首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liquid chromatographic method was developed for simultaneous quantitative determination of dicyclomine hydrochloride, mefenamic acid and paracetamol in their combined dosage form. The separation was achieved using a C18 column (250×4.6 mm id, 5 μm) using acetonitrile:20 mM potassium dihydrogen phosphate 70:30 (v/v) adjusted to pH 4 using orthophosphoric acid as mobile phase at a flow rate of 1 ml/min and detection at 220 nm. Separation was completed within 12 min. The retention times of dicyclomine hydrochloride, mefenamic acid and paracetamol were 3.8, 9.3 and 2.5 minutes respectively. The proposed method was found to have linearity in concentration range of 10–100 μg/ml for dicyclomine hydrochloride, 0.05-10 μg/ml for mefenamic acid and 0.1−20 μg/ml for paracetamol. The developed method has been statistically validated and was found to be simple, precise, reproducible and accurate. The developed and validated method was successfully used for the quantitative analysis of commercially available dosage form.  相似文献   

2.
A sensitive, fast, and stability-indicating isocratic reverse-phase ultra-performance liquid chromatography method was developed and validated for quantitative simultaneous determination of sodium methylparaben, sodium propylparaben and ketorolac tromethamine in topical dosage forms. Separation of all peaks was achieved by using acquity ethylene bridged hybrid C18 (50×2.1 mm, 1.7 μ) as stationary phase, mobile phase used was triethylamine buffer (pH 2.5):tetrahydrofuran:methanol (665:35:300, v/v/v) with isocratic mode at a flow rate of 0.40 ml/min. All component were detected at 252 nm with 10 min run time. The described method was found to be linear in the concentration range of 248-744 μg/ml for ketorolac tromethamine, 20.8-62.4 μg/ml for sodium methylparaben and 2.38-7.13 μg/ml for sodium propylparaben with correlation coefficients more than 0.999. Method was validated in terms of specificity, linearity, accuracy, precision, solution stability, filter equivalency, and robustness as per International Conference on Harmonization guideline. Formulation was exposed to the stress conditions of peroxide, acid, base, thermal, and photolytic degradation and proven all components were well separated in the presence of degradants.  相似文献   

3.
The present study depicts the development of a validated reversed-phase high performance liquid chromatographic method for the determination of the everolimus in presence of degradation products or pharmaceutical excipients. Stress study was performed on everolimus and it was found that it degrade sufficiently in oxidizing and acidic conditions but less degradation was found in alkaline, neutral, thermal and photolytic conditions. The separation was carried out on Hypersil BDS C18 column (100×4.6 mm, 5 μ) column having particle size 5 μ using acetate buffer:acetonitrile (50:50 v/v) with pH 6.5 adjusted with orthophosphoric acid as mobile phase at flow rate of 1 ml/min. The wavelength of the detection was 280 nm. A retention time (Rt) nearly 3.110 min was observed. The calibration curve for everolimus was linear (r2=0.999) from range of 25-150 μg/ml with limit of detection and limit of quantification of 0.036 μg/ml and 0.109 μg/ml, respectively. Analytical validation parameters such as selectivity, specificity, linearity, accuracy and precision were evaluated and relative standard deviation value for all the key parameters were less than 2.0%. The recovery of the drug after standard addition was found to be 100.55%. Thus, the developed RP-HPLC method was found to be suitable for the determination of everolimus in tablets containing various excipients.  相似文献   

4.
A simple, accurate, rapid and precise reversed-phase high-performance liquid chromatographic method has been developed and validated for simultaneous determination of cefpodoxime proxetil and dicloxacillin sodium in tablet. The chromatographic separation was carried out on kromasil C18 analytical column (250×4.6 mm; 5 μm) with a mixture of acetonitrile:methanol:trifloroacetic acid (0.001%) with pH 6.5 (30:50:20, v/v/v) as mobile phase; at a flow rate of 1.0 ml/min. UV detection was performed at 235 nm. The dicloxacillin sodium and cefpodoxime proxetil were eluted at 1.92 and 3.35 min, respectively. The peaks were eluted with better resolution. Calibration plots were linear over the concentration range 0.5-20 μg/ml for cefpodoxime proxetil (r2=0.9996) and 5-50 μg/ml for dicloxacillin sodium (r2=0.9987). The method was validated for accuracy, precision, linearity and specificity. The method was very sensitive with limit of detection 0.0726, 0.3685 μg/ml and limit of quantification 0.220, 1.116 μg/ml for cefpodoxime proxetil and dicloxacillin sodium, respectively. The high recovery and low relative standard deviation confirm the suitability of the method for routine determination of cefpodoxime proxetil and dicloxacillin sodium in bulk drug and tablet dosage form.  相似文献   

5.
An isocratic, stability-indicating, reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed for the quantitative determination of doxofylline and terbutaline sulphate, used for the treatment of respiratory problems. The chromatographic separation was achieved on a Zorbax-SB Phenyl 250 × 4.6mm × 5 μm column with the mobile phase consisting of a mixture of 25 mM ammonium acetate (pH 5.0) : acetonitrile (85:15 %v/v) at a flow rate of 1.0 ml/min. The eluate was monitored at 274 nm using a PDA detector. Forced degradation studies were performed on the bulk sample of doxofylline and terbutaline sulphate using acid (0.1N HCl), base (0.1N NaOH), oxidation (10% hydrogen peroxide), photolytic, and thermal degradation conditions. Good resolution was observed between the degradants and analytes. Degradation products resulting from the stress studies did not interfere with the detection of doxofylline and terbutaline sulphate, thus the assay is stability-indicating. The method has the requisite accuracy, selectivity, sensitivity, and precision for the simultaneous estimation of doxofylline and terbutaline sulphate in bulk and pharmaceutical dosage forms. The limit of quantitation and limit of detection were found to be 1.16 μg/ml and 0.38 μg/ml for doxofylline, 2.08 μg/ml and 0.62 μg/ml for terbutaline sulphate, respectively.  相似文献   

6.
A simple and rapid reversed phase-high performance liquid chromatographic method was developed for simultaneous determination of imipramine hydrochloride and diazepam in pharmaceutical formulations. The elution was done in isocratic mode utilizing a mobile phase consisting of methanol:water:0.1M sodium acetate (30:50:20 v/v/v) on Chromosil C18 column with a flow rate of 1.0 ml/min and with detection at 243 nm. The measured retention time was 3.33±0.02 min for imipramine hydrochloride and 4.64±0.02 min for diazepam. Linearity was measured in the range 25-150 μg/ml for imipramine hydrochloride (r2=0.999) and in the range 5-30 μg/ml for diazepam (r2=0.9994), respectively. The limits of detection and quantitation were 0.03 and 0.1 μg/ml for imipramine hydrochloride and 0.02 and 0.07 μg/ml for diazepam. Satisfactory validation was also obtained from recovery (100.95-101.52% for imipramine hydrochloride and 99.47-100.33% for diazepam) studies, intraday and interday precision (<2%) and robustness results. The reported method was the first study of these drugs in combination and could be employed for routine quantitative determination of imipramine hydrochloride and diazepam in tablets.  相似文献   

7.
The present study depicts the development of a validated RP-HPLC method for the determination of the pamabrom in presence of degradation products or other pharmaceutical excipients. Stress study was performed on pamabrom and it was found that it degrade sufficiently in acidic, alkali and oxidative condition but less degradation was found in thermal and photolytic condition. The separation was carried out on Enable G 120 A0 (250×4.6 mm, 5 μ) column having particle size 5 μ using methanol: water (75:25 v/v) with pH 4.0 adjusted with ortho phosphoric acid as mobile phase at flow rate of 1 ml/min. The wavelength of the detection was 280nm. A retention time (Rt) nearly 3.9 min was observed. The calibration curve for pamabrom was linear (r2 = 0.9997) from range of 10-60 μg/ml with limit of detection and limit of quantification of 1.41 μg/ml and 4.28 μg/ml, respectively. Analytical validation parameter such as selectivity, specificity, linearity, accuracy and precision were evaluated and relative standard deviation value for all the key parameters were less than 2.0%. The recovery of the drug after standard addition was found to be 101.35%. Thus, the developed RP-HPLC method was found to be suitable for the determination of pamabrom in bulk as well as stability samples of tablets containing various excipients.  相似文献   

8.
A stability-indicating reverse phase high performance liquid chromatography method was developed and validated for cefixime and linezolid. The wavelength selected for quantitation was 276 nm. The method has been validated for linearity, accuracy, precision, robustness, limit of detection and limit of quantitation. Linearity was observed in the concentration range of 2-12 μg/ml for cefixime and 6-36 μg/ml for linezolid. For RP-HPLC, the separation was achieved by Phenomenex Luna C18 (250×4.6 mm) 5 μm column using phosphate buffer (pH 7):methanol (60:40 v/v) as mobile phase with flow rate 1 ml/min. The retention time of cefixime and linezolid were found to be 3.127 min and 11.986 min, respectively. During force degradation, drug product was exposed to hydrolysis (acid and base hydrolysis), H2O2, thermal degradation and photo degradation. The % degradation was found to be 10 to 20% for both cefixime and linezolid in the given condition. The method specifically estimates both the drugs in presence of all the degradants generated during forced degradation study. The developed methods were simple, specific and economic, which can be used for simultaneous estimation of cefixime and linezolid in tablet dosage form.  相似文献   

9.
A new stability-indicating high-performance liquid chromatographic method for simultaneous analysis of sitagliptin and simvastatin in pharmaceutical dosage form was developed and validated. The mobile phase consisted of methanol and water (70:30, v/v) with 0.2 % of n-heptane sulfonic acid adjusted to pH 3.0 with ortho phosphoric acid was used. Retentions of sitagliptin and simvastatin were 4.3 min and 30.4 min, respectively with a flow rate of 1 ml/min on C8 (Qualisil BDS, 250×4.6 mm, 5 μ). Eluents were detected at 253 nm using photodiode diode array detector. The linear regression analysis data for the linearity plot showed correlation coefficient values of 0.9998 and 0.9993 for sitagliptin and simvastatin, with respective concentration ranges of 20-150 μg/ml and 8-60 μg/ml. The relative standard deviation for inter-day precision was lower than 2.0%. The assay of sitagliptin and simvastatin was determined in tablet dosage form was found to be within limits. Both drugs were subjected to a variety of stress conditions such as acidic, basic, oxidation, photolytic, neutral and thermal stress in order to achieve adequate degradation. Results revealed that considerable degradation was found in all stress conditions except oxidative degradations. The method has proven specificity for stability indicating assay method.  相似文献   

10.
2-N-butyl-4-spirocyclopentane-2-imidazoline-5-one has been highlighted as a potential genotoxic impurity in irbesartan. A sensitive LC-MS/MS method was developed and validated for the determination of 2-N-butyl-4-spirocyclopentane-2-imidazoline-5-one in irbesartan. Good separation between 2-N-butyl-4-spirocyclopentane-2-imidazoline-5-one and irbesartan was achieved with Symmetry C18 (100×4.6 mm, 3.5 μm) column using 65:35 v/v mixture of 0.1% formic acid and acetonitrile as mobile phase with a flow rate of 0.7 ml/min. The proposed method was specific, linear, accurate, and precise. The calibration curve shows good linearity over the concentration range of 0.1-2.0 μg/ml, which matches the range of limit of quantitation-20×limit of quantitation of estimated permitted level (1.0 μg/ml) of 2-N-butyl-4-spirocyclopentane-2-imidazoline-5-one. The method was validated as per International Conference on Harmonization guidelines and was able to quantitate 2-N-butyl-4-spirocyclopentane-2-imidazoline-5-one impurity at 1.0 μg/ml with respect to 2 mg/ml of irbesartan. 2-N-butyl-4-spirocyclopentane-2-imidazoline-5-one was not present in the three studied pure and formulation batches of irbesartan and the developed method was a good quality control tool for quantitation of 2-N-butyl-4-spirocyclopentane-2-imidazole-5-one at very low levels in irbesartan.  相似文献   

11.
A simple isocratic reversed-phase high performance liquid chromatographic method was developed for determination of released desmopressin from chitosan nanoparticles in the in vitro media. The chromatographic separation was achieved with acetonitrile/water (25:75, v/v), in which water contained 0.1% v/v trifluoroacetic acid with pH=2.5 as mobile phase, a Chromolith® Performance RP-18e column (150×4.6 mm; 5 μm) kept at 40° and ultraviolet detection at 220 nm. The compound was eluted isocritically at a constant flow rate of 1.6 ml/min. The method was validated according to the International Conference on Harmonisation guidelines. The validation characteristics included accuracy, precision, linearity rang, selectivity, limit of detection, limit of quantitation and robustness. The calibration curve was linear (r>0.9999) over the concentration rang 0.5-100 μg/ml. The limit of detection and limit of quantitation in the release media were 0.05 and 0.5 μg/ml, respectively. The proposed method had an accuracy of and intra- and inter-day precision <4.2. Furthermore, to evaluate the performance of the proposed method, it was used in the analysis of desmopressin level in real samples containing chitosan nanoparticles in the in vitro media.  相似文献   

12.
A simple, selective, rapid, precise and economical reverse-phase high-performance liquid chromatography method has been developed for the determination of lapatinib in tablet using gemcitabine hydrochloride as an internal standard. Chromatography was carried out on an ODS C-18 RP column (4.6 mm i.d. ×250 mm) using a mixture of acetonitrile and water (50:50 v/v) as the mobile phase at a flow rate of 1.0 ml/min. The drug was monitored at 232 nm. The retention times for lapatinib and gemcitabine hydrochloride were found to be 4.25±0.05 and 6.10±0.05 min, respectively. The method produced linear responses in the concentration range of 2-60 μg/ml of lapatinib. The limit of detection and limit of quantitation were 0.265 and 0.884 μg/ml, respectively.  相似文献   

13.
A convenient, simple, accurate, precise and reproducible RP-HPLC method was developed and validated for the estimation of eslicarbazepine acetate in bulk drug and tablet dosage form. Objective was achieved under optimised chromatographic conditions on Dionex RP-HPLC system with Dionex C18 column (250×4.6 mm, 5 μm particle size) using mobile phase composed of methanol and ammonium acetate (0.005 M) in the ratio of 70:30 v/v. The separation was achieved using an isocratic elution method with a flow rate of 1.0 ml/ min at room temperature. The effluent was monitored at 230 nm using diode array detector. The retention time of eslicarbazepine acetate is found to be 4.9 min and the standard calibration plot was linear over a concentration range of 10-90 μg/ml with r2=0.9995. The limit of detection and quantification were found to be 3.144 and 9.52 μg/ml, respectively. The amount of eslicarbazepine acetate in bulk and tablet dosage form was found to be 99.19 and 97.88%, respectively. The method was validated statistically using the percent relative standard deviation and the values are found to be within the limits. The recovery studies were performed and the percentage recoveries were found to be 98.33± 0.5%.  相似文献   

14.
A simple, specific, accurate, and stability-indicating reversed-phase high-performance liquid chromatographic method was developed for the simultaneous determination of montelukast and fexofenadine hydrochloride, using a Lichrospher® 100, RP-18e column and a mobile phase composed of methanol:0.1% o-phosphoric acid (90:10 v/v), pH 6.8. The retention times of montelukast and fexofenadine hydrochloride were found to be 10.16 and 12.03 min, respectively. Linearity was established for montelukast and fexofenadine hydrochloride in the range of 2-10 μg/ml and 24-120 μg/ml, respectively. The percentage recoveries of montelukast and fexofenadine hydrochloride were found to be in the range of 99.09 and 99.81%, respectively. Both the drugs were subjected to acid and base hydrolysis, oxidation, photolytic, and thermal degradation conditions. The degradation products of montelukast and fexofenadine hydrochloride were well resolved from the pure drug with significant differences in their retention time values. This method can be successfully employed for simultaneous quantitative analysis of montelukast and fexofenadine hydrochloride in bulk drugs and formulations.  相似文献   

15.
A rapid high performance liquid chromatographic method has been developed and validated for the estimation of ramipril and telmisartan simultaneously in combined dosage form. A Genesis C18 column having dimensions of 4.6×250 mm and particle size of 5 μm in isocratic mode, with mobile phase containing a mixture of 0.01 M potassium dihydrogen phosphate buffer (adjusted to pH 3.4 using orthophosphoric acid): methanol:acetonitrile (15:15:70 v/v/v) was used. The mobile phase was pumped at a flow rate of 1.0 ml/min and the eluents were monitored at 210 nm. The selected chromatographic conditions were found to effectively separate ramipril (Rt: 3.68 min) and telmisartan (Rt: 4.98 min) having a resolution of 3.84. The method was validated in terms of linearity, accuracy, precision, specificity, limit of detection and limit of quantitation. Linearity for ramipril and telmisartan were found in the range of 3.5-6.5 μg/ml and 28.0-52.0 μg/ml, respectively. The percentage recoveries for ramipril and telmisartan ranged from 99.09-101.64% and 99.45-100.99%, respectively. The limit of detection and the limit of quantitation for ramipril was found to be 0.5 μg/ml and 1.5 μg/ml respectively and for telmisartan was found to be 1.5 μg/ml and 3.0 μg/ml, respectively. The method was found to be robust and can be successfully used to determine the drug content of marketed formulations.  相似文献   

16.
A reliable, rapid and sensitive isocratic reverse phase high-performance liquid chromatography method has been developed and validated for assay of ketorolac tromethamine in tablets and ophthalmic dosage forms using diclofenac sodium as an internal standard. An isocratic separation of ketorolac tromethamine was achieved on Oyster BDS (150×4.6 mm i.d., 5 μm particle size) column using mobile phase of methanol:acetonitrile:sodium dihydrogen phosphate (20 mM; pH 5.5) (50:10:40, %v/v) at a flow rate of 1.0 ml/min. The eluents were monitored at 322 nm for ketorolac and at 282 nm for diclofenac sodium with a photodiode array detector. The retention times of ketorolac and diclofenac sodium were found to be 1.9 min and 4.6 min, respectively. Response was a linear function of drug concentration in the range of 0.01-15 μg/ml (R2=0.994; linear regression model using weighing factor 1/x2) with a limit of detection and quantification of 0.002 μg/ml and 0.007 μg/ml, respectively. The % recovery and % relative standard deviation values indicated the method was accurate and precise.  相似文献   

17.
The present work deals with the development and validation of method for simultaneous determination of antihistaminic drugs in pharmaceutical formulations. A precise, specific and accurate reverse phase-high-performance liquid chromatography method for the simultaneous measurement of aminophylline and chlorpheniramine maleate was developed. The separation of drugs was achieved on C-18 (5 μm, 250×4.6 mm) high-performance liquid chromatography column. The runtime for analysis was 10 min. Mobile phase is mixture containing dilute H2SO4:methanol (60:40% v/v) with flow rate adjusted at 1.5 ml/min. The detection of components was performed at a wavelength of 264 nm. Retention times of aminophylline and chlorphinramine maleate were found to be 2.00 and 3.25 min, respectively. Linearity was found in the range of 16-24 μg/ml for chlorpheniramine maleate and 102.4-153.6 μg/ml for aminophylline with a correlation coefficient of 0.9998 and 0.9996, respectively. High peak purity index of 99.99% indicated the complete separation of analytes in the presence of degradation products is justification of method stability. Linearity, accuracy, specificity, precision and robustness studies were performed for method validation.  相似文献   

18.
An ultra-fast liquid chromatographic method and two UV spectroscopic methods were developed for the determination of cephalexin monohydrate in pharmaceutical dosage forms. Isocratic separation was performed on an Enable C18G column (250 mm × 4.6 mm i.d., 5 μm) using methanol:0.01 M TBAHS (50:50, v/v) as the mobile phase at a flow rate of 1.0 ml/min. The PDA detection wavelength was set at 254 nm. The UV spectroscopic method was performed at 261 nm and at 256–266 nm for the AUC method using a phosphate buffer (pH=5.5). The linearity was observed over a concentration range of 1.0–120 μg/ml for UFLC and both of the UV spectroscopic methods (correlation coefficient=0.999). The developed methods were validated according to ICH guidelines. The relative standard deviation values for the intraday and interday precision studies were < 2%, and the accuracy was > 99% for all of the three methods. The developed methods were used successfully for the determination of cephalexin in dry syrup formulation.  相似文献   

19.
In the present work new, simple reversed-phase high performance liquid chromatographic method was developed and validated for the determination of hydroxychloroquine sulphate in blood plasma. Chloroquine sulphate was used as an internal standard. The chromatographic separation was achieved with octadecyl silane Hypersil C18 column (250×6 mm, 5 μm) using water and organic (acetonitrile:methanol: 50:50, v/v) mobile phase in 75:25 v/v ratio, with sodium 1-pentanesulfonate and phosphoric acid. This organic phase was maintained at pH 3.0 by orthophosphoric acid. The flow rate of 2.0 ml/min. with detection at 343 nm was used in the analysis. The calibration curve of standard hydroxychloroquine sulphate was linear in range 0.1-20.0 μg/ml. The method was validated with respected to linearity, range, precision, accuracy, specificity and robustness studies according to ICH guidelines. The method was found to be accurate and robust to analyze the hydroxychloroquine sulphate in plasma samples.  相似文献   

20.
The simple, selective, precise and accurate reverse-phase high-performance liquid chromatography method was developed and validated for analysis of tadalafil in bulk and tablet dosage form. The column was Inertsil C18 (150×4.6 mm; 5 μm) in isocratic mode. The mobile phase used was phosphate buffer (10 mM, pH 3.2) and acetonitrile (50:50% v/v) at the flow rate of 1.0 ml/min with ultraviolet detection at 295 nm at ambient temperature. The retention time for tadalafil was found to be 4.01 min. Linearity was observed in the concentration range from 60 to 140 μg/ml for tadalafil with a correlation coefficient of (r2) 0.9998. The method was validated according to International Conference on Harmonisation guidelines in terms of linearity, accuracy, precision and specificity. Hence, the proposed method can be utilized for routine quality control of tadalafil in bulk and tablet dosage form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号