首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Body temperature could lead to interruption of spermatogenesis, but the molecular mechanism was still unclear. Cryptorchidism was defined as the failure of testes to enter the scrotum, which exposed the testes to body temperature. Meiosis was a unique feature of germ cell development. Whether cryptorchidism damage the initiation of meiosis in boars had not been reported. The aim of this study was to determine whether spermatogonia in the cryptorchid testes entered into meiosis by detecting meiosis-related markers stimulated by retinoic acid gene 8 (STRA8) and synaptonemal complex protein 3 (SCP3). Three boars with spontaneous unilateral abdominal cryptorchidism were used. The testis located in the abdomen was cryptorchidism group, the scrotal testis of the same animal was used as control. HE results showed that only Sertoli cells, and a few spermatogonia remained in the seminiferous tubules, and no spermatids were seen compared with the control. Immunohistochemistry results showed that in both control and cryptorchidism group, STRA8 was mainly expressed in the nucleus of spermatogonia and spermatocytes. In control group, SCP3 was expressed in the nucleus of spermatocytes. In cryptorchidism group, SCP3 immunopositive cells were also observed. qRT-PCR and Western Blot results showed that the mRNA and protein levels of STRA8 and SCP3 were significantly decreased in cryptorchid boars. The expression of STRA8 and SCP3 in cryptorchidism suggested that spermatogonia could still enter meiosis in cryptorchid boars.  相似文献   

2.
This study was undertaken to investigate the morphological characteristics and lectin affinity of the testicular lamina propria in healthy boars and in unilateral and bilateral abdominal cryptorchid boars. The lamina propria of scrotal testes from healthy boars and unilateral cryptorchid boars was constituted by an innermost noncellular layer, the basal lamina, and by 2 layers of peritubular cells, each separated by a fibrous layer. The noncellular layers contained collagen fibres and glycoconjugates with abundant N‐acetylgalactosamine, galactose, fucose, N‐acetylglucosamine and neuraminic acid residues. The inner peritubular cell layer was composed of myoid cells, the outer layer of fibroblasts. In the abdominal testes of unilateral and bilateral cryptorchid boars, the lamina propria of nondegenerating and degenerating seminiferous tubules appeared thickened due to an increased content of collagen fibres and glycoconjugates. Glycoconjugates showed decreased amounts of fucose, neuraminic acid and galactose, and increased amounts of N‐acetylglucosamine residues. The basal lamina formed infoldings toward the seminiferous epithelium and contained small cells. Both inner and outer peritubular cells were fibroblasts of immature appearance. In degenerated seminiferous tubules of bilateral cryptorchid boars, the lamina propria was composed of a thickened and collagenised basal lamina, without peritubular cells and with a low content of glycoconjugates. In scrotal testes, therefore, the lamina propria was implicated in tubular contractility and in mediating the communication and the substrate diffusion between seminiferous tubules and interstitial tissue. Cryptorchidism induced morphological and histochemical alterations in the lamina propria of abdominal testes, which may be linked to evidence from other studies of lack of tubular contractility and defective cell–cell communication and substrate diffusion. The severity of these anomalies correlated with the severity of Sertoli cell alterations.  相似文献   

3.
Vimentin expression during altered spermatogenesis in rats   总被引:3,自引:0,他引:3  
The collapse of vimentin caused by some xenobiotics correlates with the loss of structural integrity of the seminiferous epithelium. In this study, we investigated the effect of busulphan (an anticancer drug with toxic effects on dividing germ cells) on vimentin filament distribution in rat seminiferous epithelium and compared it with changes found in testes of unilaterally cryptorchid rats. In the seminiferous epithelium, the vimentin labelling was observed only in the Sertoli cells, showing a stage-specific arrangement of the filaments. Both busulphan treatment and cryptorchism caused altered distribution of vimentin filaments in the Sertoli cells. In both models, the apical vimentin filaments collapsed towards the nuclei and were disorganized in the basal region of the Sertoli cells while the germ cells were diminished in the epithelium. After the busulphan effect subsided (4 weeks after administration), spermatogenesis began to restore and vimentin filaments began to organize in basal and perinuclear regions of Sertoli cells among the spermatogonia and spermatocytes. Vimentin labelling of the sloughed material in the lumen of cryptorchid testes (but not in busulphan treated animals) was observed. We conclude that the Sertoli cell vimentin filaments play an important role in the maintenance of spermatogenesis, their damage is associated with the seminiferous epithelium disintegration and their restoration with a recovery of spermatogenesis after the unfavourable conditions subside.  相似文献   

4.
《Acta histochemica》2019,121(7):784-790
Male germ cell apoptosis has been described in heat-damaged testes by cryptorchidism. In the present study, wild type pig testes were compared with cryptorchid testes via histological and immunohistological analyses. Spermatozoa were not detected in two cryptorchid testes and the diameters of seminiferous tubules were significantly reduced in cryptorchid pig testes compared with wild type pig testes. Cells expressing marker genes for undifferentiated spermatogonia, such as protein gene product 9.5 was significantly decreased in cryptochid pig testes. In addition, the numbers of cells expressing DEAD-box polypeptide 4 (VASA), synaptonemal complex protein 3, protamine, and acrosin (a biomarker of spermatocyte, spermatid, and spermatozoa) were significantly reduced in cryptochid pig testes. However, the number of vimentin-expressing Sertoli cells was not changed or was significantly increased in cryptorchid pig testes. This result indicates that male germ cells are specifically damaged by heat in cryptorchid pig testes and not Sertoli cells. These findings will facilitate the further study of spermatogenesis and the specific mechanisms by which cryptorchidism causes male infertility.  相似文献   

5.
At birth, undescended testes contain germ cells, but after 1 year of life, a reduced number of germ cells is generally found. Microlithiasis and carcinoma-in-situ-testis occur in cryptorchid boys. Multinucleated germ cells, including at least 3 nuclei in the cell, exist in impaired spermatogenesis and in the senescent testis. AIM OF THE STUDY: We investigated whether multinucleated spermatogonia were present in undescended testes of cryptorchid boys, and if such a pattern is associated with special clinical features. RESULTS: Multinucleated spermatogonia occurred in 13/168 (8%) of 163 consecutive cryptorchid boys, who underwent surgery for cryptorchidism with simultaneous testicular biopsy showing seminiferous tubules. The patients with multinucleated spermatogonia more often exhibited a normal germ cell number (Fisher's exact test, p<0.0005), and were younger at surgery (Mann Whitney, p<0.005) than the rest of the patients. Before surgery, 3 patients underwent treatment with Erythropoietin because of renal failure. An intra-abdominal testis underwent clipping and division of the spermatic vessels, and a biopsy at final surgery 7 months later, exhibited multinucleated spermatogonia. In 1 case the undescended testicular position, a fixed retraction, was acquired after surgery for an inguinal hernia. Multinucleated spermatogonia were found in cases of carcinoma-in situ-testis in 2 cryptorchid boys. No case of multinucleated germ cells appeared in our normal material. CONCLUSION: Multinucleated spermatogonia are a further abnormality present in cryptorchidism. The cryptorchid boys with multinucleated spermatogonia in general exhibited rather many germ cells. This feature may be associated with an increased risk of testicular malignancy later in life, and we propose a careful follow up regime in these cases including ultrasound examination and a testicular biopsy in cases of symptoms or clinical findings.  相似文献   

6.
MIC2 is a pseudoautosomal gene localized on X and Y chromosomes. The MIC2 gene product is a glycoprotein expressed on the cell membranes of a number of somatic cells, including Sertoli cells of the testis, but not on the cell membranes of germ cells. In cases of cryptorchidism, a testicular biopsy is recommended in order to evaluate future fertility potential. The spermatogonia are identified on histological sections and the number per tubular transverse section is compared with normal values for age. The patient is at 33-100% risk of subsequent infertility when the number of spermatogonia per tubular transverse section is lower than 1% of the lowest normal age-matched value. Besides Sertoli cells the seminiferous tubules in undescended testes contain only a few germ cells, and it may be difficult to pinpoint the germ cells in small biopsies. Especially in nonpalpable testes their number may be heavily reduced. A reliable identification of germ cells may also be difficult in cultures of testicular biopsies from undescended testes. Against this background, we tried the use of an immunohistochemical method with DAKO antibody to the MIC2 gene product (MIC2, 12 E7, code no. M3601) in order to obtain a "negative reaction" of germ cells, contrasting with the stained Sertoli cells. The material comprised: 44 specimens of testicular parenchyma taken at time of surgery for cryptorchidism from 24 cryptorchid boys with nonpalpable testes and 14 testicular biopsies from 13 cryptorchid patients with palpable testes which had been cultured in vitro for 7, 14 or 21 days. In all cases the immunohistochemical method with DAKO antibody to the MIC2 gene product was helpful for identification of Sertoli cells and germ cells, and we therefore recommend the use of anti-MIC2 in all testicular biopsies where it is difficult to pinpoint the germ cells.  相似文献   

7.
Androgen aromatization in cryptorchid mouse testis   总被引:2,自引:0,他引:2  
Estrogens play an important role in germ cell development. Therefore, we have studied expression patterns of aromatase that converts testosterone into estrogens in 2 recombinant inbred mouse strains that differ in efficiency of spermatogenesis. In order to show whether germ cells are a target for estrogens, estrogen receptors (ER)alpha and beta were localized as well. Adult male CBA and KE mice were made unilaterally cryptorchid to determine alterations in testicular steroidogenesis and spermatogenesis. Differences between control and cryptorchid testes have been studied with respect to (1) cellular sites of aromatase, the enzyme responsible for estrogen formation, (2) the presence of ERalpha and ERbeta in various types of testicular cells, and (3) steroidogenic activity in the testes. Additionally, unilaterally control testes of cryptorchid mice were compared with bilaterally descended testes. Histological or hormonal differences were not found between control testes of cryptorchid and untreated mice. In cryptorchid testes from both strains, degeneration of germ cells was observed as well as a decrease in size of the seminiferous tubules, whereas the amount of interstitial tissue increased, especially in testes of CBA mice. Using immunohistochemistry, aromatase was localized in Leydig cells and germ cells in both control and cryptorchid testes. Sertoli cells were immunopositive in control testes only. In cryptorchid testes of KE mice, aromatase was strongly expressed in spermatids, that were still present in a few tubules. Other cell types in tubules were negative for aromatase. In both control and cryptorchid testes of both mouse strains, ERalpha were present in Leydig cells only, whereas ERbeta were found in Leydig cells and in germ cells in early stages of maturation. In homogenates of testes of CBA control mice, testosterone levels were 3-fold higher than in those of control KE mice, whereas the difference in estradiol levels between both strains was small. Cryptorchidism resulted in decreased testosterone levels and increased estradiol levels. The results of the present study show functional alterations due to cryptorchidism in both mouse strains. Strong aromatase expression in germ cells in control and cryptorchid testes indicates an additional source of estrogens in the testis besides the interstitial tissue and the relevance of estrogen in spermatogenesis.  相似文献   

8.
OBJECTIVE: To evaluate seminiferous epithelium lesions in adult cryptorchid testes showing lymphoid infiltrates in seminiferous tubules and interstitium (i.e., focal orchitis). Also, to consider the possible role of this lesion in the etiology of tubular atrophy. METHODS: We performed a histopathologic study of the cryptorchid testes and adjacent epididymides removed from 50 adult men who had not been previously treated for cryptorchidism. The study included morphologic and semiquantitative evaluation of seminiferous tubule pathology (according to germ cell numbers), Sertoli cell morphology, tubular lumen dilation, rete testis pattern (normal, hypoplastic, or cystic), and epididymal pattern (normal or epididymal duct hypoplasia). The study also included immunohistochemical evaluation of immune cell markers. The results were compared with clinical and laboratory findings. RESULTS: Focal lymphoid infiltrates (mainly lymphocytes) in seminiferous tubules and interstitium were found in 22 patients (44%), all of whom had unilateral cryptorchidism. The course of orchitis was asymptomatic, and laboratory data were normal. According to the seminiferous tubule pathology, a variety of histopathologic diagnoses, were made: (1) mixed atrophy consisting of Sertoli cell-only tubules intermingled with tubules showing maturation arrest of spermatogonia (11 testes, 4 of which also showed hyalinized tubules); (2) Sertoli cell-only tubules plus hyalinized tubules (4 testes); (3) Sertoli cell-only tubules (3 testes); (4) intratubular germ cell neoplasia (2 testes, 1 of which also showed hyalinized tubules); (5) complete tubular hyalinization (1 testis); and (6) tubular hyalinization plus some groups of tubules with hypospermatogenesis (all germ cell types were present although in lower numbers, 1 testis). Dysgenetic Sertoli cells, that is, Sertoli cells that had undergone anomalous, incomplete maturation, were observed in all nonhyalinized seminiferous tubules with inflammatory infiltrates. Tubular ectasia was observed in 13 cases. The rete testis was hypoplastic and showed cystic transformation in 18 testes, and the epididymis was hypoplastic in 15 testes. CONCLUSIONS: The causes of these focal inflammatory infiltrates are unknown. It is possible that tubular ectasia and Sertoli cell dysgenesis are involved and that these alterations cause a disruption of the blood-testis barrier and allow antigens to enter the testicular interstitium, giving rise to an autoimmune process.  相似文献   

9.
The boundary tissue of the seminiferous tubules in the scrotal and abdominal testes of naturally unilateral cryptorchid West African dwarf goats comprised an inner non-cellular, a middle cellular and peripheral cellular lamellae. In the scrotal testes, these components were compact and their arrangement conformed to that described for other domestic ruminants except that here, the basal lamina associated with the seminiferous epithelium was homogeneous and in tact. Alterations due to cryptorchidism as observed in the contralateral abdominal testes include general loss of compactness due to depletion and disorganization of structural extracellular materials like basal lamina coat of myoid cells and collagen fibrils, the splitting of the basal lamina of the seminiferous epithelium into 8-12 thin layers, poor differentiation of the myoid cells and the accumulation of lipid droplets within their cytoplasm. It is concluded that the normal caprine boundary tissue conforms entirely to the characteristics of 'Type C' category in the existing classification. The ultrastructural alterations due to abdominal retention of the testis resemble the testicular changes ascribed to the disturbance of pituitary-testicular hormonal axis.  相似文献   

10.
Twenty-one young men who underwent testicular biopsy and orchidopexy in infancy consulted owing to infertility and had biopsies again. The first and second biopsy specimens from these patients were compared by means of a semiquantitative study of the seminiferous tubules to evaluate the evolution of germ cells and to correlate these data with spermatozoon numbers. The infant testes showing lesions were classified into 3 types according to the mean tubular diameter and tubular fertility index: (1) slight lesions, (2) marked germinal hypoplasia, and (3) severe germinal hypoplasia. In the adult testes, spermatogenesis was evaluated by calculating the average numbers of spermatogonia, primary spermatocytes, young spermatids, and mature spermatids. These testes were classified as (1) normal; (2) having lesions in the adluminal compartment; (3) having lesions in the basal compartment; and (4) mixed atrophy. The number of differentiated spermatids was correlated with the expected number of spermatozoa in the ejaculate by a power regression curve. The observation of certain histologic lesions in the seminiferous tubules was assumed to indicate excretory duct obstruction: ectasia, indented outline of the seminiferous epithelium, intratesticular spermatocele, apical cytoplasmic vacuolation of Sertoli cells, and mosaic distribution of testicular lesions. There was a correlation between the prepubertal lesions and the degree of spermatogenesis in postpubertal biopsy specimens. The evolution of the 40 testes without regard to their location in infancy (cryptorchid or scrotal) was as follows. The 14 infant testes with a normal histologic pattern (5 testes) or minor lesions (9 testes) evolved to testes with lesions of the adluminal compartment (8 testes), mixed atrophy (4 testes), or lesions of the basal and adluminal compartments (2 testes). The 6 testes with marked germinal hypoplasia evolved to testes with mixed atrophy. The 20 testes with severe germinal hypoplasia evolved to testes with mixed atrophy (17 testes), Sertoli-cell-only tubules (2 testes), or lesions in the basal compartment (1 testis). In the 9 patients with a histologic pattern of obstruction bilaterally (6 men) or unilaterally (3 men), the expected number of spermatozoa according to the correlation curve was much higher than the actual number in the spermiogram. This means that the testes of many azoospermic men produce spermatozoa, and this finding corroborates the importance of testicular biopsy in infertility studies.  相似文献   

11.
Introduction: Many recent publications have demonstrated that the cryptorchid testicle (and, to a lesser extent, the descended partner) are progressively injured from the second year of life onwards. Do these injuries occur in an organ which has been healthy up to this time or are they superimposed on a structurally abnormal testicle? In order to answer this, parts of cryptorchid testicles, of the descended partners, and of normal testicles were compared by histological examination of serial sections. Material and Methods: Parts of four testes from children aged 4-7 months (2 specimens obtained by biopsy and 2 from autoptic material) and parts of four testes from children 1 1/2 years old (2 obtained by biopsy and 2 from autoptic material) were examined. The biopsies were fixed in Stieve's fixative. Tissue samples from clinically healthy children who had died suddenly were fixed in 4% formalin. The tissue was embedded in paraffin and sectioned serially; 6 mum sections were stained with HE. The spermatogonia in each cross-section and in each oblique section of a same tubule were counted and the counts of the latter were adjusted to a cross-section 50-60 mum in diameter. This counting technique did not alter the density of spermatogonia. The graphs present data on the density of spermatogonia through the lengths of the tubules examined and demonstrate tubular branching and blind ends. In the first year of life the cryptorchid testis and its descended partner showed repeated long sections lacking spermatogonia in the same tubule, whereas in normal testes the spermatogonia were more evenly distributed. The cryptorchid testis showed increased tubule branching in the areas examined. In the second year of life the tubules of the cryptorchid testis and its descended partner manifest areas free of germ cells, increased branching, and blind ends. The cryptorchid testis also had a tubule completely free of spermatogonia. The germ cell-free parts were always associated with a smaller tubule diameter than normal. The normal testes did not disclose increased branching or spermatogonium-free areas within similar lengths of tubules and showed an even distribution of spermatogonia. Discussion: The different distribution of spermatogonia within the tubules and the increased branching of the tubules in cryptorchid testes indicate a previous disturbance of testis development.  相似文献   

12.
Summary Spermatogonial proliferation was studied in mice from day 13 p.p. when the seminiferous epithelium is incomplete, until week 12 p. p. when a steady state at adult levels has been attained. Counts of undifferentiated, A 1 and intermediate spermatogonia and primary spermatocytes in stages IV and IX of the cycle of the seminiferous epithelium were made in whole mounted seminiferous tubules. Sertoli cell proliferation was studied in a separate series from 6 to 14 days p.p. employing the 3H-thymidine labeling index.It appeared that 1. Sertoli cell proliferation stops at day 12 whereafter the cells obtain their adult appearance; 2. The numbers of stem cell spermatogonia and the production of differentiating A 1 spermatogonia increase almost twofold between day 13 and week 12; 3. The efficiency of the divisions of the differentiating A 1-B spermatogonia is similar to that in the adult throughout this period; 4. At all ages studied, the cell counts revealed an almost constant numerical relationship between Sertoli cells and germ cells, which suggests a function of Sertoli cells in the regulation of spermatogonial proliferation.  相似文献   

13.
Etoposide is a podophyllotoxin semiderivative that is used in a variety of chemotherapy treatments, including therapy for children tumors. This drug promotes the formation of a ternary DNA-topoisomerase II-etoposide complex that triggers apoptosis. The purpose of this work was to analyze the occurrence of apoptosis in the seminiferous epithelium of prepubertal, pubertal, and adult rats treated with 10, 20, and 40 mg/Kg of etoposide during the prepubertal phase, as well as the role of apoptosis in etoposide-induced testicular damage. The rat testes were fixed in Bouin's liquid, and the apoptotic cells were quantified by means of the hematoxylin and eosin (H&E) technique (all groups) and the terminal dUTP nick end labeling (TUNEL) method (prepubertal groups only). The results obtained from both the H&E and TUNEL methods showed an increased frequency of apoptosis in the seminiferous epithelium of treated animals, except for the subgroup that received the 10-mg/Kg dose and was sacrificed 12 hr after the treatment and for the etoposide-treated pubertal group, that did not show cells suggesting apoptosis during H&E analysis. The labeled cells were mainly primary spermatocytes and differentiated spermatogonia. The prepubertal rats showed an etoposide-dose-dependent diminution of differentiated spermatogonia. Etoposide treatment during the prepubertal phase increases the frequency of apoptosis in the seminiferous epithelium, and causes serious harm to male fertility. 2004.  相似文献   

14.
Germ cell transfer into rat, bovine, monkey and human testes.   总被引:15,自引:0,他引:15  
Germ cell transplantation is a potentially valuable technique offering oncological patients gonadal protection by reinitiating spermatogenesis from stem cells which were reinfused into the seminiferous tubules. In order to achieve an intratubular germ cell transfer, intratubular microinjection, efferent duct injections and rete testis injections were applied on dissected testes of four different species: rat, bull, monkey and man. Ultrasound-guided intratesticular rete testis injection was the best and least invasive injection technique with maximal infusion efficiency for larger testes. Deep infiltration of seminiferous tubules was only achieved in immature or partially regressed testes. This technique was applied in vivo on two cynomolgus monkeys. In the first monkey a deep infusion of injected cells and dye into the lumen of the seminiferous tubules was achieved. In the second, transplanted germ cells were present in the seminiferous epithelium 4 weeks after the transfer. These cells were morphologically identified as B-spermatogonia and located at the base of the seminiferous epithelium. In summary, this paper describes a promising approach for germ cell infusion into large testes. The application of this technique is the first successful attempt of a germ cell transfer in a primate.  相似文献   

15.
Stem cells in the testis   总被引:5,自引:0,他引:5  
The origin and development of the spermatogenic cell lineage is reviewed, as well as spermatogonial kinetics in adult nonprimate mammals in relation to the cycle of the seminiferous epithelium, the emphasis being on spermatogonial stem cells. A hypothesis is presented for the transition from foetal germ cells, gonocytes, to adult type spermatogonia at the start of spermatogenesis. An overview is given of the present knowledge on the proliferation and differentiation of undifferentiated spermatogonia (spermatogonial stem cells and their direct descendants) and the regulation of these processes. It is concluded that the differentiation of the undifferentiated into differentiating type spermatogonia is a rather vulnerable moment during spermatogenesis and the models for studying this are described. Research into the molecular basis of the regulation of spermatogonial proliferation, differentiation and apoptosis is at its infancy and the first results are reviewed. An exciting new research tool is the spermatogonial stem cell transplantation technique which is described. Finally, reviewing the nature of human germ cell tumours it is concluded that at present there are no animal or in vitro models to study these tumours experimentally.  相似文献   

16.
BACKGROUND: Spermatogonial expansion in man and non-human primates has been studied for decades. Controversy persists about the cell type representing the testicular stem cell and the exact kinetics of spermatogonial proliferation. We recently determined the starting point of spermatogenesis and proposed a model for clonal expansion of spermatogonia in adult macaques. Here we want to confirm the initiation event, study and compare the details of the kinetics of spermatogonial expansion in vivo and in vitro, and characterize a population of A spermatogonia acting as testicular stem cells. METHODS and RESULTS: We localized BrdU-positive spermatogonia in whole mounts and sections of adult rhesus monkey testes. Culture of testicular tissue was used to determine the expansion and differentiation of premeiotic germ cells. We confirm that A(pale) spermatogonia divide equally at stage VII and produce two types of progeny after mitosis at stage IX of the seminiferous cycle following defined clonal patterns. Small numbers of proliferating single A spermatogonia exist which present a population of label-retaining cells. CONCLUSIONS: In the rhesus monkey the population of A(pale) spermatogonia cycle continuously and initiate spermatogenesis by a self-renewing division at stage VII of the seminiferous epithelial cycle. Rarely dividing single A spermatogonia exist which potentially are the male germline stem cells in the primate testis.  相似文献   

17.
Techniques of quantitative stereology have been utilized to determine the relative volume occupied by the Sertoli cells and germ cells in two particular stages (I and VII) of the cycle of the seminiferous epithelium. Sertoli cell volume ranged from 24% in stage I of the cycle to 32% in stage VII. Early germ cells occupied 3.4% in stage I (spermatogonia) and 8.7% in stage VII (spermatogonia and preleptotene spermatocytes). Pachytene spermatocytes occupied 15% (stage I) and 24% (stage VII) of the total volume of the seminiferous epithelium. In stage I the two generations of spermatids comprised 58% of the total epithelium by volume, whereas in stage VII, after spermiation, the acrosome phase spermatids occupied 35% of the total seminiferous epithelial volume.  相似文献   

18.
In normal adult rats some germ cells degenerate at several vulnerable steps of spermatogenesis. These are the type A spermatogonia, midpachytene spermatocytes, primary and secondary spermatocytes which degenerate during their respective maturation divisions and step 7 and 19 spermatids. In the present study, these degenerating cells were examined under the electron microscope, and their frequency was determined in toluidine blue stained semithin sections of testes from normal, hypophysectomized (at 5.5 days after operation) and hypophysectomized rats injected with FSH and LH separately or in combination. With the exception of the step 19 spermatids, the degenerating germ cells underwent necrosis in vacuolated spaces delimited by Sertoli cells. In the case of the affected step 19 spermatids, an apical cytoplasmic process of the Sertoli cell initially ensheathed a long segment of their flagellum, and then each degenerating cell was drawn deep in the seminiferous epithelium where it was phagocytozed by the Sertoli cell. Soon after hypophysectomy the incidence of degenerating mid-pachytene spermatocytes, step 7 and 19 spermatids which are present in stages VII or VIII of the cycle of the seminiferous epithelium, increased significantly. In contrast the number of degenerating primary or secondary spermatocytes during the meiotic divisions seen in stage XIV of the cycle or of any other germinal cell was not significantly modified. While the injection of FSH alone had no influence on the number of degenerating cells in hypophysectomized rats, injections of LH at the two doses administered (0.7 μg or 20 μg) reduced significantly the number of degenerating cells seen in stages VII-VIII of the cycle; combined injections of FSH and LH (20 μg) reduced the number of these degenerating cells to the normal low values. Thus it appeared that the mid-pachytene spermatocytes and the step 7 and 19 spermatids, all present in the adluminal compartment of the seminiferous epithelium in stages VII or VIII of the cycle, were more sensitive to the presence of absence of gonadotropic hormones than the other germ cells present in the seminiferous epithelium.  相似文献   

19.
Whole-mounted seminiferous tubules from normal and irradiated rodent testes were examined by light microscopy. These studies reveal the presence of intercellular bridges in all classes of spermatogonia except for the single As stem cells. It was demonstrated that As stem cells divide to produce new As spermatogonia or paired daughter cells that are united by a cytoplasmic bridge. Evidence was given that all subsequent progeny of these paired A's up to and including the production of type B spermatogonia remain linked by cytoplasmic bridges in increasingly larger and more complex syncytial networks. It is proposed that the intercellular bridges mediate both differentiation and degeneration of spermatogonia. The maintenance of synchronous development within cohorts of spermatogonia is attributed to the bridges. Moreover, the fact that spermatogonia in both normal and irradiated testes degenerate in clusters is determined by the presence of intercellular bridges. Lastly, the integrity of the bridges appears essential for normal germ cell development.  相似文献   

20.
The testes of Lewis rats were studied at intervals from 2 weeks to 3 months after bilateral vasectomy, vasectomy followed 1 month later by vasovasostomy, or sham operations. Aims were to determine the nature of early alterations after vasectomy, and to determine whether vasovasostomy after 1 month would result in reversal of vasectomy-induced changes. Approximately one-fourth of the testes in the vasectomy and vasovasostomy groups displayed histological changes, which consisted mainly of depletion of germ cells. The extent of the depletion varied greatly in different seminiferous tubules. In testes altered in this way, no abnormal infiltrations of lymphocytes, macrophages, or other cells were observed in the seminiferous epithelium or in the interstitium. The rete testis and straight tubules were normal in testes with altered seminiferous epithelium. A few testes in the vasectomy and vasovasostomy groups had necrotic centers. The results suggest that depletion of germ cells occurred as a result of shedding from the seminiferous epithelium into the lumen of the tubules. A cellular immune response, such as occurs in experimental allergic orchitis in other species, did not appear to be responsible for the observed loss of germ cells. This suggests a possible role for humoral antibody in this model, since there is an association between testicular changes and serum antisperm antibodies at longer intervals after vasectomy. Testicular alterations were not reversed by performance of a vasovasostomy 1 month after vasectomy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号