 41, P < 0.02) concentrations. However, random fasting plasma glucose and FFA concentrations of the two groups were not different. The results presented demonstrate that individual differences in the ability of elevated insulin concentrations to stimulate muscle glucose disposal are significantly correlated with variations in insulin regulation of plasma glucose and FFA concentrations at basal insulin concentrations.  相似文献   

2.
The relationship between insulin-mediated glucose disposal and daylong free fatty acid (FFA) concentrations before and after sibutramine-assisted weight loss was investigated in 24 healthy, normotensive, nondiabetic, obese women (body mass index [BMI] >30.0 kg/m(2)). The 24 volunteers were defined as being insulin-resistant (IR) or insulin-sensitive (IS) on the basis of their steady-state plasma glucose (SSPG) concentration in response to a 180-minute continuous intravenous infusion of octreotide, insulin, and glucose. The mean (+/- SEM) SSPG concentrations were significantly higher (P <.001) in the IR group (219 +/- 7 v 69 +/- 6 mg/dL) at baseline. The IR group also had significantly higher plasma glucose (P =.002), insulin (P <.001), and FFA (P =.02) concentrations measured at hourly intervals from 8 AM to 4 PM, before and after breakfast (8 AM) and lunch (noon). Weight loss in response to an energy-restricted diet for 4 months and sibutramine (15 mg/d) was comparable in the 2 experimental groups (8.6 +/- 1.3 v 7.9 +/- 1.4 kg). SSPG concentrations decreased significantly (P <.001) following weight loss (219 +/- 7 to 144 +/- mg/dL) in the IR group, but there was no change in the SSPG of the IS group (69 +/- 6 to 73 +/- 7 mg/dL. The improvement in insulin sensitivity in the IR group after weight loss was associated with a significant decline in daylong plasma glucose (P >.001) and insulin (P =.02) concentrations, without a weight-loss-associated decrease in daylong plasma FFA responses. In contrast, there was no significant change in plasma glucose, insulin, and FFA concentrations following weight loss in the IS group. These results indicate that daylong FFA concentrations vary substantially in obese individuals as a function of whether they are IR or IS. Furthermore the observation that the IR group was more insulin-sensitive after weight loss, associated with lower daylong insulin concentrations in the absence of a significant decrease in circulating FFA concentrations, suggests that resistance to insulin-mediated glucose disposal in obese individuals cannot be entirely due to high FFA levels.  相似文献   

3.
Differences in insulin regulation of free fatty acids (FFAs) are not readily apparent at the same insulin concentrations used to differentiate relative insulin-mediated glucose disposal. Resistance to insulin-mediated glucose disposal and higher daylong FFA concentrations occur more commonly in obese individuals. However, the relationship between the ability of insulin to suppress FFA release from adipose tissue and stimulate glucose disposal in muscle has not been clearly defined in this population. The current study was initiated to test the hypothesis that these 2 facets of insulin action are related, with greater defects in insulin-mediated glucose disposal associated with less effective insulin inhibition of FFA release from adipose tissue. Subjects included 56 healthy nondiabetic overweight/moderately obese women classified as insulin resistant or insulin sensitive based on whole-body glucose disposal. All underwent a modified 240-minute 2-stage insulin infusion with basal (∼15 µU/mL) and physiologically elevated (∼80 µU/mL) steady-state insulin concentrations. Plasma glucose, insulin, FFA, and glycerol were measured throughout. Whereas plasma glucose differed most during physiological hyperinsulinemia in insulin-resistant vs insulin-sensitive subjects, plasma FFA/glycerol differed most during basal insulin concentrations. The FFA concentrations during the basal insulin steady state correlated highly (r = 0.85, P < .001) with glucose concentrations during the hyperinsulinemic steady state. Overweight/moderately obese women exhibit dramatic differences in the ability of insulin to suppress plasma FFA, which correlate highly with differences in insulin-mediated glucose disposal. Variability in insulin regulation of FFA is most apparent at basal insulin concentrations, whereas differences in glucose disposal are most apparent during physiologic hyperinsulinemia. Both can be quantified using a simple 2-stage insulin infusion study, with first-stage FFA concentrations and second-stage glucose concentrations being most informative.  相似文献   

4.
Several popular books have recently been published stating that being insulin-resistant favors weight gain and/or prevents weight loss. Because this view seems to have gained widespread support in the general population, we thought it important to perform the current study testing the hypothesis that differences in insulin-mediated glucose disposal do not affect weight loss in response to calorie-restricted diets. For this purpose, we studied the change in weight and risk factors for coronary heart disease (CHD) in healthy women volunteers, defined as being obese on the basis of a body mass index (BMI) greater than 30.0 kg/m(2). The insulin suppression test was used to stratify obese women at baseline into insulin-resistant and insulin-sensitive subgroups on the basis of their steady-state plasma glucose (SSPG) concentration at the end of a 180-minute infusion of octreotide, exogenous insulin, and glucose. They were then instructed on a calorie-restricted diet plus sibutraminine (15 mg/day) for a total period of 4 months. Baseline measurements also included determination of fasting lipid and lipoprotein concentrations, and hourly (8 AM to 4 PM) determinations of plasma glucose and insulin concentrations before and after breakfast and lunch. Twenty-four women completed the 4-month period of calorie restriction: 13 classified as insulin-resistant (SSPG = 219 +/- 7 mg/dL) and 11 as insulin-sensitive (SSPG = 69 +/- 6 mg/dL). The insulin-resistant group also had higher (P =.03) plasma triglyceride (TG) concentrations and a higher ratio of total to high-density lipoprotein (HDL) cholesterol concentration (P =.02) at baseline. Both groups lost a significant amount of weight during the study, and there was no difference between the weight loss in the insulin-resistant (8.6 +/- 1.3 kg) and insulin-sensitive (7.9 +/- 1.4 kg) groups. Weight loss in the insulin-resistant group was also associated with a significant decrease in SSPG concentration (219 +/- 7 to 144 +/- 14 mg/dL), associated with significantly lower fasting TG concentrations (P <.001) and day-long concentrations of plasma glucose and insulin (P <.005). None of these variables changed in the insulin-sensitive group. These results indicate that: (1) CHD risk factors in obese women vary as a function of being insulin-resistant or insulin-sensitive; (2) dramatic variations in insulin-mediated glucose disposal do not modulate weight loss in response to calorie-restricted diets, and (3) weight loss is effective in reducing CHD risk in insulin-resistant, obese women. Given these data, it seems obvious that attempts to reduce CHD risk factors by weight loss should focus on obese individuals who are also insulin-resistant.  相似文献   

5.
To evaluate the stability of insulin-mediated glucose disposal, over time, we measured the steady-state plasma insulin (SSPI) and steady-state plasma glucose (SSPG) concentrations in response to a continuous infusion of SRIF (5 microg/min), insulin (25 microU/m2 x min), and dextrose (240 microg/m2 x min). These measurements were made in 15 healthy volunteers, studied before and after a mean (+/-SEM) interval of 48 +/- 2 months. The mean (+/-SEM) weight of the volunteers did not increase with time (75.4 +/- 3.1 vs. 76.6 +/- 3.2 kg), and there was no significant variation between the 2 mean (+/-SEM) values of either SSPI (324 +/- 18 vs. 372 +/- 24 pmol/L) or SSPG (8.4 +/- 1.0 vs. 8.2 +/- 1.0 mmol/L). Given the similarity of both SSPI and SSPG concentrations at baseline and follow-up, it can be concluded that insulin-mediated glucose disposal was stable in these 15 individuals over an interval of approximately 4 yr.  相似文献   

6.
The primary goal of this investigation was to see whether plasminogen activator inhibitor-1 (PAI-1) concentrations varied as a function of differences in insulin-mediated glucose disposal in 2 groups of healthy women matched for every other variable that might play a role in regulation of PAI-1. For this purpose, we recruited 32 healthy women, divided on the basis of their steady-state plasma glucose (SSPG) concentrations during the insulin suppression test into an insulin-resistant (SSPG=216+/-12 mg/dL, n=16) and an insulin-sensitive (94+/-6 mg/dL, n=16) group. PAI-1 antigen concentrations were significantly higher (26+/-4 versus 14+/-3 ng/mL, P<0.02) in the insulin-resistant group. In addition, fasting plasma insulin (18+/-3 versus 11+/-2 microU/mL, P<0.02) and triglyceride (160+/-19 versus 93+/-10 mg/dL, P<0.001) concentrations were higher in the insulin-resistant individuals, whereas HDL concentrations were lower (44+/-3 versus 58+/-3 mg/dL, P<0.005). However, the 2 groups were essentially identical in terms of age, menopausal status, hormone replacement therapy, body mass index (BMI), ratio of waist-to-hip girth, and blood pressure. When the experimental population was considered as 1 group, there were statistically significant correlations between PAI-1 antigen and the following variables: adjusting for differences in age and BMI, SSPG (r=0.56, P<0.001); triglyceride (r=0.39, P<0.05); and HDL cholesterol (r=-0. 65, P<0.001) concentrations. Finally, multiple regression analysis revealed the major determinants of PAI-1 to be insulin resistance, or insulin concentration, and HDL cholesterol. These results: 1) demonstrate that PAI-1 concentrations are higher in healthy, insulin-resistant women as compared with insulin-sensitive individuals, independent of differences in BMI or ratio of waist-to-hip girth; and 2) provide another mechanism by which insulin-resistant individuals are at increased thrombotic cardiovascular risk.  相似文献   

7.
Resistance to insulin-stimulated-glucose uptake in patients with hypertension   总被引:10,自引:0,他引:10  
Plasma glucose and insulin responses to a glucose challenge and insulin-stimulated glucose uptake were measured in 24 age-, weight-, and sex-matched Chinese men (8 with normal blood pressure, 8 with untreated hypertension, and 8 patients with hypertension treated with thiazide and beta-adrenergic antagonist drugs). Plasma glucose and insulin responses were determined by measuring plasma glucose and insulin concentrations before and at 30-min intervals for 2 h after a 75-g oral glucose dose. Insulin-stimulated glucose uptake was estimated by measuring the steady state plasma glucose (SSPG) and insulin (SSPI) concentrations achieved during the last 60 min of a 180-min continuous infusion of somatostatin, insulin, and glucose (insulin suppression test). Under these conditions endogenous insulin secretion was suppressed, and similar SSPI concentrations were achieved in all men; thus, the differences in the resultant SSPG concentrations allowed direct comparison of insulin's ability to stimulate disposal of an identical glucose load in different individuals. The results indicated that the men with hypertension, whether treated or untreated, had significantly elevated plasma glucose (P less than 0.001) and insulin (P less than 0.001) responses to the oral glucose dose compared to the normal men. Mean (+/- SE) SSPG concentrations were also higher (P less than 0.001) in the men with either untreated hypertension [219 +/- 9 mg/dL (12.2 +/- 0.5 mmol/L)] or treated hypertension [211 +/- 18 mg/dL (11.7 +/- 1.0 mmol/L)] than in the normal men [134 +/- 13 mg/dL (7.4 +/- 0.7 mmol/L)]. Since the mean SSPI concentrations were similar in the 3 groups [approximately 70 microU/mL (502 pmol/L)], insulin was less effective in promoting glucose disposal in both groups with hypertension. These results document the fact that patients with hypertension, whether treated or untreated, are insulin resistant, hyperglycemic, and hyperinsulinemic compared to a well-matched control group.  相似文献   

8.
To evaluate the in vivo effect of hyperglycemia per se on plasma free fatty acid (FFA) and glycerol concentrations, euglycemic and hyperglycemic clamp studies were performed in six overnight fasted dogs in the state of insulin deficiency produced by somatostatin (SRIF) infusion. The mean blood glucose concentrations during the steady-state (the second hour of each study) averaged 4.65 +/- 0.10 mmol/L in euglycemic clamp and 14.11 +/- 0.10 mmol/L in hyperglycemic clamp. During the SRIF infusion, plasma FFA concentrations increased from 0.32 +/- 0.05 mumol/mL at the basal state to 0.76 +/- 0.04 mumol/mL at the steady-state in euglycemic clamp and from 0.26 +/- 0.04 mumol/mL to 0.43 +/- 0.02 mumol/mL in hyperglycemic clamp. Plasma glycerol concentrations increased from the basal value of 0.07 +/- 0.01 mumol/mL to 0.15 +/- 0.01 mumol/mL during the steady-state in euglycemic clamp and from 0.06 +/- 0.01 mumol/mL to 0.08 +/- 0.01 mumol/mL in hyperglycemic clamp. The steady-state concentrations of plasma FFA and glycerol in hyperglycemic clamp were significantly lower than those in euglycemic clamp (P less than .001; respectively). These results suggest that hyperglycemia per se might decrease plasma FFA and glycerol concentrations at least in part by decreasing lipolysis in the acutely insulin-deficient dog.  相似文献   

9.
In vivo regulation of plasma free fatty acids in insulin resistance   总被引:2,自引:0,他引:2  
Elevated plasma free fatty acid (FFA) concentrations as seen in obesity, insulin resistance, and type 2 diabetes are partly caused by impaired inhibition of intracellular lipolysis in adipose tissue, and this is considered to be part of the insulin resistance syndrome (IRS). Based on predicted insulin resistance at the level of intracellular lipolysis, patients with the IRS would loose weight by disinhibited lipolysis. Since this is not the case in clinical practice, impaired stimulation of intracellular lipolysis must also play a role. We studied acute plasma FFA changes, representing stimulation and inhibition of intracellular adipose tissue lipolysis, in obese patients with IRS and in healthy controls. Thirteen insulin-resistant (IR) subjects (7 men and 6 women) and 10 controls (6 men and 4 women) underwent a mental stress test (20 minutes) preceded by 60 minutes of rest. After mental stress, an oral glucose tolerance test (OGTT) was performed. Baseline FFA levels were higher in IR patients compared to controls (0.59 +/- 0.06 and 0.31 +/- 0.06 mmol/L, respectively; P =.004). During the 20 minutes of mental stress, FFAs increased significantly in IR subjects from 0.55 +/- 0.07 to 0.67 +/- 0.07 mmol/L (P <.001) and from 0.21 +/- 0.04 to 0.36 +/- 0.07 mmol/L in controls (P =.001). Although the absolute change of plasma FFA was not different, the relative increase was lower in IR subjects (28% +/- 7%) compared to controls (89 +/- 24%; P =.02). Despite the more pronounced mean maximal insulin concentration during the OGTT in IR subjects compared to controls (600.0 +/- 126.6 pmol/L and 208.1 +/- 30.0 pmol/L, respectively), the relative decrease of FFAs was lower in IR subjects (11% +/- 5% v 36% +/- 11% in controls after 30 minutes; P =.04). In conclusion, our study shows impaired acute responses of plasma FFAs upon stimulation by mental stress and inhibition by endogenous insulin in insulin resistance in vivo. The presence of both defects helps to understand weight maintenance in insulin resistance.  相似文献   

10.
A recent report suggested that the glucose-free fatty acid (FFA) cycle may contribute to steroid-induced insulin resistance in rats, and that glucose tolerance could be restored to normal when FFA levels were lowered with nicotinic acid. To test this hypothesis in man, we measured insulin sensitivity (by euglycemic insulin clamp in combination with indirect calorimetry and infusion of tritiated glucose) before and after short-term administration of a nicotinic-acid derivative (Acipimox) in 10 steroid-treated, kidney transplant patients with insulin resistance. Thirty-five healthy subjects served as controls. Six of them received Acipimox. Total body glucose metabolism was reduced in steroid-treated patients compared with control subjects (41.7 +/- 3.3 v 50.0 +/- 2.2 mumol/kg lean body mass [LBM].min, P less than .05). The reduction in insulin-stimulated glucose uptake was mainly due to an impairment in nonoxidative glucose metabolism (primarily glucose storage as glycogen) (18.3 +/- 2.8 v 27.2 +/- 2.2 mumol/kg LBM.min, P less than .01). Acipimox lowered basal FFA concentrations (from 672 +/- 63 to 114 +/- 11 mumol/L, P less than .05) and the rate of lipid oxidation measured in the basal state (1.5 +/- 0.2 to 0.6 +/- 0.1 mumol/kg LBM.min, P less than .01) and during the clamp (0.7 +/- 0.2 to 0.03 +/- 0.2 mumol/kg LBM.min, P less than .05). In addition, Acipimox administration normalized total glucose disposal (to 54.4 +/- 4.4 mumol/kg LBM.min), mainly due to enhanced nonoxidative glucose metabolism (to 28.9 +/- 3.9 mumol/kg LBM.min) in steroid-treated patients (both P less than .05 v before Acipimox).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
This study was initiated to test the hypothesis that plasma concentrations of remnant lipoproteins would be higher after an overnight fast in insulin-resistant compared to insulin-sensitive volunteers. Forty-three healthy nonobese women were studied, divided into insulin-resistant (n = 21) and insulin-sensitive (n = 22) groups on the basis of their steady state plasma glucose (SSPG) concentration at the end of a 180-min infusion of octreotide acetate, insulin, and glucose. Under these conditions, steady state plasma insulin concentrations are similar in all subjects (approximately 60 microU/mL), and the higher the SSPG concentrations, the more insulin resistant the individual. By selection, mean (+/-SEM) SSPG concentrations were significantly higher (P < 0.001) in the insulin-resistant group (210 +/- 7 vs. 78 +/- 3 mg/dL). In addition, the insulin-resistant group had higher triglycerides (198 +/- 27 vs. 101 +/- 12 mg/dL; P < 0.005) and lower high density lipoprotein cholesterol (48 +/- 4 vs. 60 +/- 4 mg/dL; P < 0.05) concentrations. Finally, insulin resistance was associated with higher remnant lipoprotein particle concentrations of cholesterol (7.2 +/- 0.8 vs. 4.4 +/- 0.3; P < 0.005) and triglycerides (22.2 +/- 3.4 vs. 8.5 +/- 1.0; P < 0.001). All of these differences were seen despite the fact that the two groups were similar in terms of age and body mass index. These results identify additional abnormalities in lipoprotein metabolism that may contribute to the increased risk of coronary heart disease seen in insulin-resistant, nondiabetic subjects (syndrome X).  相似文献   

12.
The Pro12Ala polymorphism of the peroxisome proliferator-activated receptor (PPARgamma(2)) is associated with reduced risk for type 2 diabetes. Although increased insulin sensitivity of glucose disposal and lipolysis has been reported, the exact mechanism by which the risk reduction is conferred is not clear. Because the conclusion of greater insulin sensitivity hinged upon lower insulin levels in some studies, it is possible that more efficient insulin clearance is involved. We therefore estimated insulin clearance during a euglycemic hyperinsulinemic clamp (insulin infusion rate divided by steady-state insulin concentration, 229 normal glucose tolerant [NGT] subjects), an oral glucose tolerance test (OGTT) (mean C-peptide divided by mean insulin concentrations, 406 NGT, 54 impaired glucose tolerant or mildly diabetic subjects), and a hyperglycemic clamp (120 minutes, 10 mmol/L, C-peptide divided by insulin in the steady-state, 56 NGT subjects). In the carriers of the Ala allele (prevalence approximately 24%), insulin clearance in all 3 protocols was significantly greater ( approximately 10%), than in controls. While the results from the euglycemic clamp reflect both hepatic and peripheral insulin clearance, those from the OGTT and the hyperglycemic clamp reflect mainly hepatic insulin extraction. Free fatty acids (FFA) during the steady state of the euglycemic hyperinsulinemic clamp were significantly lower in carriers of the Ala allele (26 +/- 5 micromol/L) than in controls (46 +/- 3 micromol/L, P =.02). In conclusion, the Pro12Ala polymorphism is associated with increased insulin clearance. This could be the result of reduced FFA delivery, which has been shown to improve hepatic insulin removal and sensitivity. Because PPARgamma(2) is mainly expressed in adipose tissue, one of the main regulatory effects of the polymorphism may well be the more efficient suppression of (possibly intra-abdominal) lipolysis.  相似文献   

13.
Measurements of fasting and postprandial plasma glucose, insulin, and free fatty acid (FFA) concentrations were made in 32 individuals--16 with normal glucose tolerance and 16 with non-insulin dependent diabetes mellitus (NIDDM)--further subdivided into two equal groups on the basis of body weight. In addition, endogenous glucose production was estimated in 32 subjects. Both fasting plasma glucose (251 +/- 14 v 86 +/- 1 mg/dL) and FFA (672 +/- 35 v 434 +/- 45 microEq/L) concentrations were significantly higher in patients with NIDDM (P less than .001), and the differences between normal and diabetic existed in both weight groups. Rates of endogenous glucose production were also significantly elevated (P less than .001) in diabetic (120 +/- 6 mg/m2 X min) as compared to normal subjects (73 +/- 6 mg/m2 X min), and these differences were also independent of degree of obesity. However, there were no significant differences between normal subjects and patients with NIDDM in either fasting or postprandial insulin concentrations. The similarity in insulin values for normal and diabetic subjects was true of both obesity groups, although insulin concentrations were somewhat higher in normal obese individuals as compared to their normal nonobese counterparts. Significant relationships were seen between values for fasting plasma glucose and endogenous glucose production (r = .89), fasting plasma glucose and fasting FFA (r = .64), and FFA levels and endogenous glucose production (r = .58) when all nonobese subjects were considered together. Essentially identical relationships, both qualitatively and quantitatively, were seen within the obese group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
As small increments in insulin concentration profoundly affect lipolysis, our goal was to describe the free fatty acid (FFA) profile during the frequently sampled intravenous glucose tolerance test (FSIGT) and determine if both endogenous and exogenous insulin influenced the FFA profile. Thirteen subjects had both a glucose-only (GO-FSIGT) and insulin-modified FSIGT (IM-FSIGT). Both protocols were of 6 hours duration. At baseline an intravenous glucose bolus (0.3 g/kg) was given. In the IM-FSIGT, insulin was infused from 20 to 25 minutes (4 mU/kg. min). Six additional subjects had both an IM-FSIGT and a normal saline study (NS-Study). For the NS-Study, normal saline solution was infused instead of glucose and insulin. Fasting glucose, insulin, FFA and epinephrine concentrations were similar for all tests. Endogenous insulin peaked at 4 +/- 1 minute in both FSIGTs. The mean calculated peak time of exogenous insulin in the IM-FSIGT was 26 +/- 1 minute. Glucose concentrations were lower and epinephrine concentrations higher in the IM-FSIGT versus GO-FSIGT. During the FSIGTs, the FFA time course revealed four distinct phases, which did not differ between protocols. In phase I (0 to 11 minutes), FFA levels remained near basal (491 +/- 183 micromol/L); in phase II (11 to 79 minutes), FFA levels declined achieving a nadir of 139 +/- 63 micromol/L; in phase III (79 to 188 minutes), FFA levels rose linearly and reattained basal levels; and in phase IV (188 to 360 minutes), FFA levels rose above basal and plateaued at 732 +/- 214 micromol/L (P <.001). In the NS-Study, FFA levels remained near baseline (388 +/- 118 mEq/L) until 180 minutes and then trended upward to 618 +/- 258 micromol/L at 360 minutes. FFA concentrations from 180 to 360 minutes did not differ in the IM-FSIGT versus NS-Study. As the 4 FFA phases did not differ between protocols, the insulin effect on FFA levels in the FSIGT can be attributed to endogenous insulin. But the similarity in FFA levels from 180 to 360 minutes in the IM-FSIGT and NS-Study suggests diurnal variation and not a dynamic related to insulin or the FSIGT protocol is responsible for the final suprabasal FFA plateau.  相似文献   

15.
This study was designed to quantitate glucose and FFA disposal by muscle tissue in patients with type II diabetes and to investigate the relationship between FFA metabolism and insulin resistance. The forearm perfusion technique was used in six normal subjects and two groups of normal weight diabetic patients, i.e. untreated (n = 8) and insulin-treated (n = 6). The latter received 2 weeks of intensive insulin therapy before the study. Plasma insulin levels were raised acutely [950-1110 pmol/L) (130-150 microU/mL)], while the blood glucose concentration was clamped at its basal value [4.9 +/- 0.1 (+/- SE) mmol/L in the normal subjects, 5.7 +/- 0.5 in the insulin-treated diabetic patients, and 5.5 +/- 0.3 in the untreated diabetic patients] by a variable glucose infusion. During the control period, arterial FFA concentrations were similar in the three groups, and they decreased to a comparable extent (less than 0.1 mmol/L) in response to insulin infusion. During the control period, the mean forearm FFA uptake was 2.5 +/- 0.5 mumol/L.min in the normal subjects, 2.9 +/- 0.5 in the insulin-treated patients, and 2.1 +/- 0.5 in the untreated diabetic patients. During the insulin infusion, FFA uptake was profoundly suppressed to similar levels in the normal subjects (0.9 +/- 0.1 mumol/L.min), the insulin-treated diabetic patients (1.1 +/- 0.3), and the untreated diabetic patients (0.9 +/- 0.1; P less than 0.001). Forearm glucose uptake was similar in the three groups during the control period. It increased during the insulin infusion, but the response in both diabetic groups was less than that in the normal subjects. The total amounts of glucose taken up by the forearm during the study period were 5.2 +/- 0.7, 2.6 +/- 0.5, and 2.1 +/- 0.6 mmol/L.min in the normal subjects, the insulin-treated diabetic patients, and the untreated diabetic patients, respectively (P less than 0.01). We conclude that 1) insulin-mediated glucose uptake by forearm skeletal muscle is markedly impaired in type II diabetes and improves only marginally after 2 weeks of intensive insulin therapy; 2) in contrast, no appreciable abnormality in forearm FFA metabolism is demonstrable in insulin-treated type II diabetic patients; and 3) FFA do not contribute to the insulin-treated skeletal muscle insulin resistance that occurs in patients with type II diabetes mellitus.  相似文献   

16.
Although moderate alcohol consumption has been associated with a decrease in plasma insulin concentrations, relatively few studies have been conducted to evaluate the effect of alcohol on insulin sensitivity, particularly in nondiabetic, insulin-resistant individuals. Because enhanced insulin sensitivity could contribute to the reported association between moderate alcohol consumption and reduced risk of heart disease and diabetes, we believed it is important to address this issue. Consequently, we evaluated the ability of moderate alcohol consumption to improve insulin sensitivity, as measured by determining the steady-state plasma glucose (SSPG) concentration during the insulin suppression test, in 20 nondiabetic, insulin-resistant individuals. Measurements were made of SSPG, glucose, insulin, and lipoprotein concentrations before and after consuming 30 g of alcohol for 8 weeks, either as vodka (n = 9) or red wine (n = 11). The SSPG concentrations (insulin resistance) decreased by approximately 8% in the total group (P = .08), and high-density lipoprotein cholesterol concentration increased by a mean of 0.09 mmol/L (P = .02). Trends were similar in individuals who consumed vodka or red wine. Men tended to have greater decline in SSPG and increase in high-density lipoprotein cholesterol compared with women. There were no other metabolic changes in fasting plasma glucose, insulin, and triglyceride concentrations. These data demonstrate that 8 weeks of moderate alcohol consumption had minimal impact on enhancing insulin sensitivity in nondiabetic, insulin-resistant individuals, raising questions as to the role, if any, of improved insulin sensitivity in the purported clinical benefits associated with moderate alcohol consumption.  相似文献   

17.
First-degree relatives of patients with NIDDM manifest severe insulin resistance despite normal glucose tolerance test. To examine the mechanisms underlying the normal glucose tolerance, we evaluated the serum glucose/C-peptide/insulin dynamics and free fatty acid (FFA) as well as substrate oxidation rates and energy expenditure (EE) (indirect calorimetry) in nine young offspring of NIDDM patients (mean +/- SEM age 30 +/- 2.3 years, body mass index 24.2 +/- 1.2 kg/m2). Nine age-, sex- and weight-matched, normal subjects with no family history of diabetes served as the controls. Metabolic parameters were measured before, during and after a two-step glucose infusion (2 and 4 mg/kg.min) for 120 min. Mean basal serum glucose, insulin and C-peptide levels were similar in both groups. During 2 mg/kg.min glucose infusion, mean serum insulin and C-peptide rose to significantly (P less than 0.05-0.02) greater levels in the offspring vs. controls, while serum glucose levels were similar. With the 4 mg/kg.min glucose infusion, mean serum glucose, insulin and C-peptide levels were significantly (P less than 0.02-0.001) greater in the offspring at 100-120 min. Isotopically-derived (D[3-3H]glucose), basal hepatic glucose output (HGO) was not significantly different between the offspring vs. controls (1.86 +/- 0.30 vs. 1.78 +/- 0.06 mg/kg.min). During glucose infusion, basal HGO was partially suppressed by 66% at 60 min and by 100% at 120 min in the offspring. In contrast, HGO was completely (100%) suppressed at both times in the controls. Following cessation of glucose infusion, HGO rose to 1.64 +/- 0.12 mg/kg.min in the offspring and 1.46 +/- 0.05 mg/kg.min in the controls (P less than 0.05) between 200 and 240 min. These were 88% and 82% of the respective basal HGO values. At low glucose infusion (t = 0-60 min), the mean absolute, non-oxidative glucose disposal remained 1.5-fold greater in the offspring while at higher glucose infusion, nonoxidative glucose metabolism was not different in both groups. Throughout the study period, oxidative glucose disposal rate was not significantly different in both groups. The mean basal FFA was significantly greater in the offspring vs. controls (865 +/- 57 vs. 642 +/- 45 microEq/l). It was appropriately suppressed during glucose infusion to a similar nadir in both groups (395 +/- 24 vs. 375 +/- 33 microEq/l). The mean basal lipid oxidation was also significantly greater in the offspring than controls (1.06 +/- 0.05 vs. 0.75 +/- 0.04 mg/kg.min, P less than 0.05).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Obese individuals tend to be both insulin resistant and at increased risk to develop cardiovascular disease (CVD). Given the increased prevalence of obesity in the US population, we thought it important to define the relationship between degree of obesity and insulin-mediated glucose disposal in the population at large, as well as the relationship between obesity, insulin resistance, and CVD risk in these individuals. To do this we quantified insulin-mediated glucose disposal in 465 healthy volunteers by determining the steady-state plasma glucose (SSPG) concentrations at the end of a 180-minute infusion of somatostatin, insulin, and glucose. Adiposity was estimated by body mass index (BMI) and the relationship between BMI and SSPG defined. In addition, a series of CVD risk factors were measured, including blood pressure, plasma glucose, and insulin concentrations, before and after 75 g of oral glucose, and fasting plasma lipid and lipoprotein concentrations. The results indicated that SSPG concentration and BMI were significantly correlated (r = 0.54, P >.001), and 36% of individuals in the most insulin-resistant tertile were obese (BMI >/= 30.0 kg/m(2)). However, 16% of those in the most insulin-resistant tertile were of normal weight (BMI < 25.0 kg/m(2)). Although CVD risk factors were accentuated in general with progressive increases in either BMI or SSPG concentration, important differences were noted. Thus, the higher the SSPG concentration, the more the increase in plasma glucose, insulin, and triglyceride (TG) concentrations, whereas the greater the BMI, the higher the low-density lipoprotein concentration. Furthermore, while CVD risk factors increased significantly with each tertile of insulin resistance, significant differences in CVD risk were only apparent when the lowest BMI tertile was compared with the other 2, with the values in the middle and upper BMI differing from each other. These results show that while BMI and insulin resistance are related, they are not synonymous, and that they make independent and different contributions to increasing CVD risk.  相似文献   

19.
CONTEXT: Plasma asymmetric dimethylarginine (ADMA) concentrations are higher in apparently healthy, insulin-resistant (IR) individuals and decrease in response to thiazolidenedione treatment. OBJECTIVE: The objective of the study was to determine whether ADMA concentrations would also fall when insulin sensitivity is enhanced with weight loss in obese individuals. DESIGN/SETTING/PATIENTS/INTERVENTION: Twenty obese women classified as IR or insulin sensitive (IS) on the basis of their steady-state plasma glucose (SSPG) concentration during the insulin suppression test underwent 12 wk of dietary weight loss. OUTCOME MEASURES: Plasma glucose, insulin, and ADMA were measured at baseline and after weight loss; change in insulin resistance was quantified by repeating the SSPG after the dietary intervention. RESULTS: Although weight loss was similar in the two groups, significant improvements in SSPG, glucose, and insulin concentrations were confined to the IR group. Baseline plasma ADMA concentrations (mean +/- sd) were higher in IR subjects (1.69 +/- 0.44 vs. 1.18 +/- 0.45 micromol/liter, P = 0.02) and decreased to 1.20 +/- 0.22 micromol/liter (P < 0.001) with weight loss. In contrast, ADMA levels did not change with a similar extent of weight loss in the IS group. CONCLUSION: Plasma ADMA levels are higher in obese, IR women than in equally obese, IS women and decrease in response to weight loss when associated with enhancement of insulin sensitivity.  相似文献   

20.
To compare the ability of insulin to regulate lipolysis in lean and obese subjects, free fatty acid (FFA) suppression was compared in groups of six lean [body mass index, 25.7 +/- 1.1 (+/-SEM) kg/m2] and six obese (body mass index, 48.8 +/- 3.1) Pima Indians during euglycemic hyperinsulinemic clamps which increased plasma insulin levels approximately 10, 20, and 100 microU/ml above basal concentrations. Basal FFA concentrations were slightly, but not significantly, elevated in the obese group (445 +/- 35 vs. 406 +/- 40 mu eg/liter). The mean decline in FFA from basal after 60-90 min of insulin infusion in the obese group was somewhat less than that in the lean group at the lower doses [67 +/- 23 vs. 132 +/- 32 (P = NS) during the 10-microU clamp, and 144 +/- 39 vs. 217 +/- 20 (P = NS) during the 20-microU clamp] and was almost identical in the two groups during the 100-microU clamp (226 +/- 29 vs. 229 +/- 51). In contrast, insulin-mediated glucose disposal at all insulin increments was much lower in the obese group (0.33 +/- 0.03, 0.56 +/- 0.04, and 1.39 +/- 0.04 mg/kg X min) than in the lean group (0.78 +/- 0.06, 1.67 +/- 0.12, and 4.96 +/- 0.26; P less than 0.001). The data suggest that although the obese subjects exhibited significant resistance to the glucoregulatory action of insulin, there were only small changes in insulin's antilipolytic effects. Relative maintenance of sensitivity to the antilipolytic action of insulin in the presence of resistance to insulin's glucoregulatory action could maintain fat deposition in obese individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号