首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Objectives: Several reports suggest that mitochondrial dysfunction is involved in the pathophysiology of autism spectrum disorders (ASD). Therefore, mitochondrial DNA (mtDNA) copy number, a common biomarker for mitochondrial dysfunction, might be associated with ASD phenotypes.

Methods: Relative mtDNA copy number in the peripheral blood cells of 100 Korean ASD patients and their unaffected sib-pairs was measured by quantitative polymerase chain reaction (qPCR).

Results: ASD patients had significantly higher relative mtDNA copy numbers than their unaffected sibs (P?=?.042). In addition, there were statistically significant correlations between mtDNA copy number and clinical phenotypes for language and communication in ASD.

Conclusions: Our findings suggest that mitochondrial dysfunction and elevated mtDNA copy number may be a biological subtype of ASD that is related to the phenotype for communication.  相似文献   

2.
The present investigation was carried out to elucidate a possible molecular mechanism related to the protective effect of quercetin administration against aluminium-induced oxidative stress on various mitochondrial respiratory complex subunits with special emphasis on the role of PGC-1α and its downstream targets, i.e. NRF-1, NRF-2 and Tfam in mitochondrial biogenesis. Aluminium lactate (10 mg/kg b.wt./day) was administered intragastrically to rats, which were pre-treated with quercetin 6 h before aluminium (10 mg/kg b.wt./day, intragastrically) for 12 weeks. We found a decrease in ROS levels, mitochondrial DNA oxidation and citrate synthase activity in the hippocampus (HC) and corpus striatum (CS) regions of rat brain treated with quercetin. Besides this an increase in the mRNA levels of the mitochondrial encoded subunits – ND1, ND2, ND3, Cyt b, COX1, COX3 and ATPase6 along with increased expression of nuclear encoded subunits COX4, COX5A and COX5B of electron transport chain (ETC). In quercetin treated group an increase in the mitochondrial DNA copy number and mitochondrial content in both the regions of rat brain was observed. The PGC-1α was up regulated in quercetin treated rats along with NRF-1, NRF-2 and Tfam, which act downstream from PGC-1α. Electron microscopy results revealed a significant decrease in the mitochondrial cross-section area, mitochondrial perimeter length and increase in mitochondrial number in case of quercetin treated rats as compared to aluminium treated ones. Therefore it seems quercetin increases mitochondrial biogenesis and makes it an almost ideal flavanoid to control or limit the damage that has been associated with the defective mitochondrial function seen in many neurodegenerative diseases.  相似文献   

3.
The aim of this study is to determine if there is a pathology-related variation in mitochondrial (mt)DNA copy numbers in brains of patients with multiple sclerosis (MS). Our recent study demonstrated an age-dependent but excluded a MS pathology-related increase in the proportion of cytochrome oxidase (COX)-negative cells and deleted mtDNA molecules in postmortem brain tissue specimens of patients and controls (Blokhin et al., Neuromolecular Medicine, in press, 2008). This corollary study further extends our efforts defining mitochondrial contributions to tissue degeneration associated with inflammatory demyelination. Copy number variations of mtDNA molecules were defined by quantifying the mtDNA ND1 gene copies relative to the invariable nuclear ribosomal 18S gene copies (ND1/r18S) using real-time polymerase chain reaction analyses in laser dissected, COX-positive and COX-negative single neurons and glial cells from frozen postmortem normal-appearing gray (NAGM) and white matter (NAWM) regions and chronic active plaques of MS patients, and gray matter (GM) and white matter (WM) regions of age matched non-neurological disease (NND) controls. ND1/r18S values were correlated with tissue regions, pathology, and age. While the ND1/r18S values were similar in NAWM and plaque-containing specimens of MS patients as well as in NAWM of patients and WM of age-matched NND controls, we found significantly higher mtDNA copy number values in neurons of NAGM than in cells of other MS brain regions. The ND1/r18S values were even higher in NAGM than in GM of age-matched NND controls. An age-related decline in ND1/r18S values was also noted in neurons of both MS patients and NND controls. These observations exclude a change in mtDNA copy numbers in plaques, however, suggest a compensatory replication of mtDNA or mitochondria in the cortex with neuroaxonal loss in MS. The age-related decline in mtDNA copy numbers may explain some features of late-onset MS.  相似文献   

4.
Mitochondrial DNA (mtDNA) mutations can cause rare forms of dystonia, but the role of mtDNA mutations in other types of dystonia is not well understood. We now report identification by sequencing, restriction endonuclease analyses, and clonal analyses of a heteroplasmic missense A to G base pair substitution at nucleotide position 3796 (A3796G) in the gene encoding the ND1 subunit of mitochondrial complex I in a patient with adult-onset dystonia, spasticity, and core-type myopathy. The mutation converts a highly conserved threonine to an alanine. The same mutation subsequently was identified in 2 of 74 additional unrelated adult-onset dystonia patients. A muscle biopsy was obtained from 1 of these 2 subjects and this revealed abnormalities of electron transport chain (ETC) activities. The mutation was absent in 64 subjects with early onset dystonia, 82 normal controls, and 65 subjects with Parkinson's disease or multiple system atrophy. The A3796G mutation previously has been reported in 3 of 226 subjects from mitochondrial haplogroup H. Each of the 3 subjects in our study harboring the A3796G mutation was also from haplogroup H. However, a subgroup analysis of haplogroup H subjects from our study indicates that the A3796G mutation is significantly overrepresented among haplogroup H adult-onset dystonia subjects compared with haplogroup H controls (P<0.01). This difference remains significant even after excluding the index patient (P=0.04). These data suggest that, among haplogroup H subjects, the presence of the A3796G mutation increases the risk of developing adult-onset dystonia.  相似文献   

5.
Abstract

Objectives: We aimed to explore mitochondrial DNA (mtDNA) copy number, damage, repair and degradation in peripheral blood mononuclear cells (PBMCs) of patients with depression and to compare the results with healthy subjects.

Methods: Total genomic DNA was isolated from PBMCs of 25 depressed and 60 healthy subjects before, immediately after, and 3?h after the exposure to H2O2. Evaluation of mtDNA copy number was performed using real-time PCR and 2-ΔCt methods. Semi-long run real-time PCR was used to estimate the number of mtDNA lesions.

Results: Baseline mtDNA copy number did not differ in cells of healthy and depressed subjects; however, it was negatively correlated with the severity of the episode. After a 10-min challenge with hydrogen peroxide (H2O2), depressed patients’ PBMCs exhibited slower changes of the copy number, indicating a lower efficiency of mtDNA degradation compared to controls. Moreover, a significantly higher number of mtDNA lesions was found in depressed patients at the baseline as well as at other experimental time points. mtDNA lesions were also elevated in depressed patient cells immediately after H2O2 exposure. Induction of oxidative stress had no significant influence on the cells of controls.

Conclusions: We are the first to show that impairment in repair and degradation of mtDNA may be involved in the pathophysiology of depression.  相似文献   

6.
Purpose: Mitochondrial defects have been associated with a series of muscular diseases. Dysferlinopathy, however, has been rarely reported with mitochondrial dysfunction. Here we report a cohort of dysferlinopathy patients with mitochondrial abnormalities found in muscle. Methods: Clinical data and muscle pathologies of nine cases with dysferlinopathy were retrospectively studied. mtDNA copy number, protein levels and activities of mitochondrial enzyme complexes were assayed. Results: Nine patients were diagnosed as having dysferlinopathy by DYSF sequencing and quantification of dysferlin levels in muscle homogenates. Muscle biopsies exhibited dystrophic changes (n = 9), ragged-red fibers (= 9) and cytochrome c oxidase-deficient fibers (n = 9). mtDNA copy number increased significantly in 56% (15/27) of fibers with mitochondrial histology. Protein levels of complex IV subunits II (n = 5), complex III subunit core 2 (n = 2) and complex I NDUFB1 (n = 1) decreased. Impaired activities of complexes I, III and IV were observed in 56%, 33% and 78% of subjects and the activities were reduced by 21%, 18% and 40%, respectively. Besides, loss activities of complexes I/IV and decreased ATP level were also found in fibroblasts from dysferlinopathy. Conclusion: Prominent mitochondrial abnormalities are common pathological findings in muscle from dysferlinopathy. Our data indicated that mitochondria may play a significant role in the progression of dysferlinopathy and also highlighted the potential of mitochondrial protective drugs in rescuing the symptoms of dysferlinopathy.  相似文献   

7.

Introduction

We have comprehensively described the expression profiles of mitochondrial DNA and nuclear DNA genes that encode subunits of the respiratory oxidative phosphorylation (OXPHOS) complexes (I–V) in the hippocampus from young controls, age matched, mild cognitively impaired (MCI), and Alzheimer's disease (AD) subjects.

Methods

Hippocampal tissues from 44 non-AD controls (NC), 10 amnestic MCI, and 18 AD cases were analyzed on Affymetrix Hg-U133 plus 2.0 arrays.

Results

The microarray data revealed significant down regulation in OXPHOS genes in AD, particularly those encoded in the nucleus. In contrast, there was up regulation of the same gene(s) in MCI subjects compared to AD and ND cases. No significant differences were observed in mtDNA genes identified in the array between AD, ND, and MCI subjects except one mt-ND6.

Discussion

Our findings suggest that restoration of the expression of nuclear-encoded OXPHOS genes in aging could be a viable strategy for blunting AD progression.  相似文献   

8.
A random retrospective chart review was conducted to document serum carnitine levels on 100 children with autism. Concurrently drawn serum pyruvate, lactate, ammonia, and alanine levels were also available in many of these children. Values of free and total carnitine (p < 0.001), and pyruvate (p=0.006) were significantly reduced while ammonia and alanine levels were considerably elevated (p < 0.001) in our autistic subjects. The relative carnitine deficiency in these patients, accompanied by slight elevations in lactate and significant elevations in alanine and ammonia levels, is suggestive of mild mitochondrial dysfunction. It is hypothesized that a mitochondrial defect may be the origin of the carnitine deficiency in these autistic children.  相似文献   

9.
Converging genetic, postmortem gene-expression, cellular, and neuroimaging data implicate mitochondrial dysfunction in bipolar disorder. This study was conducted to investigate whether mitochondrial DNA (mtDNA) haplogroups and single nucleotide variants (SNVs) are associated with sub-phenotypes of bipolar disorder. MtDNA from 224 patients with Bipolar I disorder (BPI) was sequenced, and association of sequence variations with 3 sub-phenotypes (psychosis, rapid cycling, and adolescent illness onset) was evaluated. Gene-level tests were performed to evaluate overall burden of minor alleles for each phenotype. The haplogroup U was associated with a higher risk of psychosis. Secondary analyses of SNVs provided nominal evidence for association of psychosis with variants in the tRNA, ND4 and ND5 genes. The association of psychosis with ND4 (gene that encodes NADH dehydrogenase 4) was further supported by gene-level analysis. Preliminary analysis of mtDNA sequence data suggests a higher risk of psychosis with the U haplogroup and variation in the ND4 gene implicated in electron transport chain energy regulation. Further investigation of the functional consequences of this mtDNA variation is encouraged.  相似文献   

10.
Evidence suggests that mitochondrial dysfunction is involved in the pathophysiology of psychiatric disorders such as schizophrenia (SZ) and bipolar disorder (BD). However, the exact mechanisms underlying this dysfunction are not well understood. Impaired activity of electron transport chain (ETC) complexes has been described in these disorders and may reflect changes in mitochondrial metabolism and oxidative stress markers. The objective of this study was to compare ETC complex activity and protein and lipid oxidation markers in 12 euthymic patients with BD type I, in 18 patients with stable chronic SZ, and in 30 matched healthy volunteers. Activity of complexes I, II, and III was determined by enzyme kinetics of mitochondria isolated from peripheral blood mononuclear cells (PBMCs). Protein oxidation was evaluated using the protein carbonyl content (PCC) method, and lipid peroxidation, the thiobarbituric acid reactive substances (TBARS) assay kit. A significant decrease in complex I activity was observed (p = 0.02), as well as an increase in plasma levels of TBARS (p = 0.00617) in patients with SZ when compared to matched controls. Conversely, no significant differences were found in complex I activity (p = 0.17) or in plasma TBARS levels (p = 0.26) in patients with BD vs. matched controls. Our results suggest that mitochondrial complex I dysfunction and oxidative stress play important roles in the pathophysiology of SZ and may be used in potential novel adjunctive therapy for SZ, focusing primarily on cognitive impairment and disorder progression.  相似文献   

11.
Blood concentrations of pituitary hormones adrenocorticotropin (ACTH), prolactin, growth hormone, and adrenal hormone–cortisol were measured in 36 autistic and 27 control individuals. Individuals with autism had significantly lower serum concentrations of cortisol (p < 10–6), and significantly higher concentrations of ACTH (p = 0.002) than control age- and sex-matched subjects. Also, prolactin concentrations in autistic patients with epilepsy were significantly higher when compared with normal subjects. The observed hormonal changes may indicate dysfunction of the hypothalamo-pituitary-adrenal axis in individuals with autism.  相似文献   

12.
The autistic spectrum disorders have a significant male bias in incidence, which is unexplained. The Sertoli cells of the immature testes secrete supra-adult levels of Müllerian-inhibiting substance/anti-Müllerian hormone (AMH) and inhibin B (InhB), with both hormones being putative regulators of brain development. We report here, that 82 boys with an autism spectrum disorder have normal levels of InhB and AMH. However, the boys'' level of InhB correlated with their autism diagnostic interview—revised (ADI-R) scores for the social interaction (R=0.29, P=0.009, N=82) and communication domains (R=0.29, P=0.022, N=63), and with the number of autistic traits the boys exhibited (R=0.34 and 0.27, respectively). The strengths of the abovementioned correlates were stronger in the boys with milder autism (R=0.42 and 0.50, respectively), with AMH exhibiting a significant negative correlation to the ADI-R score in these boys (R=−0.44 and R=−0.39, respectively). Neither hormone correlated to the incidence of stereotyped and repetitive behaviours. This suggests that the male bias in the autistic spectrum has multiple determinants, which modulate the effects of an otherwise non-dimorphic pathology. Furthermore, AMH and InhB have opposing effects on the SMAD1/5/8 pathway, and opposing correlates to autistic traits, implicating the SMAD pathways as a putative point of molecular convergence for the autistic spectrum.  相似文献   

13.
The copy number of DUF1220, a protein domain implicated in human brain evolution, has been linearly associated with autism severity. Given the possibility that autism and schizophrenia are related disorders, the present study examined DUF1220 copy number variation in schizophrenia severity. There are notable similarities between autism symptoms and schizophrenia negative symptoms, and divergence between autism symptoms and schizophrenia positive symptoms. We therefore also examined DUF1220 copy number in schizophrenia subgroups defined by negative and positive symptom features, versus autistic individuals and controls. In the schizophrenic population (N=609), decreased DUF1220 copy number was linearly associated with increasing positive symptom severity (CON1 P=0.013, HLS1 P=0.0227), an association greatest in adult-onset schizophrenia (CON1 P=0.00155, HLS1 P=0.00361). In schizophrenic males, DUF1220 CON1 subtype copy number increase was associated with increased negative symptom severity (P=0.0327), a finding similar to that seen in autistic populations. Subgroup analyses demonstrated that schizophrenic individuals with predominantly positive symptoms exhibited reduced CON1 copy number compared with both controls (P=0.0237) and schizophrenic individuals with predominantly negative symptoms (P=0.0068). These findings support the view that (1) autism and schizophrenia exhibit both opposing and partially overlapping phenotypes and may represent a disease continuum, (2) variation in DUF1220 copy number contributes to schizophrenia disease risk and to the severity of both disorders, and (3) schizophrenia and autism may be, in part, a harmful by-product of the rapid and extreme evolutionary increase in DUF1220 copy number in the human species.  相似文献   

14.
G. R. Campbell, A. Reeve, I. Ziabreva, T. M. Polvikoski, R. W. Taylor, R. Reynolds, D. M. Turnbull and D. J. Mahad (2013) Neuropathology and Applied Neurobiology 39, 377–389 Mitochondrial DNA deletions and depletion within paraspinal muscles Aims: Although mitochondrial abnormalities have been reported within paraspinal muscles in patients with axial weakness and neuromuscular disease as well as with ageing, the basis of respiratory deficiency in paraspinal muscles is not known. This study aimed to determine the extent and basis of respiratory deficiency in paraspinal muscles from cases undergoing surgery for degenerative spinal disease and post mortem cases without a history of spinal disease, where age‐related histopathological changes were previously reported. Methods: Cervical and lumbar paraspinal muscles were obtained peri‐operatively from 13 patients and from six post mortem control cases (age range 18–82 years) without a neurological disease. Sequential COX/SDH (mitochondrial respiratory chain complex IV/complex II) histochemistry was performed to identify respiratory‐deficient muscle fibres (lacking complex IV with intact complex II activity). Real‐time polymerase chain reaction, long‐range polymerase chain reaction and sequencing were used to identify and characterize mitochondrial DNA (mtDNA) deletions and determine mtDNA copy number status. Mitochondrial respiratory chain complex subunits were detected by immunohistochemistry. Results: The density of respiratory‐deficient fibres increased with age. On average, 3.96% of fibres in paraspinal muscles were respiratory‐deficient (range 0–10.26). Respiratory deficiency in 36.8% of paraspinal muscle fibres was due to clonally expanded mtDNA deletions. MtDNA depletion accounted for further 13.5% of respiratory deficiency. The profile of immunohistochemically detected subunits of complexes was similar in respiratory‐deficient fibres with and without mtDNA deletions or mtDNA depletion. Conclusions: Paraspinal muscles appeared to be particularly susceptible to age‐related mitochondrial respiratory chain defects. Clonally expanded mtDNA deletions and focal mtDNA depletion may contribute towards the development of age‐related postural abnormalities.  相似文献   

15.
We studied 10 patients with a variable degree of mtDNA depletion in muscle. Seven patients showed a clear-cut myopathic pattern, while the three remaining had brain involvement. There was no relationship between age at onset and relative mtDNA copy number in muscle, but we found an apparent correlation between clinical severity and degree of muscle mtDNA depletion. Muscle morphology showed that mtDNA depletion was associated with mitochondrial proliferation and cytochrome c oxidase negative fibers. Biochemical studies revealed single or combined defects of mtDNA-dependent respiratory chain complexes. Our data indicate that patients with mtDNA depletion may have a more variable age at onset and clinical evolution and wider phenotype than previously thought. The diagnosis of this condition, so far regarded as rare, may have been overlooked to some extent.  相似文献   

16.
17.

Objectives

Mitochondrial DNA (mtDNA) heteroplasmy is a mixture of normal and mutated mtDNA molecules in a cell. High levels of heteroplasmy at several mtDNA sites in complex I lead to inherited neurological neurologic diseases and brain magnetic resonance imaging (MRI) abnormalities. Here, we test the hypothesis that mtDNA heteroplasmy at these complex I sites is associated with depressive symptoms in the elderly.

Methods

We examined platelet mtDNA heteroplasmy for associations with depressive symptoms among 137 participants over age 70 from the community‐based Health, Aging and Body Composition Study. Depressive symptoms were assessed using the 10‐point version of the Center for Epidemiologic Studies Depression Scale (CES‐D 10). Complete mtDNA sequencing was performed and heteroplasmy derived for 5 mtDNA sites associated with neurologic mitochondrial diseases and tested for associations with depressive symptoms.

Results

Of 5 candidate complex I mtDNA mutations examined for effects on depressive symptoms, increased heteroplasmy at m.13514A>G, ND5, was significantly associated with higher CES‐D score (P = .01). A statistically significant interaction between m.13514A > G heteroplasmy and sex was detected (P = .04); in sex‐stratified analyses, the impact of m.13514A>G heteroplasmy was stronger in male (P = .003) than in female (P = .98) participants. Men in highest tertile of mtDNA heteroplasmy exhibited significantly higher (P = .0001) mean ± SE CES‐D 10 scores, 5.37 ± 0.58, when compared with those in the middle, 2.13 ± 0.52, and lowest tertiles, 2.47 ± 0.58. No associations between the 4 other candidate sites and depressive symptoms were observed.

Conclusions

Increased mtDNA heteroplasmy at m.13514A>G is associated with depressive symptoms in older men. Heteroplasmy may represent a novel biological risk factor for depression.  相似文献   

18.
Current approaches for diagnosing autism have high diagnostic validity but are time consuming and can contribute to delays in arriving at an official diagnosis. In a pilot study, we used machine learning to derive a classifier that represented a 72% reduction in length from the gold-standard Autism Diagnostic Observation Schedule-Generic (ADOS-G), while retaining >97% statistical accuracy. The pilot study focused on a relatively small sample of children with and without autism. The present study sought to further test the accuracy of the classifier (termed the observation-based classifier (OBC)) on an independent sample of 2616 children scored using ADOS from five data repositories and including both spectrum (n=2333) and non-spectrum (n=283) individuals. We tested OBC outcomes against the outcomes provided by the original and current ADOS algorithms, the best estimate clinical diagnosis, and the comparison score severity metric associated with ADOS-2. The OBC was significantly correlated with the ADOS-G (r=−0.814) and ADOS-2 (r=−0.779) and exhibited >97% sensitivity and >77% specificity in comparison to both ADOS algorithm scores. The correspondence to the best estimate clinical diagnosis was also high (accuracy=96.8%), with sensitivity of 97.1% and specificity of 83.3%. The correlation between the OBC score and the comparison score was significant (r=−0.628), suggesting that the OBC provides both a classification as well as a measure of severity of the phenotype. These results further demonstrate the accuracy of the OBC and suggest that reductions in the process of detecting and monitoring autism are possible.  相似文献   

19.
The mitochondrial DNA (mtDNA) depletion syndrome is a genetically heterogeneous group of diseases caused by nuclear gene mutations and secondary reduction in mtDNA copy number. We describe a patient with progressive muscle weakness and increased creatine kinase and lactate levels. Muscle weakness was first noted at age 1.5 years and he died of respiratory failure and bronchopneumonia at age 3.5 years. The muscle biopsy showed dystrophic features with ragged red fibers and numerous cytochrome c oxidase (COX)-negative fibers. qPCR analysis demonstrated depletion of mtDNA and sequence analysis of the mitochondrial thymidine kinase 2 (TK2) gene revealed two novel heterozygous variants, c.332C > T, p.(T111I) and c.156 + 5G > C. Quantitative analysis of mtDNA in single muscle fibers demonstrated that COX-deficient fibers showed more pronounced depletion of mtDNA when compared with fibers with residual COX activity (P < 0.01, n = 25). There was no evidence of manifestations from other organs than skeletal muscle although there was an apparent reduction of mtDNA copy number also in liver. The patient showed a pronounced, albeit transient, improvement in muscle strength after onset of treatment with coenzyme Q10, asparaginase, and increased energy intake, suggesting that nutritional modulation may be a therapeutic option in myopathic mtDNA depletion syndrome.  相似文献   

20.
Cytochrome c oxidase (COX)-deficient fibers and multiple mitochondrial DNA (mtDNA) deletions are frequent findings in sporadic inclusion body myositis (s-IBM). However, the functional impact of these defects is not known. We investigated oxygen desaturation during exercise using the forearm exercise test, accumulation of lactate during exercise using a cycle ergometry test and mitochondrial changes (COX-deficient fibers, biochemical activities of respiratory chain complexes, multiple mtDNA deletions by long-range polymerase chain reaction) in 10 patients with s-IBM and compared the findings with age and sex-matched normal and diseased controls (without mitochondrial disorders) as well as patients with mitochondrial disorder due to nuclear gene defects resulting in multiple mtDNA deletions (MITO group). The mean age of the s-IBM patients was 68.2 ± 5.7 years (range: 56–75). Patients with s-IBM had statistically significantly reduced oxygen desaturation (ΔsO2) during the handgrip exercise (p < 0.05) and elevated peak serum lactate levels during cycle ergometry compared to normal controls (p < 0.05). The percentage of COX-deficient fibers in s-IBM and MITO patients was significantly increased compared to normal controls (p < 0.01). Five out of nine s-IBM patients had multiple mtDNA deletions. Thirty-three percent of s-IBM patients showed an increased citrate synthase content and decreased activities of complex IV (COX). The biochemical pattern of respiratory chain complexes in patients with s-IBM and MITO was similar. Histopathological analysis showed similar changes in s-IBM and MITO due to nuclear gene defects. Functional tests reflecting mitochondrial impairment suggest a contribution of mitochondrial defects to disease-related symptoms such as fatigue and exertion-induced symptoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号