首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Influenza infection predisposes the host to secondary bacterial pneumonia, which is a major cause of mortality during influenza epidemics. The molecular mechanisms underlying the bacterial coinfection remain elusive. Neuraminidase (NA) of influenza A virus (IAV) enhances bacterial adherence and also activates TGF-β. Because TGF-β can up-regulate host adhesion molecules such as fibronectin and integrins for bacterial binding, we hypothesized that activated TGF-β during IAV infection contributes to secondary bacterial infection by up-regulating these host adhesion molecules. Flow cytometric analyses of a human lung epithelial cell line indicated that the expression of fibronectin and α5 integrin was up-regulated after IAV infection or treatment with recombinant NA and was reversed through the inhibition of TGF-β signaling. IAV-promoted adherence of group A Streptococcus (GAS) and other coinfective pathogens that require fibronectin for binding was prevented significantly by the inhibition of TGF-β. However, IAV did not promote the adherence of Lactococcus lactis unless this bacterium expressed the fibronectin-binding protein of GAS. Mouse experiments showed that IAV infection enhanced GAS colonization in the lungs of wild-type animals but not in the lungs of mice deficient in TGF-β signaling. Taken together, these results reveal a previously unrecognized mechanism: IAV NA enhances the expression of cellular adhesins through the activation of TGF-β, leading to increased bacterial loading in the lungs. Our results suggest that TGF-β and cellular adhesins may be potential pharmaceutical targets for the prevention of coinfection.Secondary bacterial pneumonia or coinfection is the leading cause of viral-associated mortality during influenza A virus (IAV) pandemics (1, 2). The synergistic lethality of IAV and bacterial coinfection has been observed in animal models (3), suggesting a causative relationship between IAV infection and secondary bacterial pneumonia. Increased bacterial adherence post-IAV has been well recognized (4); however, the underlying mechanisms remain elusive. It has been demonstrated that IAV neuraminidase (NA) promotes the adherence of Streptococcus pneumoniae to lung epithelial cells, and viral NA activity has been associated with the levels of bacterial adherence and mortality in coinfected mice (5). In addition, inhibitors of NA, such as oseltamivir, reversed the effects of NA on bacterial adherence (6). These findings suggest that IAV NA contributes substantially to coinfection.ECM proteins, such as fibronectin (Fn), collagen, and laminin, interact with integrins, which transduce signals to regulate cell growth, differentiation, migration, and other cellular activities. ECM proteins and integrins are receptors that bind to microbial surface components recognizing adhesive matrix molecules (MSCRAMM) for bacterial adherence and invasion (4, 7). The expression of these cellular adhesion molecules can be up-regulated through TGF-β (8). This cytokine is secreted as an inactive or latent protein that subsequently is activated through various mechanisms (9). Schultz-Cherry and Hinshaw (10) reported that latent TGF-β is activated through IAV NA, and recently these authors demonstrated that viral NA triggers TGF-β activation through the removal of sialic acid motifs from latent TGF-β (11). These findings suggest that TGF-β might play a role in IAV-enhanced bacterial adherence.Adherence to host tissue is a critical initial step to establish infection. The most frequently observed bacteria in coinfections are S. pneumoniae, group A Streptococcus pyogenes (GAS), Staphylococcus aureus, and Haemophilus influenza (1, 12, 13). These bacteria require ECM components or integrins as receptors for adherence (1417). We previously demonstrated that the invasion of host cells by GAS is promoted through the TGF-β–enhanced expression of integrin and Fn (8). These observations suggest that the activation of TGF-β through IAV NA might promote the expression of cellular receptors, facilitating bacterial adherence and leading to increased host susceptibility to coinfection.The goal of the present study was to define the mechanisms underlying the increased bacterial adherence post-IAV infection. We showed that expression of α5 integrin/Fn was up-regulated in response to IAV infection or viral NA treatment and reversed through the inhibition of TGF-β signaling, indicating that IAV increased the expression of host receptors through NA-activated TGF-β. In addition, IAV-mediated bacterial adherence required the Fn-binding protein of GAS, and the adherence of coinfective pathogens to IAV-infected cells was impeded by TGF-β inhibitors, suggesting that the bacteria commonly observed in coinfection likely share a similar mechanism for initiating an infection. Interventions targeting these mechanisms might reduce the incidence and severity of postinfluenza bacterial pneumonia.  相似文献   

2.
The influenza A virus (IAV) genome is divided into eight distinct RNA segments believed to be copackaged into virions with nearly perfect efficiency. Here, we describe a mutation in IAV nucleoprotein (NP) that enhances replication and transmission in guinea pigs while selectively reducing neuraminidase (NA) gene segment packaging into virions. We show that incomplete IAV particles lacking gene segments contribute to the propagation of the viral population through multiplicity reactivation under conditions of widespread coinfection, which we demonstrate commonly occurs in the upper respiratory tract of guinea pigs. NP also dramatically altered the functional balance of the viral glycoproteins on particles by selectively decreasing NA expression. Our findings reveal novel functions for NP in selective control of IAV gene packaging and balancing glycoprotein expression and suggest a role for incomplete gene packaging during host adaptation and transmission.Seasonal influenza A virus (IAV) remains a major public health threat, causing tens of thousands of deaths each year in the United States alone (1). Morbidity and mortality rates can increase dramatically when a zoonotic strain adapts to circulate in humans, triggering a pandemic. The continuing toll exerted by IAV stems from its remarkable adaptability, which enables it to move between widely divergent host species and also evade herd immunity within each species. Defining the specific mechanisms that mediate IAV adaptation is essential to improving anti-IAV vaccines, therapeutics, and pandemic surveillance.The IAV genome consists of eight negative-sense RNA segments, each of which is required for productive infection. Genome segmentation complements the high mutation rate of IAV by facilitating reassortment, which can maximize positive intergenic epistasis (25) and allow selective elimination of segments with deleterious mutations (6, 7). Although reassortment is the most obvious and best-characterized benefit of segmentation, there are likely additional evolutionary advantages.Genome segmentation imposes the substantial constraint of maintaining a gene-packaging mechanism to produce fully infectious virions (8). For IAV, it is widely believed that a single copy of each segment is packaged into progeny virions with nearly perfect efficiency, resulting in an equimolar ratio of the segments at the population level (912). Confounding this model, we recently demonstrated that most IAV virions fail to express one or more gene products (13). This finding raises the possibility that in some circumstances incomplete influenza gene packaging is evolutionarily neutral and possibly even advantageous (14).The viral glycoproteins HA and neuraminidase (NA) are encoded by separate genome segments. HA attaches IAV to terminal sialic acid residues on the host cell surface, enabling viral entry. By hydrolyzing sialic acids, NA detaches budding virions and neutralizes HA-inhibiting glycoproteins and is required for the spread of IAV within and between hosts (1518). Because the specificity of HA and NA for different sialic acid linkages and contexts can vary substantially, functional alignment between the yin–yang activities of HA and NA represents a major determinant of host adaptation, transmissibility, and immune escape (1923). Independently controlling levels of HA and NA expression therefore may be critical for fine-tuning their functional balance.We previously described a single amino acid substitution (F346S) in the nucleoprotein (NP) of mouse-adapted A/Puerto Rico/8/34 (PR8), selected during serial passage in guinea pigs, which enhances replication in the guinea pig respiratory tract and enables contact transmission (4). Here, we report that this adaptive mutation selectively decreases both the expression and packaging of the NA gene segment, thus revealing a surprising role for NP in the regulation of glycoprotein function and demonstrating that decreased gene packaging can be associated with increased in vivo fitness and transmissibility.  相似文献   

3.
Influenza A viruses cause annual influenza epidemics and occasional severe pandemics. Their genome is segmented into eight fragments, which offers evolutionary advantages but complicates genomic packaging. The existence of a selective packaging mechanism, in which one copy of each viral RNA is specifically packaged into each virion, is suspected, but its molecular details remain unknown. Here, we identified a direct intermolecular interaction between two viral genomic RNA segments of an avian influenza A virus using in vitro experiments. Using silent trans-complementary mutants, we then demonstrated that this interaction takes place in infected cells and is required for optimal viral replication. Disruption of this interaction did not affect the HA titer of the mutant viruses, suggesting that the same amount of viral particles was produced. However, it nonspecifically decreased the amount of viral RNA in the viral particles, resulting in an eightfold increase in empty viral particles. Competition experiments indicated that this interaction favored copackaging of the interacting viral RNA segments. The interaction we identified involves regions not previously designated as packaging signals and is not widely conserved among influenza A virus. Combined with previous studies, our experiments indicate that viral RNA segments can promote the selective packaging of the influenza A virus genome by forming a sequence-dependent supramolecular network of interactions. The lack of conservation of these interactions might limit genetic reassortment between divergent influenza A viruses.Influenza A viruses (IAVs) belong to the Orthomyxoviridae family and cause annual influenza epidemics and occasional pandemics that represent a major threat for human health (1). The IAV genome consists of eight single-stranded negative-sense RNA segments (vRNAs), ranging from 890 to 2,341 nucleotides (nts) and packaged as viral ribonucleoproteins (vRNPs) containing multiple copies of nucleoprotein (NP) and a RNA-dependent RNA polymerase complex (24). The central coding region (in antisense orientation) of the vRNAs is flanked by short, segment-specific untranslated regions and conserved, partially complementary, terminal sequences that constitute the viral polymerase promoter and impose a panhandle structure to the vRNPs (49). The segmented nature of the IAV genome favors viral evolution by genetic reassortment. This process, which takes place when a single cell is coinfected by different IAVs, can generate pandemic viruses that represent a major threat for human health (1). However, segmentation complicates packaging of the viral genome into progeny virions.Although it had initially been proposed that the vRNAs are randomly packaged into budding viral particles, several lines of experiment suggest that IAVs specifically package one copy of each vRNA during viral assembly (7). First, electron microscopy and tomography revealed that the relative disposition of the eight vRNPs within viral particles is not random, even though some variability is tolerated, and they adopt a typical arrangement, with seven vRNPs surrounding a central one (1012). Second, genetic and biochemical analysis revealed that the vast majority of IAV particles contain exactly one copy of each vRNA (7, 13, 14). Third, analysis of defective interfering RNAs (7, 1517) and reverse genetic experiments (7, 1825) identified specific bipartite packaging signals, most often located within the ends of the coding regions, in each segment. Of note, the terminal promoters are crucial for RNA packaging (8), but they cannot confer specificity to the packaging process (7).A selective packaging mechanism requires the existence of direct RNA–RNA or indirect RNA–protein interactions between vRNAs (7). Because all vRNAs associate with the same viral proteins to form vRNPs and no cellular protein has been identified that would specifically recognize an IAV packaging signal, we (10) and others (7, 12, 19) hypothesized that direct interactions between vRNAs might ensure selective packaging. However, these interactions remain elusive. We recently showed that the eight vRNAs of both a human H3N2 IAV (10) and an avian H5N2 IAV (26) form specific networks of intermolecular interactions in vitro, but the functional relevance of these interactions was not demonstrated. Here, we used a biochemical approach to identify, at the nt level, an interaction between two in vitro transcribed vRNAs. Unexpectedly, this interaction occurs between regions not previously identified as packaging signals. We then demonstrated that this interaction is important for infectivity and packaging of the viral genome.  相似文献   

4.
Rickettsiae are responsible for some of the most devastating human infections. A high infectivity and severe illness after inhalation make some rickettsiae bioterrorism threats. We report that deletion of the exchange protein directly activated by cAMP (Epac) gene, Epac1, in mice protects them from an ordinarily lethal dose of rickettsiae. Inhibition of Epac1 suppresses bacterial adhesion and invasion. Most importantly, pharmacological inhibition of Epac1 in vivo using an Epac-specific small-molecule inhibitor, ESI-09, completely recapitulates the Epac1 knockout phenotype. ESI-09 treatment dramatically decreases the morbidity and mortality associated with fatal spotted fever rickettsiosis. Our results demonstrate that Epac1-mediated signaling represents a mechanism for host–pathogen interactions and that Epac1 is a potential target for the prevention and treatment of fatal rickettsioses.Rickettsiae are responsible for some of the most devastating human infections (14). It has been forecasted that temperature increases attributable to global climate change will lead to more widespread distribution of rickettsioses (5). These tick-borne diseases are caused by obligately intracellular bacteria of the genus Rickettsia, including Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever (RMSF) in the United States and Latin America (2, 3), and Rickettsia conorii, the causative agent of Mediterranean spotted fever endemic to southern Europe, North Africa, and India (6). A high infectivity and severe illness after inhalation make some rickettsiae (including Rickettsia prowazekii, R. rickettsii, Rickettsia typhi, and R. conorii) bioterrorism threats (7). Although the majority of rickettsial infections can be controlled by appropriate broad-spectrum antibiotic therapy if diagnosed early, up to 20% of misdiagnosed or untreated (1, 3) and 5% of treated RMSF cases (8) result in a fatal outcome caused by acute disseminated vascular endothelial infection and damage (9). Fatality rates as high as 32% have been reported in hospitalized patients diagnosed with Mediterranean spotted fever (10). In addition, strains of R. prowazekii resistant to tetracycline and chloramphenicol have been developed in laboratories (11). Disseminated endothelial infection and endothelial barrier disruption with increased microvascular permeability are the central features of SFG rickettsioses (1, 2, 9). The molecular mechanisms involved in rickettsial infection remain incompletely elucidated (9, 12). A comprehensive understanding of rickettsial pathogenesis and the development of novel mechanism-based treatment are urgently needed.Living organisms use intricate signaling networks for sensing and responding to changes in the external environment. cAMP, a ubiquitous second messenger, is an important molecular switch that translates environmental signals into regulatory effects in cells (13). As such, a number of microbial pathogens have evolved a set of diverse virulence-enhancing strategies that exploit the cAMP-signaling pathways of their hosts (14). The intracellular functions of cAMP are predominantly mediated by the classic cAMP receptor, protein kinase A (PKA), and the more recently discovered exchange protein directly activated by cAMP (Epac) (15). Thus, far, two isoforms, Epac1 and Epac2, have been identified in humans (16, 17). Epac proteins function by responding to increased intracellular cAMP levels and activating the Ras superfamily small GTPases Ras-proximate 1 and 2 (Rap1 and Rap2). Accumulating evidence demonstrates that the cAMP/Epac1 signaling axis plays key regulatory roles in controlling various cellular functions in endothelial cells in vitro, including cell adhesion (1821), exocytosis (22), tissue plasminogen activator expression (23), suppressor of cytokine signaling 3 (SOCS-3) induction (2427), microtubule dynamics (28, 29), cell–cell junctions, and permeability and barrier functions (3037). Considering the critical importance of endothelial cells in rickettsioses, we examined the functional roles of Epac1 in rickettsial pathogenesis in vivo, taking advantage of the recently generated Epac1 knockout mouse (38) and Epac-specific inhibitors (39, 40) generated from our laboratory. Our studies demonstrate that Epac1 plays a key role in rickettsial infection and represents a therapeutic target for fatal rickettsioses.  相似文献   

5.
Cells from all domains of life express glycan structures attached to lipids and proteins on their surface, called glycoconjugates. Cell-to-cell contact mediated by glycan:glycan interactions have been considered to be low-affinity interactions that precede high-affinity protein–glycan or protein–protein interactions. In several pathogenic bacteria, truncation of surface glycans, lipooligosaccharide (LOS), or lipopolysaccharide (LPS) have been reported to significantly reduce bacterial adherence to host cells. Here, we show that the saccharide component of LOS/LPS have direct, high-affinity interactions with host glycans. Glycan microarrays reveal that LOS/LPS of four distinct bacterial pathogens bind to numerous host glycan structures. Surface plasmon resonance was used to determine the affinity of these interactions and revealed 66 high-affinity host–glycan:bacterial–glycan pairs with equilibrium dissociation constants (KD) ranging between 100 nM and 50 µM. These glycan:glycan affinity values are similar to those reported for lectins or antibodies with glycans. Cell assays demonstrated that glycan:glycan interaction-mediated bacterial adherence could be competitively inhibited by either host cell or bacterial glycans. This is the first report to our knowledge of high affinity glycan:glycan interactions between bacterial pathogens and the host. The discovery of large numbers of glycan:glycan interactions between a diverse range of structures suggests that these interactions may be important in all biological systems.Host surface glycosylation is ubiquitous and is targeted by pathogenic bacteria, viruses, fungi and parasites for adherence and toxin binding and by glycosidases (1). Escherichia coli type 1 fimbriae, FimH, is one of the most widely studied glycan-recognizing protein adhesins, with specificity for monomannose to oligomannose structures with the variability of the mannose structure bound leading to different tissue tropism (2). Other glycan-recognizing adhesins expressed by bacteria include the following: Pseudomonas aeruginosa lectins 1 and 2 (PA-IL and PA-IIL) that have specificity for galactose and fucose, respectively (3); Helicobacter pylori SabA, specific for sialic acid containing glycoconjugates including sialyLewis X; and BabA-specific for fucosylated glycoconjugates including Lewis B (4, 5). Although there are numerous known glycan binding adhesins, the adhesins of some bacteria that interact with host surface glycans remain unknown.Direct interactions between surface glycans (glycan:glycan interactions) have been reported in sea sponges as heterogenous glycan interactions, and in mouse embryo development and cancer where homodimers of Lewis X (LeX) or ganglioside structures play a role in cell adhesion and growth factor receptor interactions (6, 7). Outside of these reports, glycan:glycan interactions, when noted, have generally been considered to be low-affinity, weak interactions (8) that precede high-affinity protein:glycan or protein:protein interactions (1, 2, 5, 9).Interestingly, there are specific reports of several bacteria expressing truncated surface polysaccharides and oligosaccharides that are significantly less adherent than wild-type equivalents (10, 11), or that their adherence can be blocked by extracted LOS/LPS (10), indicating a role for bacterial surface glycans in adherence to host cells. This decreased adherence of rough strains or blocking of adherence using the free lipooligosaccharide (LOS)/lipopolysaccharide (LPS) in both cell-based and animal infection models has been noted in a range of Gram-negative bacteria including Campylobacter jejuni, Haemophilus influenzae, Salmonella typhi, Salmonella enterica serovar Typhimurium, E. coli, Shigella flexneri, Pseudomonas aeruginosa, and Serratia marcescens (10, 1220). Blocking of surface glycans with antibodies has also been shown to inhibit adherence and invasion of cell layers in a range of bacteria, including S. flexneri (2123). The cellular receptors for adherence via these bacterial surface glycans have not been identified. To address the hypothesis that there may be direct interactions between bacterial and host glycans that mediate adherence, we conducted glycan microarray screening of four different species of pathogenic bacteria with well-characterized surface glycan structures: C. jejuni, H. influenzae, S. typhimurium, and S. flexneri. These studies included whole live bacteria expressing wild-type and LOS/LPS truncation mutants, as well as purified LOS/LPS from the same set of bacteria.  相似文献   

6.
7.
8.
9.
One of the main hurdles for the development of an effective and broadly protective vaccine against nonencapsulated isolates of Haemophilus influenzae (NTHi) lies in the genetic diversity of the species, which renders extremely difficult the identification of cross-protective candidate antigens. To assess whether a population structure of NTHi could be defined, we performed genome sequencing of a collection of diverse clinical isolates representative of both carriage and disease and of the diversity of the natural population. Analysis of the distribution of polymorphic sites in the core genome and of the composition of the accessory genome defined distinct evolutionary clades and supported a predominantly clonal evolution of NTHi, with the majority of genetic information transmitted vertically within lineages. A correlation between the population structure and the presence of selected surface-associated proteins and lipooligosaccharide structure, known to contribute to virulence, was found. This high-resolution, genome-based population structure of NTHi provides the foundation to obtain a better understanding, of NTHi adaptation to the host as well as its commensal and virulence behavior, that could facilitate intervention strategies against disease caused by this important human pathogen.The Gram-negative bacterium Haemophilus influenzae colonizes the human nasopharynx and can cause a spectrum of diseases (1). Members of this species can be separated into those that are encapsulated and those that do not express a capsule, so-called nontypeable H. influenzae (NTHi) (2). Encapsulated strains belong to one of six distinct capsular serotypes (a, b, c, d, e, and f) of which type b strains are notoriously associated with invasive disease (3). NTHi are associated with common pediatric diseases, including otitis media (OM) (4, 5), and with exacerbations of chronic obstructive pulmonary disease (COPD) in adults (6).Although capsule-based vaccines against serotype b strains exist, NTHi vaccine candidates containing outer-membrane proteins have been unsuccessful due to their inability to induce functional antibodies to epitopes representative of the phenotypic variation within the population, resulting in poor coverage against heterologous strains (79). To devise containment strategies based on vaccination, it is therefore essential to characterize the population structure of the NTHi strains and their genomic variability. Classification schema based on ribotyping (10), multilocus enzyme electrophoresis (11, 12), and multilocus sequence typing (MLST) (1315) have shown that isolates of encapsulated H. influenzae could be classified into a small number of monophyletic lineages, with reduced diversity (12, 16) and genetically distinct from NTHi strains, that constitute the vast majority of the circulating population (11). Despite these efforts, there is still a substantial lack of knowledge regarding the structure of the NTHi population, mainly attributable to the impact that homologous recombination has on the evolution of the genomes of this pathogen, which is higher in NTHi compared with capsulated strains (15). So far, data on isolates from carriers and those with disease have shown little correlation between MLST typing and the clinical source or the geographical origin of the strains studied (17).Whole-genome sequencing can be used to characterize the population structure of large collections of isolates of bacterial pathogens (1820) and to study the microevolution of virulent lineages (21, 22). Here, we use whole-genome sequencing of NTHi isolates of diverse clinical and geographical origin to assess population structure. Analysis of single nucleotide polymorphisms (SNPs) revealed six statistically supported clusters of isolates that correlated with the composition of the accessory genome. Our data lay the foundation for a comprehensive definition of the population structure of NTHi that can underpin the development of strategies to fight NTHi-associated disease.  相似文献   

10.
11.
12.
13.
Symbiotic microbial communities may interact with infectious pathogens sharing a common host. The microbiome may limit pathogen infection or, conversely, an invading pathogen can disturb the microbiome. Documentation of such relationships during naturally occurring disease outbreaks is rare, and identifying causal links from field observations is difficult. This study documented the effects of an amphibian skin pathogen of global conservation concern [the chytrid fungus Batrachochytrium dendrobatidis (Bd)] on the skin-associated bacterial microbiome of the endangered frog, Rana sierrae, using a combination of population surveys and laboratory experiments. We examined covariation of pathogen infection and bacterial microbiome composition in wild frogs, demonstrating a strong and consistent correlation between Bd infection load and bacterial community composition in multiple R. sierrae populations. Despite the correlation between Bd infection load and bacterial community composition, we observed 100% mortality of postmetamorphic frogs during a Bd epizootic, suggesting that the relationship between Bd and bacterial communities was not linked to variation in resistance to mortal disease and that Bd infection altered bacterial communities. In a controlled experiment, Bd infection significantly altered the R. sierrae microbiome, demonstrating a causal relationship. The response of microbial communities to Bd infection was remarkably consistent: Several bacterial taxa showed the same response to Bd infection across multiple field populations and the laboratory experiment, indicating a somewhat predictable interaction between Bd and the microbiome. The laboratory experiment demonstrates that Bd infection causes changes to amphibian skin bacterial communities, whereas the laboratory and field results together strongly support Bd disturbance as a driver of bacterial community change during natural disease dynamics.Symbiotic interactions between microbes and multicellular organisms are ubiquitous. In recent years, research to understand the complex microbial communities living in or on multicellular organisms (termed the microbiome) has sparked fundamental changes in our understanding of the biology of metazoans (15). The microbiome can affect host health directly by influencing metabolism (6), development (7), inflammation (8), or behavior (9), but it may also influence host health indirectly through interactions with infectious pathogens. The microbiome may interact with pathogens through competition for resources, release of antimicrobial compounds, contact-dependent antagonism, or modulation of the host immune response (10), and an “imbalanced” microbiome may leave the host more susceptible to pathogen infection (11, 12). At the same time, an invading pathogen may disrupt the microbiome (10, 1315). Thus, the microbiome may play a role in disease resistance, or may itself be disturbed or altered by invading pathogens. Although a wealth of recent research has described associations between microbiome composition and a variety of syndromes in both humans and animals (1625), documentation of microbiome responses to natural epidemics of known infectious pathogens is rare.Chytridiomycosis is an emerging infectious disease of amphibians caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd). Bd is an aquatic fungus that infects the skin of amphibians and disrupts osmoregulation, a critical function of amphibian skin (26). Chytridiomycosis can be fatal, and the severity of disease symptoms has been linked to Bd load, which is a measure of the density of Bd cells infecting the host (27, 28). Bd has a broad host range spanning hundreds of amphibian species, and has been implicated in population extinctions and species declines worldwide (2934). Efforts to understand and mitigate the effects of Bd have led to research examining the potential for symbiotic bacteria to increase resistance to infection by the pathogen (35, 36). Bacterial species isolated from the skin of amphibians have been shown to inhibit the growth of Bd and other fungal pathogens in culture (3739), possibly by producing antifungal metabolites (40, 41). In a controlled laboratory experiment, inundation of Rana muscosa with the bacterium Janthinobacterium lividium protected frogs from subsequent Bd infection (42). These and other studies highlight the possible role of bacteria in resistance to chytridiomycosis, but critical questions remain. First, most research has focused on the ability of cultured bacteria to prevent Bd infection, whereas very little is known about whether Bd infection alters the diverse skin microbiome. Examining this latter concept is critical both to a basic understanding of how the microbiome interacts with pathogens and to conservation efforts because Bd-induced perturbations of the microbiome could undermine attempts to mitigate effects of Bd infection through augmentation with particular bacteria. A second knowledge gap is the paucity of comprehensive culture-independent assessments of the amphibian microbiome, which are important because the vast majority of environmental and symbiotic microbes are not readily cultured, and culture-based methods can lead to severe underestimates of diversity and biased assessment of community composition (43). Few studies have applied next-generation sequencing methods to characterize the microbial communities on amphibian skin (4447), and, to our knowledge, none have done so in the context of Bd infection. A final challenge to understanding interactions between Bd and bacteria stems from the difficulties of drawing direct connections between laboratory and field studies. Laboratory studies are essential for definitive identification of cause and effect. However, complex natural microbiomes can be impossible to recreate in the laboratory, and field studies are needed to show whether processes identified in the laboratory are relevant in nature.We present paired laboratory and field studies using high-throughput 16S amplicon pyrosequencing both to document associations between Bd infection and the amphibian skin bacterial microbiome in nature and to deduce causal relationships in an experiment. Our work centers on the Sierra Nevada yellow-legged frog, Rana sierrae, which is severely threatened by, and has already suffered drastic declines due to, Bd (28, 48). We surveyed frogs from four distinct R. sierrae populations to test if differences in skin bacterial communities are associated with the intensity of pathogen infection. We then conducted a laboratory experiment to establish causal relationships underlying Bd-bacterial community associations. The data establish a strong effect of Bd infection on the composition of the amphibian skin bacterial microbiome that is consistent between the laboratory experiment and naturally occurring Bd dynamics in wild frog populations.  相似文献   

14.
Prochlorococcus is an abundant marine cyanobacterium that grows rapidly in the environment and contributes significantly to global primary production. This cyanobacterium coexists with many cyanophages in the oceans, likely aided by resistance to numerous co-occurring phages. Spontaneous resistance occurs frequently in Prochlorococcus and is often accompanied by a pleiotropic fitness cost manifested as either a reduced growth rate or enhanced infection by other phages. Here, we assessed the fate of a number of phage-resistant Prochlorococcus strains, focusing on those with a high fitness cost. We found that phage-resistant strains continued evolving toward an improved growth rate and a narrower resistance range, resulting in lineages with phenotypes intermediate between those of ancestral susceptible wild-type and initial resistant substrains. Changes in growth rate and resistance range often occurred in independent events, leading to a decoupling of the selection pressures acting on these phenotypes. These changes were largely the result of additional, compensatory mutations in noncore genes located in genomic islands, although genetic reversions were also observed. Additionally, a mutator strain was identified. The similarity of the evolutionary pathway followed by multiple independent resistant cultures and clones suggests they undergo a predictable evolutionary pathway. This process serves to increase both genetic diversity and infection permutations in Prochlorococcus populations, further augmenting the complexity of the interaction network between Prochlorococcus and its phages in nature. Last, our findings provide an explanation for the apparent paradox of a multitude of resistant Prochlorococcus cells in nature that are growing close to their maximal intrinsic growth rates.Large bacterial populations are present in the oceans, playing important roles in primary production and the biogeochemical cycling of matter. These bacterial communities are highly diverse (14) yet form stable and reproducible bacterial assemblages under similar environmental conditions (57).These bacteria are present together with high abundances of viruses (phages) that have the potential to infect and kill them (811). Although studied only rarely in marine organisms (1216), this coexistence is likely to be the result of millions of years of coevolution between these antagonistic interacting partners, as has been well documented for other systems (1720). From the perspective of the bacteria, survival entails the selection of cells that are resistant to infection, preventing viral production and enabling the continuation of the cell lineage. Resistance mechanisms include passively acquired spontaneous mutations in cell surface molecules that prevent phage entry into the cell and other mechanisms that actively terminate phage infection intracellularly, such as restriction–modification systems and acquired resistance by CRISPR-Cas systems (21, 22). Mutations in the phage can also occur that circumvent these host defenses and enable the phage to infect the recently emerged resistant bacterium (23).Acquisition of resistance by bacteria is often associated with a fitness cost. This cost is frequently, but not always, manifested as a reduction in growth rate (2427). Recently, an additional type of cost of resistance was identified, that of enhanced infection whereby resistance to one phage leads to greater susceptibility to other phages (14, 15, 28).Over the years, a number of models have been developed to explain coexistence in terms of the above coevolutionary processes and their costs (16, 2932). In the arms race model, repeated cycles of host mutation and virus countermutation occur, leading to increasing breadths of host resistance and viral infectivity. However, experimental evidence generally indicates that such directional arms race dynamics do not continue indefinitely (25, 33, 34). Therefore, models of negative density-dependent fluctuations due to selective trade-offs, such as kill-the-winner, are often invoked (20, 33, 35, 36). In these models, fluctuations are generally considered to occur between rapidly growing competition specialists that are susceptible to infection and more slowly growing resistant strains that are considered defense specialists. Such negative density-dependent fluctuations are also likely to occur between strains that have differences in viral susceptibility ranges, such as those that would result from enhanced infection (30).The above coevolutionary processes are considered to be among the major mechanisms that have led to and maintain diversity within bacterial communities (32, 35, 3739). These processes also influence genetic microdiversity within populations of closely related bacteria. This is especially the case for cell surface-related genes that are often localized to genomic islands (14, 40, 41), regions of high gene content, and gene sequence variability among members of a population. As such, populations in nature display an enormous degree of microdiversity in phage susceptibility regions, potentially leading to an assortment of subpopulations with different ranges of susceptibility to coexisting phages (4, 14, 30, 40).Prochlorococcus is a unicellular cyanobacterium that is the numerically dominant photosynthetic organism in vast oligotrophic expanses of the open oceans, where it contributes significantly to primary production (42, 43). Prochlorococcus consists of a number of distinct ecotypes (4446) that form stable and reproducible population structures (7). These populations coexist in the oceans with tailed double-stranded DNA phage populations that infect them (4749).Previously, we found that resistance to phage infection occurs frequently in two high-light–adapted Prochlorococcus ecotypes through spontaneous mutations in cell surface-related genes (14). These genes are primarily localized to genomic island 4 (ISL4) that displays a high degree of genetic diversity in environmental populations (14, 40). Although about a third of Prochlorococcus-resistant strains had no detectable associated cost, the others came with a cost manifested as either a slower growth rate or enhanced infection by other phages (14). In nature, Prochlorococcus seems to be growing close to its intrinsic maximal growth rate (5052). This raises the question as to the fate of emergent resistant Prochlorococcus lineages in the environment, especially when resistance is accompanied with a high growth rate fitness cost.To begin addressing this question, we investigated the phenotype of Prochlorococcus strains with time after the acquisition of resistance. We found that resistant strains evolved toward an improved growth rate and a reduced resistance range. Whole-genome sequencing and PCR screening of many of these strains revealed that these phenotypic changes were largely due to additional, compensatory mutations, leading to increased genetic diversity. These findings suggest that the oceans are populated with rapidly growing Prochlorococcus cells with varying degrees of resistance and provide an explanation for how a multitude of presumably resistant Prochlorococcus cells are growing close to their maximal known growth rate in nature.  相似文献   

15.
16.
17.
18.
We report on crystal structures of ternary Thermus thermophilus Argonaute (TtAgo) complexes with 5′-phosphorylated guide DNA and a series of DNA targets. These ternary complex structures of cleavage-incompatible, cleavage-compatible, and postcleavage states solved at improved resolution up to 2.2 Å have provided molecular insights into the orchestrated positioning of catalytic residues, a pair of Mg2+ cations, and the putative water nucleophile positioned for in-line attack on the cleavable phosphate for TtAgo-mediated target cleavage by a RNase H-type mechanism. In addition, these ternary complex structures have provided insights into protein and DNA conformational changes that facilitate transition between cleavage-incompatible and cleavage-compatible states, including the role of a Glu finger in generating a cleavage-competent catalytic Asp-Glu-Asp-Asp tetrad. Following cleavage, the seed segment forms a stable duplex with the complementary segment of the target strand.Argonaute (Ago) proteins, critical components of the RNA-induced silencing complex, play a key role in guide strand-mediated target RNA recognition, cleavage, and product release (reviewed in refs. 13). Ago proteins adopt a bilobal scaffold composed of an amino terminal PAZ-containing lobe (N and PAZ domains), a carboxyl-terminal PIWI-containing lobe (Mid and PIWI domains), and connecting linkers L1 and L2. Ago proteins bind guide strands whose 5′-phosphorylated and 3′-hydroxyl ends are anchored within Mid and PAZ pockets, respectively (47), with the anchored guide strand then serving as a template for pairing with the target strand (8, 9). The cleavage activity of Ago resides in the RNase H fold adopted by the PIWI domain (10, 11), whereby the enzyme’s Asp-Asp-Asp/His catalytic triad (1215) initially processes loaded double-stranded siRNAs by cleaving the passenger strand and subsequently processes guide-target RNA duplexes by cleaving the target strand (reviewed in refs. 1618). Such Mg2+ cation-mediated endonucleolytic cleavage of the target RNA strand (19, 20) resulting in 3′-OH and 5′-phosphate ends (21) requires Watson–Crick pairing of the guide and target strands spanning the seed segment (positions 2–2′ to 8–8′) and the cleavage site (10′–11′ step on the target strand) (9). Insights into target RNA recognition and cleavage have emerged from structural (9), chemical (22), and biophysical (23) experiments.Notably, bacterial and archaeal Ago proteins have recently been shown to preferentially bind 5′-phosphoryated guide DNA (14, 15) and use an activated water molecule as the nucleophile (reviewed in ref. 24) to cleave both RNA and DNA target strands (9). Structural studies have been undertaken on bacterial and archaeal Ago proteins in the free state (10, 15) and bound to a 5′-phosphorylated guide DNA strand (4) and added target RNA strand (8, 9). The structural studies of Thermus thermophilus Ago (TtAgo) ternary complexes have provided insights into the nucleation, propagation, and cleavage steps of target RNA silencing in a bacterial system (9). These studies have highlighted the conformational transitions on proceeding from Ago in the free state to the binary complex (4) to the ternary complexes (8, 9) and have emphasized the requirement for a precisely aligned Asp-Asp-Asp triad and a pair of Mg2+ cations for cleavage chemistry (9), typical of RNase H fold-mediated enzymes (24, 25). Structural studies have also been extended to binary complexes of both human (5, 6) and yeast (7) Agos bound to 5′-phosphorylated guide RNA strands.Despite these singular advances in the structural biology of RNA silencing, further progress was hampered by the modest resolution (2.8- to 3.0-Å resolution) of TtAgo ternary complexes with guide DNA (4) and added target RNAs (8, 9). This precluded identification of water molecules coordinated with the pair of Mg2+ cations, including the key water that acts as a nucleophile and targets the cleavable phosphate between positions 10′-11′ on the target strand. We have now extended our research to TtAgo ternary complexes with guide DNA and target DNA strands, which has permitted us to grow crystals of ternary complexes that diffract to higher (2.2–2.3 Å) resolution in the cleavage-incompatible, cleavage-compatible, and postcleavage steps. These high-resolution structures of TtAgo ternary complexes provide snapshots of distinct key steps in the catalytic cleavage pathway, opening opportunities for experimental probing into DNA target cleavage as a defense mechanism against plasmids and possibly other mobile elements (26, 27).  相似文献   

19.
Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disease characterized by extraskeletal bone formation through endochondral ossification. FOP patients harbor point mutations in ACVR1 (also known as ALK2), a type I receptor for bone morphogenetic protein (BMP). Two mechanisms of mutated ACVR1 (FOP-ACVR1) have been proposed: ligand-independent constitutive activity and ligand-dependent hyperactivity in BMP signaling. Here, by using FOP patient-derived induced pluripotent stem cells (FOP-iPSCs), we report a third mechanism, where FOP-ACVR1 abnormally transduces BMP signaling in response to Activin-A, a molecule that normally transduces TGF-β signaling but not BMP signaling. Activin-A enhanced the chondrogenesis of induced mesenchymal stromal cells derived from FOP-iPSCs (FOP-iMSCs) via aberrant activation of BMP signaling in addition to the normal activation of TGF-β signaling in vitro, and induced endochondral ossification of FOP-iMSCs in vivo. These results uncover a novel mechanism of extraskeletal bone formation in FOP and provide a potential new therapeutic strategy for FOP.Heterotopic ossification (HO) is defined as bone formation in soft tissue where bone normally does not exist. It can be the result of surgical operations, trauma, or genetic conditions, one of which is fibrodysplasia ossificans progressiva (FOP). FOP is a rare genetic disease characterized by extraskeletal bone formation through endochondral ossification (16). The responsive mutation for classic FOP is 617G > A (R206H) in the intracellular glycine- and serine-rich (GS) domain (7) of ACVR1 (also known as ALK2), a type I receptor for bone morphogenetic protein (BMP) (810). ACVR1 mutations in atypical FOP patients have been found also in other amino acids of the GS domain or protein kinase domain (11, 12). Regardless of the mutation site, mutated ACVR1 (FOP-ACVR1) has been shown to activate BMP signaling without exogenous BMP ligands (constitutive activity) and transmit much stronger BMP signaling after ligand stimulation (hyperactivity) (1225).To reveal the molecular nature of how FOP-ACVR1 activates BMP signaling, cells overexpressing FOP-ACVR1 (1220), mouse embryonic fibroblasts derived from Alk2R206H/+ mice (21, 22), and cells from FOP patients, such as stem cells from human exfoliated deciduous teeth (23), FOP patient-derived induced pluripotent stem cells (FOP-iPSCs) (24, 25) and induced mesenchymal stromal cells (iMSCs) from FOP-iPSCs (FOP-iMSCs) (26) have been used as models. Among these cells, Alk2R206H/+ mouse embryonic fibroblasts and FOP-iMSCs are preferred because of their accessibility and expression level of FOP-ACVR1 using an endogenous promoter. In these cells, however, the constitutive activity and hyperactivity is not strong (within twofold normal levels) (22, 26). In addition, despite the essential role of BMP signaling in development (2731), the pre- and postnatal development and growth of FOP patients are almost normal, and HO is induced in FOP patients after physical trauma and inflammatory response postnatally, not at birth (16). These observations led us to hypothesize that FOP-ACVR1 abnormally responds to noncanonical BMP ligands induced by trauma or inflammation.Here we show that FOP-ACVR1 transduced BMP signaling in response to Activin-A, a molecule that normally transduces TGF-β signaling (10, 3234) and contributes to inflammatory responses (35, 36). Our in vitro and in vivo data indicate that activation of TGF-β and aberrant BMP signaling by Activin-A in FOP-cells is one cause of HO in FOP. These results suggest a possible application of anti–Activin-A reagents as a new therapeutic tool for FOP.  相似文献   

20.
Cystic fibrosis (CF) is an autosomal recessive genetic disorder caused by mutations in the gene encoding for the anion channel cystic fibrosis transmembrane conductance regulator (CFTR). Several organs are affected in CF, but most of the morbidity and mortality comes from lung disease. Recent data show that the initial consequence of CFTR mutation is the failure to eradicate bacteria before the development of inflammation and airway remodeling. Bacterial clearance depends on a layer of airway surface liquid (ASL) consisting of both a mucus layer that traps, kills, and inactivates bacteria and a periciliary liquid layer that keeps the mucus at an optimum distance from the underlying epithelia, to maximize ciliary motility and clearance of bacteria. The airways in CF patients and animal models of CF demonstrate abnormal ASL secretion and reduced antimicrobial properties. Thus, it has been proposed that abnormal ASL secretion in response to bacteria may facilitate the development of the infection and inflammation that characterize CF airway disease. Whether the inhalation of bacteria triggers ASL secretion, and the role of CFTR, have never been tested, however. We developed a synchrotron-based imaging technique to visualize the ASL layer and measure the effect of bacteria on ASL secretion. We show that the introduction of Pseudomonas aeruginosa and other bacteria into the lumen of intact isolated swine tracheas triggers CFTR-dependent ASL secretion by the submucosal glands. This response requires expression of the bacterial protein flagellin. In patients with CF, the inhalation of bacteria would fail to trigger ASL secretion, leading to infection and inflammation.The human airway is normally protected from injury caused by microbial colonization and viral infection by a complex immune defense system. The cornerstone of airway defense is mucociliary clearance. Particles, including bacteria, are captured in mucus and removed by an efficient mucociliary clearance mechanism. Airway host defense is compromised in individuals with cystic fibrosis (CF), whose lungs are thus prone to chronic bacterial infections, frequently with Pseudomonas aeruginosa, and inflammation that may eventually cause lung tissue damage and respiratory failure (1, 2). The events leading from cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation to airway disease are incompletely understood, but accumulating evidence suggests that CF airway disease results from abnormal microbial clearance (3, 4).Although chronic inflammation is a major aspect of CF lung disease, recent data show that the initial consequence of CFTR mutation is impaired ability to eradicate bacteria. In previous studies, lungs from animal models of CF (F508del and CFTR−/− pigs) (5, 6) did not eradicate bacteria as effectively as lungs from WT littermates before the development of inflammation (3, 4). These results suggest that impaired bacterial elimination is the pathogenic event that initiates a cascade of inflammation and pathology in CF lungs (4).The failure to clear bacteria likely results from abnormal airway surface liquid (ASL) secretion and properties (610). The ASL consists of a layer of mucus that traps inhaled particles and a periciliary liquid layer that keeps the mucus an optimum distance from the underlying epithelia to maximize ciliary mobility (10, 11). The mucus layer is a complex mixture of water, salts, gel-forming mucins, and antimicrobial compounds that helps inactivate, kill, and trap pathogens and facilitates mucociliary clearance (10, 11). In CF airways, both the bacteria-killing properties and ASL secretion are abnormal (3, 9). The airway liquid produced by CFTR−/− swine has weaker bactericidal properties compared with that produced by WT littermates, owing to abnormal pH (3, 4). In addition, human CF airways, 1-d-old CF piglets, newborn CFTR−/− ferrets, and CFTR−/− mice fail to respond to stimulatory signals that normally elicit strong ASL secretion (69). Consequently, it has been proposed that abnormal secretion of fluid and mucin in response to bacterial infection may contribute to the pathogenesis of CF lung disease (710, 1215); however, the central questions of whether bacteria trigger ASL secretion in the airways, and the role of CFTR in such a process, have not been explored previously, owing to the lack of a suitable experimental technique.We have developed a novel synchrotron-based method to measure the height of the ASL layer covering the epithelium of intact, isolated swine trachea. We show that the introduction of P. aeruginosa into the lumen of intact isolated swine tracheas triggers CFTR-dependent ASL secretion by the submucosal glands. This is a local response that affects only the glands in close proximity to the bacteria and requires expression of the bacterial protein flagellin. We also show that Staphylococcus aureus and Haemophilus influenzae trigger CFTR-dependent ASL secretion, indicating that this response is not unique to P. aeruginosa. In patients with CF, the inhalation of bacteria would fail to trigger ASL secretion by submucosal glands, facilitating infection and inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号