首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A significant portion of ubiquitin (Ub)-dependent cellular protein quality control takes place at the endoplasmic reticulum (ER) in a process termed “ER-associated degradation” (ERAD). Yeast ERAD employs two integral ER membrane E3 Ub ligases: Hrd1 (also termed “Der3”) and Doa10, which recognize a distinct set of substrates. However, both E3s bind to and activate a common E2-conjugating enzyme, Ubc7. Here we describe a novel feature of the ERAD system that entails differential activation of Ubc7 by its cognate E3s. We found that residues within helix α2 of Ubc7 that interact with donor Ub were essential for polyUb conjugation. Mutagenesis of these residues inhibited the in vitro activity of Ubc7 by preventing the conjugation of donor Ub to the acceptor. Unexpectedly, Ub chain formation by mutant Ubc7 was restored selectively by the Hrd1 RING domain but not by the Doa10 RING domain. In agreement with the in vitro data, Ubc7 α2 helix mutations selectively impaired the in vivo degradation of Doa10 substrates but had no apparent effect on the degradation of Hrd1 substrates. To our knowledge, this is the first example of distinct activation requirements of a single E2 by two E3s. We propose a model in which the RING domain activates Ub transfer by stabilizing a transition state determined by noncovalent interactions between the α2 helix of Ubc7 and Ub and that this transition state may be stabilized further by some E3 ligases, such as Hrd1, through additional interactions outside the RING domain.The ubiquitin (Ub) conjugation machinery employs three basic enzymatic activities, E1, E2, and E3, that work in concert to transfer Ub to client substrates and to form polyUb chains (1). Initially, an E1 Ub-activating enzyme forms a high-energy thioester bond with the C terminus of Ub, after which the Ub molecule is transferred to the active-site Cys of an E2 Ub-conjugating (Ubc) enzyme. The Ub-charged E2 binds to an E3 ligase and catalyzes the transfer of Ub to the ε-amino group of a Lys side chain within the substrate. Additional Ubs then can be ligated to the initial Ub molecule through sequential ubiquitylation cycles, ultimately forming a polyUb chain. Ub can be conjugated to itself via specific Lys residues, resulting in diverse types of chain linkages. Linkage through Lys48 is linked primarily to substrate degradation. Consequently, protein substrates carrying Lys48-linked polyUb chains bind to and are degraded by 26S proteasome.Although it is well established that E3 ligases activate Ub ligation by E2s via their RING domains, very little is actually known about the underlying regulatory mechanism. Several recent studies determined the structure of RING domain complexes with Ub-charged UbcH5 (24). In one of these studies, the structure in solution of Ub-charged UbcH5c together with the mouse E3 ligase E4B U-box domain revealed that Ub can adopt an array of “open” and “closed” conformations (2). The productive closed conformation promotes a nucleophilic attack on the Ub∼E2 thioester by an incoming Lys (acceptor) residue (2). A similar closed conformation was identified in the structures of UbcH5a and UbcH5b, together with their cognate RING domains (3, 4). Taken together, these structural studies suggest that RING domains can catalyze Ub transfer by stabilizing a transition state of a closed conformation of the E2-bound (donor) Ub (5).Among the fundamental intracellular functions of the Ub–proteasome system is maintenance of cellular protein quality control (PQC) by targeting a diverse array of transiently or permanently misfolded substrates for proteolysis. A central branch of PQC degradation takes place in the endoplasmic reticulum (ER) in a process termed “ER-associated degradation” (ERAD) (6). Despite the multitude of misfolded substrates, ERAD employs only a few E3–ligase complexes (7). In fact, the bakers'' yeast S. cerevisiae ERAD system employs only two Ub-ligation complexes, specified by their E3 ligase components, Hrd1 and Doa10 (812). Importantly, each of the two E3 ligase complexes recognizes a distinct set of substrates, with minor overlaps (13).Degradation by the yeast ERAD Ub-ligation system entails the combined activity of two E2 enzymes: Ubc6 and Ubc7 for the Doa10 pathway and Ubc1 and Ubc7 for the Hrd1 pathway (14, 15). The shared E2 enzyme, Ubc7, is a soluble cytosolic protein whose binding to either of the E3–ligase complexes at the ER membrane is mediated by the auxiliary ER membrane protein Cue1. Binding to Cue1 not only mediates the interaction with the E3–ligase complex but also protects Ubc7 from degradation and stimulates its Ub-transfer activity (1620). Ubc7 is highly conserved in evolution, as evident from substantial sequence and structure similarities with its orthologs from other species (21). The human Ubc7 ortholog, Ube2g2 (21), functions together with several ER membrane-embedded E3 ligases, the best characterized of which is the tumor autocrine motility factor receptor, gp78 (22). Ubc7 and Ube2g2 are subjected to similar regulatory mechanisms: They bind to and are activated by the RING domains of their cognate E3s as well as by the E2-binding regions and CUE domains within Cue1 and gp78 (19, 20, 2326). The evolutionarily conserved sequence, structure, and regulatory mechanisms of the Ubc7 E2s imply an essential physiological function.In this study we explored the role of helix α2 of Ubc7 in enzyme activation. Based on our in vivo and in vitro observations and on the available structural information, we propose a mechanism whereby activation of Ubc7, mediated by noncovalent interaction with Ub at helix α2, is differentially affected by the RING domains of its cognate E3 ligases Hrd1 and Doa10.  相似文献   

3.
The postendocytic recycling of signaling receptors is subject to multiple requirements. Why this is so, considering that many other proteins can recycle without apparent requirements, is a fundamental question. Here we show that cells can leverage these requirements to switch the recycling of the beta-2 adrenergic receptor (B2AR), a prototypic signaling receptor, between sequence-dependent and bulk recycling pathways, based on extracellular signals. This switch is determined by protein kinase A-mediated phosphorylation of B2AR on the cytoplasmic tail. The phosphorylation state of B2AR dictates its partitioning into spatially and functionally distinct endosomal microdomains mediating bulk and sequence-dependent recycling, and also regulates the rate of B2AR recycling and resensitization. Our results demonstrate that G protein-coupled receptor recycling is not always restricted to the sequence-dependent pathway, but may be reprogrammed as needed by physiological signals. Such flexible reprogramming might provide a versatile method for rapidly modulating cellular responses to extracellular signaling.How proteins are sorted in the endocytic pathway is a fundamental question in cell biology. This is especially relevant for signaling receptors, given that relatively small changes in rates of receptor sorting into the recycling pathway can cause significant changes in surface receptors, and hence in cellular sensitivity (13). Our knowledge of receptor signaling and trafficking comes mainly from studying examples such as the beta-2 adrenergic receptor (B2AR), a prototypical member of G protein-coupled receptor (GPCR) family, the largest family of signaling receptors (25). B2AR activation initiates surface receptor removal and transport to endosomes, causing cellular desensitization (6, 7). The rate and extent of resensitization is then determined by B2AR surface recycling (13, 8, 9).Interestingly, the recycling of signaling receptors is functionally distinct from the recycling of constitutively cycling proteins like the transferrin receptor (TfR) (1, 6, 10, 11). TfR recycles by “bulk” geometric sorting, largely independent of specific cytoplasmic sequences (12, 13). B2AR recycling, in contrast, requires a specific PSD95-Dlg1-zo-1 domain (PDZ)-ligand sequence on its C-terminal tail, which links the receptor to the actin cytoskeleton (14, 15). Recent work has identified physically and biochemically distinct microdomains on early endosomes that mediate B2AR recycling independent of TfR (1416). Although the exact mechanisms of B2AR sorting into these domains remain under investigation, this sorting clearly requires specific sequence elements on B2AR (1, 10, 11, 17). Importantly, why signaling receptor sorting is subject to such specialized requirements, considering that cargo like TfR apparently can recycle without specific sequence requirements, is not clear (1, 1216). One possibility is that these requirements allow signaling pathways to regulate and redirect receptor trafficking between different pathways as needed (1719). Although this is an attractive idea, whether and how physiological signals regulate receptor sorting remain poorly understood (7, 19).Here we show that adrenergic signaling can switch B2AR recycling between the sequence-dependent and bulk recycling pathways. Adrenergic activation, via protein kinase A (PKA)-mediated B2AR phosphorylation on the cytoplasmic tail, restricts B2AR to spatially defined PDZ- and actin-dependent endosomal microdomains. Dephosphorylation of B2AR switches B2AR to the bulk (PDZ-independent) recycling pathway, causing faster recycling of B2AR and increased cellular sensitivity. Our results suggest that cells may leverage sequence requirements for rapid adaptive reprogramming of signaling receptor trafficking and cellular sensitivity.  相似文献   

4.
Although the ocular lens shares many features with other tissues, it is unique in that it retains its cells throughout life, making it ideal for studies of differentiation/development. Precipitation of proteins results in lens opacification, or cataract, the major blinding disease. Lysines on ubiquitin (Ub) determine fates of Ub-protein substrates. Information regarding ubiquitin proteasome systems (UPSs), specifically of K6 in ubiquitin, is undeveloped. We expressed in the lens a mutant Ub containing a K6W substitution (K6W-Ub). Protein profiles of lenses that express wild-type ubiquitin (WT-Ub) or K6W-Ub differ by only ∼2%. Despite these quantitatively minor differences, in K6W-Ub lenses and multiple model systems we observed a fourfold Ca2+ elevation and hyperactivation of calpain in the core of the lens, as well as calpain-associated fragmentation of critical lens proteins including Filensin, Fodrin, Vimentin, β-Crystallin, Caprin family member 2, and tudor domain containing 7. Truncations can be cataractogenic. Additionally, we observed accumulation of gap junction Connexin43, and diminished Connexin46 levels in vivo and in vitro. These findings suggest that mutation of Ub K6 alters UPS function, perturbs gap junction function, resulting in Ca2+ elevation, hyperactivation of calpain, and associated cleavage of substrates, culminating in developmental defects and a cataractous lens. The data show previously unidentified connections between UPS and calpain-based degradative systems and advance our understanding of roles for Ub K6 in eye development. They also inform about new approaches to delay cataract and other protein precipitation diseases.Many age-related diseases such as cataracts, macular degeneration, Alzheimer’s, Parkinson’s, Huntington’s, and several premature aging syndromes, appear to be causally associated with accumulation of abnormal proteins (1, 2). The accumulation of damaged proteins in many age-related diseases involves a vicious cycle of stress-induced postsynthetic modifications to bulk and catalytically critical molecules and limited capacity to remove the damaged proteins, thus accelerating accumulation of damaged proteins and protein precipitation (13). Clarity is essential for lens function. Age-related cataract is due to the aggregation and precipitation of proteins from the normally clear milieu and is the leading cause of adult blindness worldwide, affecting more than 18 million people (4). Congenital cataracts also involve protein precipitation (5).The lens is an excellent system to study specific relationships between proteolytic pathways, stress, and maintenance of protein quality because all of the cells are retained throughout life. The oldest lens tissue is found at the center or core of the lens. Crystallins, the major gene products of the lens, are very long-lived proteins, with half-lives of decades, and their aberrant synthesis or modification results in aggregation, insolubilization, and cataract (6). Common age-related stresses that confront proteins in the lens and other tissues during aging include oxidation, glycation, and methylation, as well as their sequels (3, 69). Effective stress-reducing systems including antioxidants, antioxidant and repair enzymes, and chaperone and proteolytic capacities help limit damage and maintain solubility and function in younger tissues (3).There are three general systems for intracellular proteolysis: lysosomal/autophagic mechanisms, calcium-activated proteases, or calpains, and the ubiquitin proteasome system (UPS). Because nuclei and lysosomes are removed from most of the lens cells in regions where most cataracts form, this leaves only cytoplasmic proteases, including the UPSs and calpains, to remove damaged proteins to retain lens function (3). There are two basic steps to the UPS: conjugation of substrates to multiple ubiquitins (Ubs) followed by degradation of the protein substrate. Ubiquitin is a highly conserved protein with seven lysines (10). The lysines are used, in the first step of the UPS, to form inter-Ub linkages that lead to Ub polymers that are conjugated to protein substrates. Commonly, proteins with K48-linked Ub oligomers attached are scheduled for degradation by the 26S proteasome. The UPS is also involved at multiple critical stages of proliferation, differentiation, and development in most tissues.It was recently noted that only a minute proportion of Ub conjugates use K6 on Ub (11). Thus, we were surprised to find that expression of higher levels of K6W-Ub in the lens produced cataracts (12). Other work showed that Ub mutations in which K6 is replaced by various amino acids, i.e., K6W-Ub, are conjugation competent but proteolytically incompetent. Thus, cells and tissues in which K6W-Ub is expressed accumulate Ub conjugates (13). Exchanging K for A or R has the same effects. Although structural information about Ub conjugates built using K6 is becoming available (14, 15), a complete understanding of features that render such conjugates biologically stable remain to be elucidated.Calpain is up-regulated by increased Ca2+. Gap junction proteins, or Connexins (Cxs), are required for maintaining Ca2+ homeostasis (16). UPS-dependent degradation of Cx has been observed in CHO and BWEM cells (17). The formation of cataracts in lenses that express K6W-Ub is compatible with novel functional connections between UPS activity, regulation of Cx and Ca2+, calpain activity, and lens clarity. To test the hypothesis, we targeted expression of K6W-Ub to the lens, and we monitored stability of multiple proteins, Cx function and ubiquitination, Ca2+, calpain activity, protein integrity, solubility, and localization, as well as lens clarity.  相似文献   

5.
6.
Fertility depends on the precise coordination of multiple events within the ovarian follicle to ensure ovulation of a fertilizable egg. FSH promotes late follicular development, including expression of luteinizing hormone (LH) receptor by the granulosa cells. Expression of its receptor permits the subsequent LH surge to trigger the release of ligands that activate EGF receptors (EGFR) on the granulosa, thereby initiating the ovulatory events. Here we identify a previously unknown role for FSH in this signaling cascade. We show that follicles of Fshb−/− mice, which cannot produce FSH, have a severely impaired ability to support two essential EGFR-regulated events: expansion of the cumulus granulosa cell layer that encloses the oocyte and meiotic maturation of the oocyte. These defects are not caused by an inability of Fshb−/− oocytes to produce essential oocyte-secreted factors or of Fshb−/− cumulus cells to respond. In contrast, although expression of both Egfr and EGFR increases during late folliculogenesis in Fshb+/− females, these increases fail to occur in Fshb−/− females. Remarkably, supplying a single dose of exogenous FSH activity to Fshb−/− females is sufficient to increase Egfr and EGFR expression and to restore EGFR-dependent cumulus expansion and oocyte maturation. These studies show that FSH induces an increase in EGFR expression during late folliculogenesis and provide evidence that the FSH-dependent increase is necessary for EGFR physiological function. Our results demonstrate an unanticipated role for FSH in establishing the signaling axis that coordinates ovulatory events and may contribute to the diagnosis and treatment of some types of human infertility.Fertility in mammals depends on the coordinated execution of multiple events within the fully grown ovarian follicle at the time of ovulation (1, 2). The oocyte undergoes meiotic maturation, during which it progresses to metaphase II of meiosis and acquires the ability to begin embryonic development (3). Concomitantly, the layer of granulosa cells (GCs) immediately surrounding the oocyte, termed the “cumulus,” undergoes a process termed “expansion,” which is required for sperm to penetrate this layer and reach the oocyte (47). At the perimeter of the follicle, an inflammatory response associated with rupture of the follicular wall permits the cumulus–oocyte complex (COC) to escape from the follicle and enter the oviduct where fertilization will occur. These events are triggered by the preovulatory release of luteinizing hormone (LH), which acts on LH receptors (LHCGR) on the mural GCs that line the interior wall of the fully grown follicle (8).Recent studies have identified a key downstream effector of LH activity at ovulation. Binding of LH to LHCGR triggers the release of the EGF-related peptides amphiregulin (AREG, betacellulin (BTC), and epiregulin (EREG) (911). These bind to EGF receptors (EGFRs) located on both the mural and cumulus GCs (1219) and activate MAPK3/1 as well as other signaling networks (2028). Considerable evidence supports the view that the EGFR signaling mediates many or most ovulatory events. First, the release of the EGFR ligands follows the LH surge but precedes the LH-dependent responses (911). Second, EGF and the EGFR ligands can induce cumulus expansion and oocyte maturation in vitro, independently of LH (9, 10, 20, 29). Third, these events are impaired in mice bearing a hypomorphic Egfr allele that reduces EGFR activity by about one-half and in mice in which Egfr has been selectively inactivated in GCs through a targeted mutation (22, 23). Thus, the activation of EGFR signaling in GCs of mature follicles appears to be a major effector of the ovulatory response to LH.FSH binds to receptors located on GCs and induces the expression of numerous genes, including Lhcgr (8, 30). Lhcgr expression is impaired substantially in mice that lack either FSH, because of targeted mutation of the Fshb gene that encodes its β-subunit, or the FSH receptor and in humans bearing spontaneous mutations; these individuals fail to ovulate (3134). Thus, the ovulatory response to LH depends strictly on the prior FSH-dependent expression of Lhcgr, and in this manner FSH indirectly controls the LHCGR-regulated release of the EGFR ligands. We report here that FSH also drives an increase in EGFR expression during late folliculogenesis and provide evidence that this increase is essential to enable the ovulatory response to EGF. By coordinating the expression of EGFR and the release of its ligands, FSH endows full-grown follicles with the capacity to activate EGFR signaling at ovulation.  相似文献   

7.
A series of mono- and dinuclear alkynylplatinum(II) terpyridine complexes containing the hydrophilic oligo(para-phenylene ethynylene) with two 3,6,9-trioxadec-1-yloxy chains was designed and synthesized. The mononuclear alkynylplatinum(II) terpyridine complex was found to display a very strong tendency toward the formation of supramolecular structures. Interestingly, additional end-capping with another platinum(II) terpyridine moiety of various steric bulk at the terminal alkyne would lead to the formation of nanotubes or helical ribbons. These desirable nanostructures were found to be governed by the steric bulk on the platinum(II) terpyridine moieties, which modulates the directional metal−metal interactions and controls the formation of nanotubes or helical ribbons. Detailed analysis of temperature-dependent UV-visible absorption spectra of the nanostructured tubular aggregates also provided insights into the assembly mechanism and showed the role of metal−metal interactions in the cooperative supramolecular polymerization of the amphiphilic platinum(II) complexes.Square-planar d8 platinum(II) polypyridine complexes have long been known to exhibit intriguing spectroscopic and luminescence properties (154) as well as interesting solid-state polymorphism associated with metal−metal and π−π stacking interactions (114, 25). Earlier work by our group showed the first example, to our knowledge, of an alkynylplatinum(II) terpyridine system [Pt(tpy)(C ≡ CR)]+ that incorporates σ-donating and solubilizing alkynyl ligands together with the formation of Pt···Pt interactions to exhibit notable color changes and luminescence enhancements on solvent composition change (25) and polyelectrolyte addition (26). This approach has provided access to the alkynylplatinum(II) terpyridine and other related cyclometalated platinum(II) complexes, with functionalities that can self-assemble into metallogels (2731), liquid crystals (32, 33), and other different molecular architectures, such as hairpin conformation (34), helices (3538), nanostructures (3945), and molecular tweezers (46, 47), as well as having a wide range of applications in molecular recognition (4852), biomolecular labeling (4852), and materials science (53, 54). Recently, metal-containing amphiphiles have also emerged as a building block for supramolecular architectures (4244, 5559). Their self-assembly has always been found to yield different molecular architectures with unprecedented complexity through the multiple noncovalent interactions on the introduction of external stimuli (4244, 5559).Helical architecture is one of the most exciting self-assembled morphologies because of the uniqueness for the functional and topological properties (6069). Helical ribbons composed of amphiphiles, such as diacetylenic lipids, glutamates, and peptide-based amphiphiles, are often precursors for the growth of tubular structures on an increase in the width or the merging of the edges of ribbons (64, 65). Recently, the optimization of nanotube formation vs. helical nanostructures has aroused considerable interests and can be achieved through a fine interplay of the influence on the amphiphilic property of molecules (66), choice of counteranions (67, 68), or pH values of the media (69), which would govern the self-assembly of molecules into desirable aggregates of helical ribbons or nanotube scaffolds. However, a precise control of supramolecular morphology between helical ribbons and nanotubes remains challenging, particularly for the polycyclic aromatics in the field of molecular assembly (6469). Oligo(para-phenylene ethynylene)s (OPEs) with solely π−π stacking interactions are well-recognized to self-assemble into supramolecular system of various nanostructures but rarely result in the formation of tubular scaffolds (7073). In view of the rich photophysical properties of square-planar d8 platinum(II) systems and their propensity toward formation of directional Pt···Pt interactions in distinctive morphologies (2731, 3945), it is anticipated that such directional and noncovalent metal−metal interactions might be capable of directing or dictating molecular ordering and alignment to give desirable nanostructures of helical ribbons or nanotubes in a precise and controllable manner.Herein, we report the design and synthesis of mono- and dinuclear alkynylplatinum(II) terpyridine complexes containing hydrophilic OPEs with two 3,6,9-trioxadec-1-yloxy chains. The mononuclear alkynylplatinum(II) terpyridine complex with amphiphilic property is found to show a strong tendency toward the formation of supramolecular structures on diffusion of diethyl ether in dichloromethane or dimethyl sulfoxide (DMSO) solution. Interestingly, additional end-capping with another platinum(II) terpyridine moiety of various steric bulk at the terminal alkyne would result in nanotubes or helical ribbons in the self-assembly process. To the best of our knowledge, this finding represents the first example of the utilization of the steric bulk of the moieties, which modulates the formation of directional metal−metal interactions to precisely control the formation of nanotubes or helical ribbons in the self-assembly process. Application of the nucleation–elongation model into this assembly process by UV-visible (UV-vis) absorption spectroscopic studies has elucidated the nature of the molecular self-assembly, and more importantly, it has revealed the role of metal−metal interactions in the formation of these two types of nanostructures.  相似文献   

8.
Neurotransmission involves the calcium-regulated exocytic fusion of synaptic vesicles (SVs) and the subsequent retrieval of SV membranes followed by reformation of properly sized and shaped SVs. An unresolved question is whether each SV protein is sorted by its own dedicated adaptor or whether sorting is facilitated by association between different SV proteins. We demonstrate that endocytic sorting of the calcium sensor synaptotagmin 1 (Syt1) is mediated by the overlapping activities of the Syt1-associated SV glycoprotein SV2A/B and the endocytic Syt1-adaptor stonin 2 (Stn2). Deletion or knockdown of either SV2A/B or Stn2 results in partial Syt1 loss and missorting of Syt1 to the neuronal surface, whereas deletion of both SV2A/B and Stn2 dramatically exacerbates this phenotype. Selective missorting and degradation of Syt1 in the absence of SV2A/B and Stn2 impairs the efficacy of neurotransmission at hippocampal synapses. These results indicate that endocytic sorting of Syt1 to SVs is mediated by the overlapping activities of SV2A/B and Stn2 and favor a model according to which SV protein sorting is guarded by both cargo-specific mechanisms as well as association between SV proteins.Neurotransmission is based on the calcium-triggered fusion of neurotransmitter-filled synaptic vesicles (SVs) with the presynaptic plasma membrane. To sustain neurotransmitter release, neurons have evolved mechanisms to retrieve SV membranes and to reform SVs locally within presynaptic nerve terminals. How SVs are reformed and maintain their compositional identity (1, 2) is controversial (35). One possibility is that upon fusion SV proteins remain clustered at the active zone—that is, by association between SV proteins—and are retrieved via “kiss-and-run” or ultrafast endocytosis (6), thereby alleviating the need for specific sorting of individual SV proteins. Alternatively, if SVs lose their identity during multiple rounds of exo-/endocytosis (7, 8), specific mechanisms exist to orchestrate high-fidelity SV protein sorting, either directly at the plasma membrane via slow clathrin-mediated endocytosis (CME) or at endosome-like vacuoles generated by fast clathrin-independent membrane retrieval (5, 9). Endocytic adaptors for SV protein sorting include the heterotetrameric adaptor protein complex 2 (AP-2) (9), the synaptobrevin 2/VAMP2 adaptor AP180 (10), and the AP-2μ–related protein stonin 2 (Stn2), a specific sorting adaptor for the SV calcium sensor synaptotagmin 1 (Syt1) (8, 11). Although genetic inactivation of the Stn2 orthologs Stoned B and Unc41 in flies and worms is lethal due to defective neurotransmission caused by degradation and missorting of Syt1 (12, 13), Stn2 knockout (KO) mice are viable and able to internalize Syt1, albeit with reduced fidelity of sorting (14). Thus, mammalian synapses, in contrast to invertebrates, have evolved mechanisms to sort Syt1 in the absence of its specific sorting adaptor Stn2. One possibility is that Syt1 sorting in addition to its direct recognition by Stn2 is facilitated by complex formation with other SV proteins. Likely candidates for such a piggyback mechanism are the SV2 family of transmembrane SV glycoproteins (15, 16), which might regulate Syt1 function either via direct interaction (17, 18) or by facilitating its binding to AP-2 (19). Apart from the distantly related SVOP protein (20), no close SV2 homologs exist in invertebrates, suggesting that SV2 fulfills a unique function at mammalian synapses. KO of SV2A or combined loss of its major A and B isoforms in mice causes early postnatal lethality due to epileptic seizures (21, 22), impaired neurotransmission (23, 24), and defects in Syt1 trafficking (25), whereas SV2B KO mice are phenotypically normal (17). Given that SV2A in addition to its association with Syt1 binds to endocytic proteins including AP-2 and Eps15 (25), SV2 would be a likely candidate for mediating Syt1 sorting to SVs.Here we demonstrate that endocytic sorting of Syt1 is mediated by the overlapping activities of SV2A/B and Stn2. Deletion or knockdown of either SV2A/B or Stn2 results in partial Syt1 loss and missorting of Syt1 to the neuronal surface, whereas deletion of both SV2A/B and Stn2 dramatically exacerbates this phenotype, resulting in severely impaired basal neurotransmission. Our results favor a model according to which SV protein sorting is guarded by both cargo-specific mechanisms as well as association between SV proteins.  相似文献   

9.
10.
Cognition presents evolutionary research with one of its greatest challenges. Cognitive evolution has been explained at the proximate level by shifts in absolute and relative brain volume and at the ultimate level by differences in social and dietary complexity. However, no study has integrated the experimental and phylogenetic approach at the scale required to rigorously test these explanations. Instead, previous research has largely relied on various measures of brain size as proxies for cognitive abilities. We experimentally evaluated these major evolutionary explanations by quantitatively comparing the cognitive performance of 567 individuals representing 36 species on two problem-solving tasks measuring self-control. Phylogenetic analysis revealed that absolute brain volume best predicted performance across species and accounted for considerably more variance than brain volume controlling for body mass. This result corroborates recent advances in evolutionary neurobiology and illustrates the cognitive consequences of cortical reorganization through increases in brain volume. Within primates, dietary breadth but not social group size was a strong predictor of species differences in self-control. Our results implicate robust evolutionary relationships between dietary breadth, absolute brain volume, and self-control. These findings provide a significant first step toward quantifying the primate cognitive phenome and explaining the process of cognitive evolution.Since Darwin, understanding the evolution of cognition has been widely regarded as one of the greatest challenges for evolutionary research (1). Although researchers have identified surprising cognitive flexibility in a range of species (240) and potentially derived features of human psychology (4161), we know much less about the major forces shaping cognitive evolution (6271). With the notable exception of Bitterman’s landmark studies conducted several decades ago (63, 7274), most research comparing cognition across species has been limited to small taxonomic samples (70, 75). With limited comparable experimental data on how cognition varies across species, previous research has largely relied on proxies for cognition (e.g., brain size) or metaanalyses when testing hypotheses about cognitive evolution (7692). The lack of cognitive data collected with similar methods across large samples of species precludes meaningful species comparisons that can reveal the major forces shaping cognitive evolution across species, including humans (48, 70, 89, 9398).To address these challenges we measured cognitive skills for self-control in 36 species of mammals and birds (Fig. 1 and Tables S1–S4) tested using the same experimental procedures, and evaluated the leading hypotheses for the neuroanatomical underpinnings and ecological drivers of variance in animal cognition. At the proximate level, both absolute (77, 99107) and relative brain size (108112) have been proposed as mechanisms supporting cognitive evolution. Evolutionary increases in brain size (both absolute and relative) and cortical reorganization are hallmarks of the human lineage and are believed to index commensurate changes in cognitive abilities (52, 105, 113115). Further, given the high metabolic costs of brain tissue (116121) and remarkable variance in brain size across species (108, 122), it is expected that the energetic costs of large brains are offset by the advantages of improved cognition. The cortical reorganization hypothesis suggests that selection for absolutely larger brains—and concomitant cortical reorganization—was the predominant mechanism supporting cognitive evolution (77, 91, 100106, 120). In contrast, the encephalization hypothesis argues that an increase in brain volume relative to body size was of primary importance (108, 110, 111, 123). Both of these hypotheses have received support through analyses aggregating data from published studies of primate cognition and reports of “intelligent” behavior in nature—both of which correlate with measures of brain size (76, 77, 84, 92, 110, 124).Open in a separate windowFig. 1.A phylogeny of the species included in this study. Branch lengths are proportional to time except where long branches have been truncated by parallel diagonal lines (split between mammals and birds ∼292 Mya).With respect to selective pressures, both social and dietary complexities have been proposed as ultimate causes of cognitive evolution. The social intelligence hypothesis proposes that increased social complexity (frequently indexed by social group size) was the major selective pressure in primate cognitive evolution (6, 44, 48, 50, 87, 115, 120, 125141). This hypothesis is supported by studies showing a positive correlation between a species’ typical group size and the neocortex ratio (80, 81, 8587, 129, 142145), cognitive differences between closely related species with different group sizes (130, 137, 146, 147), and evidence for cognitive convergence between highly social species (26, 31, 148150). The foraging hypothesis posits that dietary complexity, indexed by field reports of dietary breadth and reliance on fruit (a spatiotemporally distributed resource), was the primary driver of primate cognitive evolution (151154). This hypothesis is supported by studies linking diet quality and brain size in primates (79, 81, 86, 142, 155), and experimental studies documenting species differences in cognition that relate to feeding ecology (94, 156166).Although each of these hypotheses has received empirical support, a comparison of the relative contributions of the different proximate and ultimate explanations requires (i) a cognitive dataset covering a large number of species tested using comparable experimental procedures; (ii) cognitive tasks that allow valid measurement across a range of species with differing morphology, perception, and temperament; (iii) a representative sample within each species to obtain accurate estimates of species-typical cognition; (iv) phylogenetic comparative methods appropriate for testing evolutionary hypotheses; and (v) unprecedented collaboration to collect these data from populations of animals around the world (70).Here, we present, to our knowledge, the first large-scale collaborative dataset and comparative analysis of this kind, focusing on the evolution of self-control. We chose to measure self-control—the ability to inhibit a prepotent but ultimately counterproductive behavior—because it is a crucial and well-studied component of executive function and is involved in diverse decision-making processes (167169). For example, animals require self-control when avoiding feeding or mating in view of a higher-ranking individual, sharing food with kin, or searching for food in a new area rather than a previously rewarding foraging site. In humans, self-control has been linked to health, economic, social, and academic achievement, and is known to be heritable (170172). In song sparrows, a study using one of the tasks reported here found a correlation between self-control and song repertoire size, a predictor of fitness in this species (173). In primates, performance on a series of nonsocial self-control control tasks was related to variability in social systems (174), illustrating the potential link between these skills and socioecology. Thus, tasks that quantify self-control are ideal for comparison across taxa given its robust behavioral correlates, heritable basis, and potential impact on reproductive success.In this study we tested subjects on two previously implemented self-control tasks. In the A-not-B task (27 species, n = 344), subjects were first familiarized with finding food in one location (container A) for three consecutive trials. In the test trial, subjects initially saw the food hidden in the same location (container A), but then moved to a new location (container B) before they were allowed to search (Movie S1). In the cylinder task (32 species, n = 439), subjects were first familiarized with finding a piece of food hidden inside an opaque cylinder. In the following 10 test trials, a transparent cylinder was substituted for the opaque cylinder. To successfully retrieve the food, subjects needed to inhibit the impulse to reach for the food directly (bumping into the cylinder) in favor of the detour response they had used during the familiarization phase (Movie S2).Thus, the test trials in both tasks required subjects to inhibit a prepotent motor response (searching in the previously rewarded location or reaching directly for the visible food), but the nature of the correct response varied between tasks. Specifically, in the A-not-B task subjects were required to inhibit the response that was previously successful (searching in location A) whereas in the cylinder task subjects were required to perform the same response as in familiarization trials (detour response), but in the context of novel task demands (visible food directly in front of the subject).  相似文献   

11.
12.
Epidermal growth factor receptor (EGFR) is a heavily glycosylated transmembrane receptor tyrosine kinase. Upon EGF-binding, EGFR undergoes conformational changes to dimerize, resulting in kinase activation and autophosphorylation and downstream signaling. Tyrosine kinase inhibitors (TKIs) have been used to treat lung cancer by inhibiting EGFR phosphorylation. Previously, we demonstrated that EGFR sialylation suppresses its dimerization and phosphorylation. In this report, we further investigated the effect of sialylation on the phosphorylation profile of EGFR in TKI-sensitive and TKI-resistant cells. Sialylation was induced in cancer progression to inhibit the association of EGFR with EGF and the subsequent autophosphorylation. In the absence of EGF the TKI-resistant EGFR mutant (L858R/T790M) had a higher degree of sialylation and phosphorylation at Y1068, Y1086, and Y1173 than the TKI-sensitive EGFR. In addition, although sialylation in the TKI-resistant mutants suppresses EGFR tyrosine phosphorylation, with the most significant effect on the Y1173 site, the sialylation effect is not strong enough to stop cancer progression by inhibiting the phosphorylation of these three sites. These findings were supported further by the observation that the L858R/T790M EGFR mutant, when treated with sialidase or sialyltransferase inhibitor, showed an increase in tyrosine phosphorylation, and the sensitivity of the corresponding resistant lung cancer cells to gefitinib was reduced by desialylation and was enhanced by sialylation.Epidermal growth factor receptor (EGFR), one of the most studied receptor tyrosine kinases, is a drug target for cancer therapy, because its kinase activity correlates with tumorigenicity (1). Under normal conditions, EGFR forms dimers upon ligand binding and induces kinase activation (26). The conformational change of EGFR from tethered to extended form induced by ligand binding involves the exposure of the interface, followed by dimerization, activation, and autophosphorylation (7). The phosphorylation code of EGFR determines the propensity of the downstream signaling network to regulate cell proliferation, survival, migration, and angiogenesis (8, 9).In a significant fraction of patients with nonsmall cell lung cancer (NSCLC), especially patients in Asia and those with the adenocarcinoma subtype, mutations in the kinase domain of EGFR cause constitutive activation and have been identified as an important factor in EGFR dysregulation (10, 11). Particularly, mutation from leucine to arginine at position 858 (L858R) and, less significantly, deletion of exon 19 that eliminates four amino acids (LREA) account for ∼90% of the mutations involved in the constitutive activation of EGFR. These mutations are commonly found in patients with increased sensitivity to EGFR tyrosine kinase inhibitors (TKIs) such as gefitinib and erlotinib (1214). However, most patients with such mutations show resistance within months after TKI therapy, and >50% of them develop a second EGFR mutation, T790M, which confers TKI resistance by increasing the affinity for ATP and decreasing the affinity for TKIs (1517).Studies have demonstrated that the glycans on EGFR participate in the regulation of EGFR function. The number of N-glycans and the degree of branching can regulate the cell-surface expression of EGFR in response to N-acetyl-d-glucosamine (GlcNAc) supplementation (18). In addition, studies with site-directed mutagenesis indicate that the glycans on Asn420 and 579 prevent EGFR from ligand-independent dimerization (1921), and knocking down/out fucosyltransferase 8, the enzyme responsible for the core fucosylation, attenuates EGFR phosphorylation and EGF binding (22, 23). Moreover, our previous study revealed that sialylation and fucosylation suppress EGFR dimerization, autophosphorylation, and EGF-induced lung cancer cell invasion (24).Here, we investigated the effect of sialylation on EGFR dimerization to understand how extracellular sialylation influences intracellular phosphorylation in both wild-type and mutant EGFR. Our biochemical data demonstrated that sialylation could suppress EGFR dimerization by attenuating its association with EGF, and sialylation could significantly and selectively suppress tyrosine phosphorylation and affect the levels of phosphoserine and phosphothreonine on EGFR. In EGFR mutants, especially L858R/T790M, sialylation was observed to have a selective effect on EGFR phosphorylation, and inhibition of sialylation resulted in increased phosphorylation and resistance to gefitinib in this TKI-resistant lung cancer cell line. Further study of these findings should provide a better understanding of EGFR-mediated phosphorylation and disease progression affected by glycosylation and lead to the development of a new therapeutic strategy.  相似文献   

13.
14.
A series of discrete decanuclear gold(I) μ3-sulfido complexes with alkyl chains of various lengths on the aminodiphosphine ligands, [Au10{Ph2PN(CnH2n+1)PPh2}43-S)4](ClO4)2, has been synthesized and characterized. These complexes have been shown to form supramolecular nanoaggregate assemblies upon solvent modulation. The photoluminescence (PL) colors of the nanoaggregates can be switched from green to yellow to red by varying the solvent systems from which they are formed. The PL color variation was investigated and correlated with the nanostructured morphological transformation from the spherical shape to the cube as observed by transmission electron microscopy and scanning electron microscopy. Such variations in PL colors have not been observed in their analogous complexes with short alkyl chains, suggesting that the long alkyl chains would play a key role in governing the supramolecular nanoaggregate assembly and the emission properties of the decanuclear gold(I) sulfido complexes. The long hydrophobic alkyl chains are believed to induce the formation of supramolecular nanoaggregate assemblies with different morphologies and packing densities under different solvent systems, leading to a change in the extent of Au(I)–Au(I) interactions, rigidity, and emission properties.Gold(I) complexes are one of the fascinating classes of complexes that reveal photophysical properties that are highly sensitive to the nuclearity of the metal centers and the metal–metal distances (159). In a certain sense, they bear an analogy or resemblance to the interesting classes of metal nanoparticles (NPs) (6069) and quantum dots (QDs) (7076) in that the properties of the nanostructured materials also show a strong dependence on their sizes and shapes. Interestingly, while the optical and spectroscopic properties of metal NPs and QDs show a strong dependence on the interparticle distances, those of polynuclear gold(I) complexes are known to mainly depend on the nuclearity and the internuclear separations of gold(I) centers within the individual molecular complexes or clusters, with influence of the intermolecular interactions between discrete polynuclear molecular complexes relatively less explored (3438), and those of polynuclear gold(I) clusters not reported. Moreover, while studies on polynuclear gold(I) complexes or clusters are known (3454), less is explored of their hierarchical assembly and nanostructures as well as the influence of intercluster aggregation on the optical properties (3438). Among the gold(I) complexes, polynuclear gold(I) chalcogenido complexes represent an important and interesting class (4451). While directed supramolecular assembly of discrete Au12 (52), Au16 (53), Au18 (51), and Au36 (54) metallomacrocycles as well as trinuclear gold(I) columnar stacks (3438) have been reported, there have been no corresponding studies on the supramolecular hierarchical assembly of polynuclear gold(I) chalcogenido clusters.Based on our interests and experience in the study of gold(I) chalcogenido clusters (4446, 51), it is believed that nanoaggegrates with interesting luminescence properties and morphology could be prepared by the judicious design of the gold(I) chalcogenido clusters. As demonstrated by our previous studies on the aggregation behavior of square-planar platinum(II) complexes (7780) where an enhancement of the solubility of the metal complexes via introduction of solubilizing groups on the ligands and the fine control between solvophobicity and solvophilicity of the complexes would have a crucial influence on the factors governing supramolecular assembly and the formation of aggregates (80), introduction of long alkyl chains as solubilizing groups in the gold(I) sulfido clusters may serve as an effective way to enhance the solubility of the gold(I) clusters for the construction of supramolecular assemblies of novel luminescent nanoaggegrates.Herein, we report the preparation and tunable spectroscopic properties of a series of decanuclear gold(I) μ3-sulfido complexes with alkyl chains of different lengths on the aminophosphine ligands, [Au10{Ph2PN(CnH2n+1)PPh2}43-S)4](ClO4)2 [n = 8 (1), 12 (2), 14 (3), 18 (4)] and their supramolecular assembly to form nanoaggregates. The emission colors of the nanoaggregates of 2−4 can be switched from green to yellow to red by varying the solvent systems from which they are formed. These results have been compared with their short alkyl chain-containing counterparts, 1 and a related [Au10{Ph2PN(C3H7)PPh2}43-S)4](ClO4)2 (45). The present work demonstrates that polynuclear gold(I) chalcogenides, with the introduction of appropriate functional groups, can serve as building blocks for the construction of novel hierarchical nanostructured materials with environment-responsive properties, and it represents a rare example in which nanoaggregates have been assembled with the use of discrete molecular metal clusters as building blocks.  相似文献   

15.
Drosophila inhibitor of apoptosis (IAP) 1 (DIAP1) is an E3 ubiquitin ligase that regulates apoptosis in flies, in large part through direct inhibition and/or ubiquitinylation of caspases. IAP antagonists, such as Reaper, Hid, and Grim, are thought to induce cell death by displacing active caspases from baculovirus IAP repeat domains in DIAP1, but can themselves become targets of DIAP1-mediated ubiquitinylation. Herein, we demonstrate that Grim self-associates in cells and is ubiquitinylated by DIAP1 at Lys136 in an UbcD1-dependent manner, resulting in its rapid turnover. K48-linked ubiquitin chains are added almost exclusively to BIR2-bound Grim as a result of its structural proximity to DIAP1’s RING domain. However, active caspases can simultaneously cleave Grim at Asp132, removing the lysine necessary for ubiquitinylation as well as any existing ubiquitin conjugates. Cleavage therefore enhances the stability of Grim and initiates a feed-forward caspase amplification loop, resulting in greater cell death. In summary, Grim is a caspase substrate whose cleavage promotes apoptosis by limiting, in a target-specific fashion, its ubiquitinylation and turnover by the proteasome.Apoptosis, or programmed cell death, is broadly conserved throughout nature, from flies to humans (1). In most instances, the execution of apoptosis is carried out by cysteinyl aspartate-specific proteases (i.e., caspases) through proteolytic-based signal transduction pathways (2). Upstream initiator caspases, such as caspase-9 in humans and its paralogue Drosophila Nedd2-like caspase (DRONC) in flies, are first activated via their interactions with adapter proteins and in turn activate the downstream effector caspases, caspase-3 and Drosophila interleukin-1β–converting enzyme (DrICE), respectively (2, 3). Once activated, effector caspases are responsible for dismantling the cell through cleavage of literally hundreds of structural and regulatory proteins (4). Caspase cleavage can inactivate proteins or generate dominant-negative inhibitors, as in the case of gelsolin, RIP1, and eIF4E-BP1 (4). Moreover, caspase cleavage of numerous substrates, including IRF-3, ErbB2, cyclin E, claspin, SSRP1, and Twist, can enhance their turnover by the proteasome (510). Conversely, caspases can also constitutively activate proteins, particularly kinases such as PKC and Mst1 (11, 12), or change the function of a protein altogether, as seen in the conversion of antiapoptotic BCL-2 proteins into proapoptotic BAX-like proteins (13).Notably, even following the activation of caspases, inhibitor of apoptosis (IAP) proteins, such as X-linked IAP (XIAP) in mammals and DIAP1 in flies, can suppress apoptosis through inhibition of caspases (1419). All IAPs contain baculovirus IAP repeat (BIR) domains and many possess RING and UBA domains, imparting them with E3 ubiquitin and NEDD8 ligase activity and the ability to bind polyubiquitin chains (20, 21). Thus, XIAP and DIAP1 directly bind and inhibit, ubiquitinylate, and/or neddylate initiator and effector caspases through distinct BIR domains (15, 16, 19, 2224). In some circumstances, ubiquitinylation marks these enzymes for proteasomal degradation, whereas, in other cases, K63-based ubiquitinylation or neddylation fail to increase protein turnover but nevertheless inhibit protease activity through as yet ill-defined mechanisms (22, 2527).Finally, a further level of regulation exists in the form of endogenous inhibitors of IAPs. These so-called “IAP antagonists” possess an IAP binding motif (IBM) through which they bind to IAPs and disrupt their interactions with caspases (28). Reaper, Hid, and Grim were the first IAP antagonists to be discovered in flies and were shown to regulate cell death during development, at least in part, by binding to DIAP1, displacing caspases, and inducing autoubiquitinylation and turnover of DIAP1 (18, 19, 2935). In the present study, we have discovered that DIAP1, in conjunction with the E2 ubiquitin-conjugating enzyme UbcD1, polyubiquitinylates Grim through K48- but not K63-based linkages, resulting in increased Grim turnover. Grim self-associates in cells and binds to both the BIR1 and BIR2 domains in DIAP1, but only the BIR2-bound Grim is significantly ubiquitinylated by DIAP1 in a RING-dependent manner. More surprisingly, Grim is also cleaved by caspases at its C terminus, removing the only lysine residue present in this IAP antagonist. Following caspase cleavage, Grim still binds to DIAP1 but is no longer ubiquitinylated and therefore persists in cells, propagating the death signal through increased activation of caspases.  相似文献   

16.
The lipid raft hypothesis proposes lateral domains driven by preferential interactions between sterols, sphingolipids, and specific proteins as a central mechanism for the regulation of membrane structure and function; however, experimental limitations in defining raft composition and properties have prevented unequivocal demonstration of their functional relevance. Here, we establish a quantitative, functional relationship between raft association and subcellular protein sorting. By systematic mutation of the transmembrane and juxtamembrane domains of a model transmembrane protein, linker for activation of T-cells (LAT), we generated a panel of variants possessing a range of raft affinities. These mutations revealed palmitoylation, transmembrane domain length, and transmembrane sequence to be critical determinants of membrane raft association. Moreover, plasma membrane (PM) localization was strictly dependent on raft partitioning across the entire panel of unrelated mutants, suggesting that raft association is necessary and sufficient for PM sorting of LAT. Abrogation of raft partitioning led to mistargeting to late endosomes/lysosomes because of a failure to recycle from early endosomes. These findings identify structural determinants of raft association and validate lipid-driven domain formation as a mechanism for endosomal protein sorting.Recent advances in superresolution microscopy (1), lipid analysis (2, 3), and plasma membrane (PM) isolation (4, 5) have confirmed the coexistence of lipid-driven, fluid domains in biological membranes. The relatively ordered domains, known as “membrane rafts,” have been proposed to be involved in protein sorting (6), viral/pathogen trafficking (3, 7), and PM signaling in a variety of contexts (8). However, despite the increasing evidence confirming the existence of dynamic, nanoscopic membrane rafts, the functional consequences of this phenomenon remain speculative because of the limitations of the previously used methods for defining raft association, i.e., the resistance of membrane components to solubilization by nonionic detergents (9).Lipid-mediated domains have been implicated as a mechanism for protein sorting in the latter stages of the secretory pathway (trans-Golgi network to the PM) (2, 6, 1012), with analogous pathways mediating endosomal sorting/recycling (13, 14). Raft lipids (i.e., sterols and sphingolipids) are significantly enriched at the PM (1517), and recent observations confirm that these lipids also are enriched in sorting vesicles destined for the PM (2, 11). For proteins, several specific cytosolic signals exist for adapter/coat-mediated sorting between cellular organelles (18); in parallel, protein–lipid interactions through hydrophobic transmembrane domains (TMDs) also have been shown to regulate trafficking. For example, a strong correlation exists between the TMD length of bitopic proteins and their organelle specificity (19, 20), with longer TMDs targeting proteins to the PM and shorter TMDs found in the endoplasmic reticulum (ER), Golgi apparatus, and endocytic organelles. These findings suggest cargo sorting in the secretory and endocytic pathways, with proteins containing longer TMDs, together with sphingolipids and cholesterol, being specifically trafficked to the PM, although the mechanism for this observation remains unresolved.One possibility for sorting of specific lipid classes along with proteins containing longer TMDs is lateral segregation and coalescence of ordered domains, followed by either domain-induced (21) or cytoskeleton-assisted (22) budding of raft-enriched transport vesicles. Proteins using this “raft pathway” would not require cytosolic sorting signals but rather would be recruited to transport vesicles by their raft affinity, i.e., their propensity to interact with specific lipids, ordered domains, or other raft-embedded proteins. Because ordered phases in lipid model systems consistently have been shown to be 0.6–1.5 nm thicker than disordered domains (23, 24), raft-associated transmembrane (TM) proteins would be predicted to have longer TMDs. TMD length-dependent protein sorting between coexisting lipid domains has been addressed experimentally only recently by measuring partitioning of an oligomeric toxin (perfringolysin O) with multiple (35–40) TM segments in synthetic, phase-separated liposomes (25). Whether these observations extend to single-pass TM proteins in biological membranes is unknown.To evaluate the role of lipid-driven raft domains as a mechanism for subcellular protein sorting, we quantitatively compared the raft association of 30 TM protein variants with their subcellular localization. To quantify raft partitioning of the constructs comprising single-pass TM proteins with varying TMD lengths and sequences, we used giant PM vesicles (GPMVs). GPMVs are cell-detached PM blebs whose protein (26) and lipid (27) diversity mirrors that of the native PM. These PM vesicles separate into coexisting liquid phases (4) with different order (28), which recruit membrane components in accordance with their predicted raft affinity, i.e., saturated lipids, glycosphingolipids (29), glycosylphosphatidyl inositol-anchored proteins (4), and palmitoylated proteins (30) partition to the ordered phase, denoted here as the “raft phase.” Most importantly, these vesicles provide a platform for repeatable, direct, and quantitative analysis of raft partitioning (30), allowing investigation of the structural determinants of raft association and its effect on protein function. We find that perturbation of raft partitioning by three independent means (decreasing TMD length, mutation of palmitoylation sites, and TMD sequence manipulation) perturbed subcellular localization, leading to missorting of PM proteins to late endosomes and lysosomes because of a failure to recycle nonraft proteins from early endosomes (EEs). These results confirm the presence of a raft-mediated recycling route in nonpolarized cells, begin to define the molecular parameters for protein association with raft domains, and suggest an explanation for the accumulation of proteins with longer TMDs at the PM.  相似文献   

17.
Protein toxins from tarantula venom alter the activity of diverse ion channel proteins, including voltage, stretch, and ligand-activated cation channels. Although tarantula toxins have been shown to partition into membranes, and the membrane is thought to play an important role in their activity, the structural interactions between these toxins and lipid membranes are poorly understood. Here, we use solid-state NMR and neutron diffraction to investigate the interactions between a voltage sensor toxin (VSTx1) and lipid membranes, with the goal of localizing the toxin in the membrane and determining its influence on membrane structure. Our results demonstrate that VSTx1 localizes to the headgroup region of lipid membranes and produces a thinning of the bilayer. The toxin orients such that many basic residues are in the aqueous phase, all three Trp residues adopt interfacial positions, and several hydrophobic residues are within the membrane interior. One remarkable feature of this preferred orientation is that the surface of the toxin that mediates binding to voltage sensors is ideally positioned within the lipid bilayer to favor complex formation between the toxin and the voltage sensor.Protein toxins from venomous organisms have been invaluable tools for studying the ion channel proteins they target. For example, in the case of voltage-activated potassium (Kv) channels, pore-blocking scorpion toxins were used to identify the pore-forming region of the channel (1, 2), and gating modifier tarantula toxins that bind to S1–S4 voltage-sensing domains have helped to identify structural motifs that move at the protein–lipid interface (35). In many instances, these toxin–channel interactions are highly specific, allowing them to be used in target validation and drug development (68).Tarantula toxins are a particularly interesting class of protein toxins that have been found to target all three families of voltage-activated cation channels (3, 912), stretch-activated cation channels (1315), as well as ligand-gated ion channels as diverse as acid-sensing ion channels (ASIC) (1621) and transient receptor potential (TRP) channels (22, 23). The tarantula toxins targeting these ion channels belong to the inhibitor cystine knot (ICK) family of venom toxins that are stabilized by three disulfide bonds at the core of the molecule (16, 17, 2431). Although conventional tarantula toxins vary in length from 30 to 40 aa and contain one ICK motif, the recently discovered double-knot toxin (DkTx) that specifically targets TRPV1 channels contains two separable lobes, each containing its own ICK motif (22, 23).One unifying feature of all tarantula toxins studied thus far is that they act on ion channels by modifying the gating properties of the channel. The best studied of these are the tarantula toxins targeting voltage-activated cation channels, where the toxins bind to the S3b–S4 voltage sensor paddle motif (5, 3236), a helix-turn-helix motif within S1–S4 voltage-sensing domains that moves in response to changes in membrane voltage (3741). Toxins binding to S3b–S4 motifs can influence voltage sensor activation, opening and closing of the pore, or the process of inactivation (4, 5, 36, 4246). The tarantula toxin PcTx1 can promote opening of ASIC channels at neutral pH (16, 18), and DkTx opens TRPV1 in the absence of other stimuli (22, 23), suggesting that these toxin stabilize open states of their target channels.For many of these tarantula toxins, the lipid membrane plays a key role in the mechanism of inhibition. Strong membrane partitioning has been demonstrated for a range of toxins targeting S1–S4 domains in voltage-activated channels (27, 44, 4750), and for GsMTx4 (14, 50), a tarantula toxin that inhibits opening of stretch-activated cation channels in astrocytes, as well as the cloned stretch-activated Piezo1 channel (13, 15). In experiments on stretch-activated channels, both the d- and l-enantiomers of GsMTx4 are active (14, 50), implying that the toxin may not bind directly to the channel. In addition, both forms of the toxin alter the conductance and lifetimes of gramicidin channels (14), suggesting that the toxin inhibits stretch-activated channels by perturbing the interface between the membrane and the channel. In the case of Kv channels, the S1–S4 domains are embedded in the lipid bilayer and interact intimately with lipids (48, 51, 52) and modification in the lipid composition can dramatically alter gating of the channel (48, 5356). In one study on the gating of the Kv2.1/Kv1.2 paddle chimera (53), the tarantula toxin VSTx1 was proposed to inhibit Kv channels by modifying the forces acting between the channel and the membrane. Although these studies implicate a key role for the membrane in the activity of Kv and stretch-activated channels, and for the action of tarantula toxins, the influence of the toxin on membrane structure and dynamics have not been directly examined. The goal of the present study was to localize a tarantula toxin in membranes using structural approaches and to investigate the influence of the toxin on the structure of the lipid bilayer.  相似文献   

18.
The dismal prognosis of malignant brain tumors drives the development of new treatment modalities. In view of the multiple activities of growth hormone-releasing hormone (GHRH), we hypothesized that pretreatment with a GHRH agonist, JI-34, might increase the susceptibility of U-87 MG glioblastoma multiforme (GBM) cells to subsequent treatment with the cytotoxic drug, doxorubicin (DOX). This concept was corroborated by our findings, in vivo, showing that the combination of the GHRH agonist, JI-34, and DOX inhibited the growth of GBM tumors, transplanted into nude mice, more than DOX alone. In vitro, the pretreatment of GBM cells with JI-34 potentiated inhibitory effects of DOX on cell proliferation, diminished cell size and viability, and promoted apoptotic processes, as shown by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide proliferation assay, ApoLive-Glo multiplex assay, and cell volumetric assay. Proteomic studies further revealed that the pretreatment with GHRH agonist evoked differentiation decreasing the expression of the neuroectodermal stem cell antigen, nestin, and up-regulating the glial maturation marker, GFAP. The GHRH agonist also reduced the release of humoral regulators of glial growth, such as FGF basic and TGFβ. Proteomic and gene-expression (RT-PCR) studies confirmed the strong proapoptotic activity (increase in p53, decrease in v-myc and Bcl-2) and anti-invasive potential (decrease in integrin α3) of the combination of GHRH agonist and DOX. These findings indicate that the GHRH agonists can potentiate the anticancer activity of the traditional chemotherapeutic drug, DOX, by multiple mechanisms including the induction of differentiation of cancer cells.Glioblastoma multiforme (GBM) is one of the most aggressive human cancers, and the afflicted patients inevitably succumb. The dismal outcome of this malignancy demands great efforts to find improved methods of treatment (1). Many compounds have been synthesized in our laboratory in the past few years that have proven to be effective against diverse malignant tumors (214). These are peptide analogs of hypothalamic hormones: luteinizing hormone-releasing hormone (LHRH), growth hormone-releasing hormone (GHRH), somatostatin, and analogs of other neuropeptides such as bombesin and gastrin-releasing peptide. The receptors for these peptides have been found to be widely distributed in the human body, including in many types of cancers (214). The regulatory functions of these hypothalamic hormones and other neuropeptides are not confined to the hypothalamo–hypophyseal system or, even more broadly, to the central nervous system (CNS). In particular, GHRH can induce the differentiation of ovarian granulosa cells and other cells in the reproductive system and function as a growth factor in various normal tissues, benign tumors, and malignancies (24, 6, 11, 1418). Previously, we also reported that antagonistic cytototoxic derivatives of some of these neuropeptides are able to inhibit the growth of several malignant cell lines (214).Our earlier studies showed that treatment with antagonists of LHRH or GHRH rarely effects complete regression of glioblastoma-derived tumors (5, 7, 10, 11). Previous studies also suggested that growth factors such as EGF or agonistic analogs of LHRH serving as carriers for cytotoxic analogs and functioning as growth factors may sensitize cancer cells to cytotoxic treatments (10, 19) through the activation of maturation processes. We therefore hypothesized that pretreatment with one of our GHRH agonists, such as JI-34 (20), which has shown effects on growth and differentiation in other cell lines (17, 18, 21, 22), might decrease the pluripotency and the adaptability of GBM cells and thereby increase their susceptibility to cytotoxic treatment.In vivo, tumor cells were implanted into athymic nude mice, tumor growth was recorded weekly, and final tumor mass was measured upon autopsy. In vitro, proliferation assays were used for the determination of neoplastic proliferation and cell growth. Changes in stem (nestin) and maturation (GFAP) antigen expression was evaluated with Western blot studies in vivo and with immunocytochemistry in vitro. The production of glial growth factors (FGF basic, TGFβ) was verified by ELISA. Further, using the Human Cancer Pathway Finder real-time quantitative PCR, numerous genes that play a role in the development of cancer were evaluated. We placed particular emphasis on the measurement of apoptosis, using the ApoLive-Glo Multiplex Assay kit and by detection of the expression of the proapoptotic p53 protein. This overall approach permitted the evaluation of the effect of GHRH agonist, JI-34, on the response to chemotherapy with doxorubicin.  相似文献   

19.
Polyphenism is the phenomenon in which alternative phenotypes are produced by a single genotype in response to environmental cues. An extreme case is found in social insects, in which reproductive queens and sterile workers that greatly differ in morphology and behavior can arise from a single genotype. Experimental evidence for maternal effects on caste determination, the differential larval development toward the queen or worker caste, was recently documented in Pogonomyrmex seed harvester ants, in which only colonies with a hibernated queen produce new queens. However, the proximate mechanisms behind these intergenerational effects have remained elusive. We used a combination of artificial hibernation, hormonal treatments, gene expression analyses, hormone measurements, and vitellogenin quantification to investigate how the combined effect of environmental cues and hormonal signaling affects the process of caste determination in Pogonomyrmex rugosus. The results show that the interplay between insulin signaling, juvenile hormone, and vitellogenin regulates maternal effects on the production of alternative phenotypes and set vitellogenin as a likely key player in the intergenerational transmission of information. This study reveals how hibernation triggers the production of new queens in Pogonomyrmex ant colonies. More generally, it provides important information on maternal effects by showing how environmental cues experienced by one generation can translate into phenotypic variation in the next generation.Many plants and animals can express specific adaptive responses to their environment through phenotypic plasticity, whereby a given genotype can develop into different phenotypes depending on environmental conditions (1, 2). Maternal effects, through which the environmental conditions experienced by the mother are translated into phenotypic variation in the offspring (3, 4), contribute to many phenotypic traits in a wide variety of taxa (5, 6) and have important ecological and evolutionary consequences (7, 8). Investigating the mechanisms of cross-generational transmission of information underlying maternal effects is needed to better understand the optimization of phenotypes in changing environments (6) and, more generally, the evolution of life history strategies (9).In many insect species, maternal effects are known to affect polyphenism (3, 10), an extreme form of phenotypic plasticity characterized by the production of alternative and discrete phenotypes from a single genotype (1, 1113). Such maternal effects allow adequate responses to environmental cues such as temperature, photoperiod, nutrition, and population density in many species (10). Examples of maternal effects on insect polyphenism include the production of sexual versus parthenogenetic morphs in aphids (14, 15), winged versus wingless morphs in firebugs (16), and dispersal versus solitary morphs in locusts (17, 18). The endocrine system was found to play a role in the regulation of some maternal effects on insect polyphenisms (1921), but the nature of the physiological and genetic pathways interacting with the hormonal system to translate environmental cues into offspring polyphenism remains mostly unknown (22).The most striking example of polyphenism is found in insect societies (23), where a reproductive division of labor leads to the coexistence of fertile queens and sterile workers that greatly differ in morphology and behavior (24, 25). Even though recent studies revealed genetic influences on caste determination in social insects (reviewed in ref. 26), female caste fate is primarily influenced by environmental factors in most species studied (2739). In ants, several studies suggested that maternal factors such as temperature or queen age may affect caste determination (4044). However, it is only recently that the first example of maternal effects on female caste polyphenism was documented experimentally (45). Cross-fostering of eggs between hibernated and nonhibernated Pogonomyrmex colonies revealed strong maternal effects on caste production, as only eggs produced by a hibernated queen were able to develop into queens, irrespective of the hibernation status of the rest of the colony (45). Such maternal effects on the caste fate of the female offspring require that the hibernation triggers changes in the queen that affect polyphenism in the offspring. Hormones may be involved in this process in Pogonomyrmex ants, as Pogonomyrmex rugosus queen- and worker-destined eggs differed in their ecdysteroid content (45) and Pogonomyrmex barbatus mature queens treated with juvenile hormone (JH) were recently found to produce larger workers (46).Studies on the mechanisms regulating insect polyphenisms (reviewed in ref. 10) suggest that the insulin/insulin-like growth factor signaling (IIS), JH, and vitellogenin (Vg) pathways, known to regulate reproduction in adult insects (4751), play predominant roles in modulating larval development in response to environmental cues. A well-known example illustrating the role of these pathways is the caste fate of the female brood (queen or worker) in the honey bee Apis mellifera (5258). In this species, worker-triggered differences in larval diet induce changes in IIS that affect JH (57), possibly through the release of neuropeptides (e.g., allatostatin and allatotropin) that influence JH production by the corpus allatum, as found in Drosophila (59). Changes in JH in turn affect the production of Vg (6062), which may be involved in the process of caste determination (62, 63). Such effects of JH on Vg production, also reported in flies (64), locusts (65), and cockroaches (66), have been proposed to involve the action of ecdysteroids (62, 6770). IIS, JH, and Vg may also play a role in the regulation of caste differentiation of larvae in ants, as caste-specific expressions of genes involved in the IIS pathway were documented in Solenopsis invicta (71) and Diacamma sp. (72). Interestingly, caste-specific differences in IIS, JH, and Vg were also documented in adult ants and bees (48, 7378), suggesting further roles of these pathways in the regulation of social life (74, 79).We propose that the interplay between IIS, JH, and Vg regulates maternal effects on caste polyphenism in ants by translating the environmental conditions experienced by the queen during hibernation into the production of alternative phenotypes in the offspring. Under this hypothesis, IIS would translate environmental cues into changes in JH, which would, in turn, affect the amount of Vg in queens and in eggs, thus possibly affecting the caste fate of the offspring (62, 63). This hypothesis makes four predictions. First, a pharmacological increase of JH in queens should mimic the effect of hibernation and stimulate the production of queens. Second, hibernation should affect IIS and the production of JH in queens. Third, both hibernation and a JH increase should stimulate the production of Vg in queens. Finally, Vg content should differ between queen- and worker-destined eggs. We tested these predictions by performing artificial hibernation, hormonal treatments, gene expression analyses, hormone measurements, and Vg quantification in Pogonomyrmex rugosus, an ant species in which temperature-triggered changes in the queen had previously been shown to affect the relative production of queens and workers. Each of the four predictions was confirmed by our experiments, thus revealing that the interplay between IIS, JH, and Vg regulates maternal effects on caste polyphenism in P. rugosus.  相似文献   

20.
Tumor heterogeneity confounds cancer diagnosis and the outcome of therapy, necessitating analysis of tumor cell subsets within the tumor mass. Elevated expression of hyaluronan (HA) and HA receptors, receptor for HA-mediated motility (RHAMM)/HA-mediated motility receptor and cluster designation 44 (CD44), in breast tumors correlates with poor outcome. We hypothesized that a probe for detecting HA–HA receptor interactions may reveal breast cancer (BCa) cell heterogeneity relevant to tumor progression. A fluorescent HA (F-HA) probe containing a mixture of polymer sizes typical of tumor microenvironments (10–480 kDa), multiplexed profiling, and flow cytometry were used to monitor HA binding to BCa cell lines of different molecular subtypes. Formulae were developed to quantify binding heterogeneity and to measure invasion in vivo. Two subsets exhibiting differential binding (HA−/low vs. HAhigh) were isolated and characterized for morphology, growth, and invasion in culture and as xenografts in vivo. F-HA–binding amounts and degree of heterogeneity varied with BCa subtype, were highest in the malignant basal-like cell lines, and decreased upon reversion to a nonmalignant phenotype. Binding amounts correlated with CD44 and RHAMM displayed but binding heterogeneity appeared to arise from a differential ability of HA receptor-positive subpopulations to interact with F-HA. HAhigh subpopulations exhibited significantly higher local invasion and lung micrometastases but, unexpectedly, lower proliferation than either unsorted parental cells or the HA−/low subpopulation. Querying F-HA binding to aggressive tumor cells reveals a previously undetected form of heterogeneity that predicts invasive/metastatic behavior and that may aid both early identification of cancer patients susceptible to metastasis, and detection/therapy of invasive BCa subpopulations.Breast tumors display substantial heterogeneity driven by genetic and epigenetic mechanisms (13). These processes select and support tumor cell subpopulations with distinct phenotypes in proliferation, metastatic/invasive proclivity, and treatment susceptibility that contribute to clinical outcomes. Currently, there is a paucity of biomarkers to identify these subpopulations (312). Although detection of genetic heterogeneity may itself be a breast cancer (BCa) prognostic marker (3, 1315), the phenotypes manifested from this diversity are context-dependent. Therefore, phenotypic markers provide additional powerful tools for biological information required to design diagnostics and therapeutics. Glycomic approaches have enormous potential for revealing tumor cell phenotypic heterogeneity because glycans are themselves highly heterogeneous and their complexity reflects the nutritional, microenvironmental, and genetic dynamics of the tumors (1618).We used hyaluronan (HA) as a model carbohydrate ligand for probing heterogeneity in glycosaminoglycan–BCa cell receptor interactions. We reasoned this approach would reveal previously undetected cellular and functional heterogeneity linked to malignant progression because the diversity of cell glycosylation patterns, which can occur as covalent and noncovalent modifications of proteins and lipids as well as different sizes of such polysaccharides as HA, is unrivaled (16, 17, 19). In particular, tumor and wound microenvironments contain different sizes of HA polymers that bind differentially to cell receptors to activate signaling pathways regulating cell migration, invasion, survival, and proliferation (1922).More than other related glycosaminoglycans, HA accumulation within BCa tumor cells and peritumor stroma is a predictor of poor outcome (23) and of the conversion of the preinvasive form of BCa, ductal carcinoma in situ, to an early invasive form of BCa (24). HA is a nonantigenic and large, relatively simple, unbranched polymer, but the manner in which it is metabolized is highly complex (19, 25). There are literally thousands of different HA sizes in remodeling microenvironments, including tumors. HA polymers bind to cells via at least six known receptors (16, 19, 20, 2632). Two of these, cluster designation 44 (CD44) and receptor for HA-mediated motility/HA-mediated motility receptor (RHAMM/HMMR), form multivalent complexes with different ranges of HA sizes (19, 29, 33), and both receptors are implicated in BCa progression (1921, 23, 29, 30, 3336). Elevated CD44 expression in the peritumor stroma is associated with increased relapse (37), and in primary BCa cell subsets may contribute to tumor initiation and progression (3840). Elevated RHAMM expression in BCa tumor subsets is a prognostic indicator of poor outcome and increased metastasis (22, 33, 41). RHAMM polymorphisms may also be a factor in BCa susceptibility (42, 43).We postulated that multivalent interactions resulting from mixture of a polydisperse population of fluorescent HA (F-HA) sizes, typical of those found in remodeling microenvironments of wounds and tumors (19, 20, 29), with cellular HA receptors would uncover a heterogeneous binding pattern useful for sorting tumor cells into distinct subsets. We interrogated the binding of F-HA to BCa lines of different molecular subtypes, and related binding/uptake patterns to CD44 and RHAMM display, and to tumor cell growth, invasion, and metastasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号