首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Huntington's disease (HD) is a neurodegenerative disorder in humans caused by an expansion of a CAG trinucleotide repeat that produces choreic movements, which are preceded by cognitive deficits. The HD transgenic rat (tgHD), which contains the human HD mutation with a 51 CAG repeat allele, exhibits motor deficits that begin when these rats are 12 months of age. However, there are no reports of cognitive dysfunction occurring prior to this. To assess whether cognitive dysfunction might precede motor deficits in tgHD rats, one group of 9-month-old male rats with homozygotic mutated genes and one group of wild-type (WT) rats underwent three testing phases in a unique Spatial Operant Reversal Test (SORT) paradigm, as well as assessment of spontaneous motor activity. After testing, morphological and histological examination of the brains were made. Results indicated that tgHD rats acquired the cued-response (Phase 1) portion of the SORT, but made significantly more errors during the reversal (Phase 2) and during the pseudorandomized reversals (Phase 3) portion of the study, when compared to WT rats. Analysis of the data using mathematical principles of reinforcement revealed no memory, motor, or motivational deficits. These results indicate that early cognitive dysfunction, as measured by the SORT, occur prior to motor deficits, gross anatomical changes, or cell loss in the tgHD rat with 51 CAG repeats, and suggest that this protocol could provide a useful screen for therapeutic studies.  相似文献   

2.
Huntington's disease (HD) is a hereditary neurodegenerative disease that leads to striatal degeneration and a severe movement disorder. We used a transgenic mouse model of HD (the R6/2 line with approximately 150 glutamine repeats) to test a new therapy for this disease. We treated HD mice with metformin, a widely used anti-diabetes drug, in the drinking water (0, 2 or 5mg/ml) starting at 5 weeks of age. Metformin treatment significantly prolonged the survival time of male HD mice at the 2mg/ml dose (20.1% increase in lifespan) without affecting fasting blood glucose levels. This dose of metformin also decreased hind limb clasping time in 11-week-old mice. The higher dose did not prolong survival, and neither dose of metformin was effective in female HD mice. Collectively, our results suggest that metformin may be worth further investigation in additional HD models.  相似文献   

3.
Several neuroactive metabolites of the kynurenine pathway of tryptophan degradation have been speculatively linked to the pathophysiology of Huntington's Disease (HD). Here we demonstrate that the levels of two of these metabolites, the free radical generator 3-hydroxykynurenine (3HK) and the neuroprotectant kynurenate (KYNA), are increased in the neostriatum of stage 1 HD patients and in the brain of mice transgenic for full-length mutant huntingtin. In both cases, the elevation in 3HK was far more pronounced, resulting in significant increases in the 3HK/KYNA ratios. These data suggest that abnormal kynurenine pathway metabolism may play a role during the early phases of the neurodegenerative process in HD.  相似文献   

4.
Transgenic rat model of Huntington's disease   总被引:12,自引:0,他引:12  
Huntington's disease (HD) is a late manifesting neurodegenerative disorder in humans caused by an expansion of a CAG trinucleotide repeat of more than 39 units in a gene of unknown function. Several mouse models have been reported which show rapid progression of a phenotype leading to death within 3-5 months (transgenic models) resembling the rare juvenile course of HD (Westphal variant) or which do not present with any symptoms (knock-in mice). Owing to the small size of the brain, mice are not suitable for repetitive in vivo imaging studies. Also, rapid progression of the disease in the transgenic models limits their usefulness for neurotransplantation. We therefore generated a rat model transgenic of HD, which carries a truncated huntingtin cDNA fragment with 51 CAG repeats under control of the native rat huntingtin promoter. This is the first transgenic rat model of a neurodegenerative disorder of the brain. These rats exhibit adult-onset neurological phenotypes with reduced anxiety, cognitive impairments, and slowly progressive motor dysfunction as well as typical histopathological alterations in the form of neuronal nuclear inclusions in the brain. As in HD patients, in vivo imaging demonstrates striatal shrinkage in magnetic resonance images and a reduced brain glucose metabolism in high-resolution fluor-deoxy-glucose positron emission tomography studies. This model allows longitudinal in vivo imaging studies and is therefore ideally suited for the evaluation of novel therapeutic approaches such as neurotransplantation.  相似文献   

5.
It may soon be possible to adapt the use of deep brain stimulation (DBS) technologies developed to treat movement disorders to improve the general cognitive function of brain-injured patients. We outline neurophysiological foundations for novel neuromodulation strategies to address these goals. Emphasis is placed on developing a rationale for targeting the intralaminar and related nuclei of the human thalamus for electrical stimulation. Recent anatomical and physiological studies are compared with original neurophysiological recordings obtained in an alert non-human primate. In this context we consider neuronal mechanisms that may underlie both clinical observations and cognitive rehabilitation maneuvers that provide theoretical support for open and closed-loop strategies to remediate acquired cognitive disability (ACD).  相似文献   

6.
Wei H  Qin ZH  Senatorov VV  Wei W  Wang Y  Qian Y  Chuang DM 《Neuroscience》2001,106(3):603-612
Huntington's disease is a progressive, inherited neurodegenerative disorder characterized by the loss of subsets of neurons primarily in the striatum. In this study, we assessed the neuroprotective effect of lithium against striatal lesion formation in a rat model of Huntington's disease in which quinolinic acid was unilaterally infused into the striatum. For this purpose, we used a dopamine receptor autoradiography and glutamic acid decarboxylase mRNA in situ hybridization analysis, methods previously shown to be adequate for quantitative analysis of the excitotoxin-induced striatal lesion size.Here we demonstrated that subcutaneous injections of LiCl for 16 days prior to quinolinic acid infusion considerably reduced the size of quinolinic acid-induced striatal lesion. Furthermore, these lithium pre-treatments also decreased the number of striatal neurons labeled with the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay. Immunohistochemistry and western blotting demonstrated that lithium-elicited neuroprotection was associated with an increase in Bcl-2 protein levels.Our results raise the possibility that lithium may be considered as a neuroprotective agent in treatment of neurodegenerative diseases such as Huntington's disease.  相似文献   

7.
This study presents a whole-head finite element model of deep brain stimulation to examine the effect of electrical grounding, the finite conducting volume of the head, and scalp, skull and cerebrospinal fluid layers. The impedance between the stimulating and reference electrodes in the whole-head model was found to lie within clinically reported values when the reference electrode was incorporated on a localized surface in the model. Incorporation of the finite volume of the head and inclusion of surrounding outer tissue layers reduced the magnitude of the electric field and activating function by approximately 20% in the region surrounding the electrode. Localized distortions of the electric field were also observed when the electrode was placed close to the skull. Under bipolar conditions the effect of the finite conducting volume was shown to be negligible. The results indicate that, for monopolar stimulation, incorporation of the finite volume and outer tissue layers can alter the magnitude of the electric field and activating function when the electrode is deep within the brain, and may further affect the shape if the electrode is close to the skull.  相似文献   

8.
Antidromic cortical excitation has been implicated as a contributing mechanism for high-frequency deep brain stimulation (DBS). Here, we examined the reliability of antidromic responses of type 2 corticofugal fibres in rat over a stimulation frequency range compatible to the DBS used in humans. We activated antidromically individual layer V neurones by stimulating their two subcortical axonal branches. We found that antidromic cortical excitation is not as reliable as generally assumed. Whereas the fast conducting branches of a type 2 axon in the highly myelinated brainstem region follow high-frequency stimulation, the slower conducting fibres in the poorly myelinated thalamic region function as low-pass filters. These fibres fail to transmit consecutive antidromic spikes at the beginning of high-frequency stimulation, but are able to maintain a steady low-frequency (6–12 Hz) spike output during the stimulation. In addition, antidromic responses evoked from both branches are rarely present in cortical neurones with a more hyperpolarized membrane potential. Our data indicate that axon-mediated antidromic excitation in the cortex is strongly influenced by the myelo-architecture of the stimulation site and the excitability of individual cortical neurones.  相似文献   

9.
Multiple studies have shown bilateral improvement in motor symptoms in Parkinson disease (PD) following unilateral deep brain stimulation (DBS) of the subthalamic nucleus (STN) and internal segment of the globus pallidus, yet the mechanism(s) underlying this phenomenon are poorly understood. We hypothesized that STN neuronal activity is altered by contralateral STN DBS. This hypothesis was tested intraoperatively in humans with advanced PD using microelectrode recordings of the STN during contralateral STN DBS. We demonstrate alterations in the discharge pattern of STN neurons in response to contralateral STN DBS including short latency, temporally precise, stimulation frequency-independent responses consistent with antidromic activation. Furthermore, the total discharge frequency during contralateral high frequency stimulation (160 Hz) was greater than during low frequency stimulation (30 Hz) and the resting state. These findings demonstrate complex responses to DBS and imply that output activation throughout the basal ganglia-thalamic-cortical network rather than local inhibition is a therapeutic mechanism of DBS.  相似文献   

10.
11.
Spampanato J  Gu X  Yang XW  Mody I 《Neuroscience》2008,157(3):606-620
Huntington's disease (HD) is a neurodegenerative disorder caused by a polyglutamine repeat expansion in huntingtin. A newly developed bacterial artificial chromosome transgenic mouse model (BACHD) reproduces phenotypic features of HD including predominantly neuropil-associated protein aggregation and progressive motor dysfunction with selective neurodegenerative pathology. Motor dysfunction has been shown to precede neuropathology in BACHD mice. We therefore investigated the progression of synaptic pathology in pyramidal cells and interneurons of the superficial motor cortex of BACHD mice. Whole-cell patch clamp recordings were performed on layer 2/3 primary motor cortical pyramidal cells and parvalbumin interneurons from BACHD mice at 3 months, when the mice begin to demonstrate mild motor dysfunction, and at 6 months, when the motor dysfunction is more severe. Changes in synaptic variances were detectable at 3 months, and at 6 months BACHD mice display progressive synaptic pathology in the form of reduced cortical excitation and loss of inhibition onto pyramidal cells. These results suggest that progressive alterations of the superficial cortical circuitry may contribute to the decline of motor function in BACHD mice. The synaptic pathology occurs prior to neuronal degeneration and may therefore prove useful as a target for future therapeutic design.  相似文献   

12.
Huntington's disease (HD) is a progressive inherited neurodegenerative disorder, for which there is no effective therapy. The CARE-HD study, recently published, evaluated the ability of a combination of coenzyme Q10 (CoQ10) and remacemide hydrochloride (R) to ameliorate symptoms, which might arise from glutamate-mediated excitotoxicity and abnormalities in mitochondrial energy production. In this study, we examined the efficacy of CoQ10/R therapy on ameliorating the motor dysfunction and premature death of HD-N171-82Q transgenic mice. Motor performance, measured on the Rotarod, was specifically but transiently improved beginning 3 weeks after initiating the CoQ10/R therapy. Survival, however was not prolonged. Our findings suggest that further study of CoQ10/R in mouse models is warranted to investigate whether this therapeutic approach can ameliorate the symptoms of HD in early stages of the disease.  相似文献   

13.
Deep brain stimulation (DBS) surgery is extensively used in the treatment of movement disorders. Nevertheless, methods to evaluate the clinical response during intraoperative stimulation tests to identify the optimal position for the implantation of the chronic DBS lead remain subjective. In this paper, we describe a new, versatile method for quantitative intraoperative evaluation of improvement in tremor with an acceleration sensor that is mounted on the patient’s wrist during surgery. At each anatomical test position, the improvement in tremor compared to the initial tremor is estimated on the basis of extracted outcome measures. This method was tested on 15 tremor patients undergoing DBS surgery in two centers. Data from 359 stimulation tests were acquired. Our results suggest that accelerometric evaluation detects tremor changes more sensitively than subjective visual ratings. The effective stimulation current amplitudes identified from the quantitative data (1.1 ± 0.8 mA) are lower than those identified by visual evaluation (1.7 ± 0.8 mA) for similar improvement in tremor. Additionally, if these data had been used to choose the chronic implant position of the DBS lead, 15 of the 26 choices would have been different. These results show that our method of accelerometric evaluation can potentially improve DBS targeting.  相似文献   

14.
There is substantial evidence that impairment of peroxisome proliferator-activated receptor (PPAR)-γ-coactivator 1α (PGC-1α) levels and activity play an important role in Huntington's disease (HD) pathogenesis. We tested whether pharmacologic treatment with the pan-PPAR agonist bezafibrate would correct a deficiency of PGC-1α and exert beneficial effects in a transgenic mouse model of HD. We found that administration of bezafibrate in the diet restored levels of PGC-1α, PPARs and downstream genes to levels which occur in wild-type mice. There were significant improvements in phenotype and survival. In the striatum, astrogliosis and neuronal atrophy were attenuated and numbers of mitochondria were increased. Bezafibrate treatment prevented conversion of type I oxidative to type II glycolytic muscle fibers and increased the numbers of muscle mitochondria. Finally, bezafibrate rescued lipid accumulation and apparent vacuolization of brown adipose tissue in the HD mice. These findings provide strong evidence that treatment with bezafibrate exerts neuroprotective effects which may be beneficial in the treatment of HD.  相似文献   

15.
Electrical stimulation of the subthalamic nucleus is an effective treatment for the motor symptoms of Parkinson's disease. While most patients who undergo this procedure do not appear to suffer behavioral side effects, a minority experience cognitive or emotional deficits, and longitudinal studies have reported declines; however, the measures of cognitive function used have been limited. One explanation for the possible disturbance of cognitive functions is that electrical stimulation of the subthalamic nucleus disrupts the normal flow of information within cortico-striatal loops involving prefrontal, associative, or limbic cortex. We wished to assess the effect of high frequency electrical stimulation of the subthalamic nucleus in Parkinson's disease patients while they performed a comprehensive neuropsychological test battery. We selected cognitive tasks known to test the function of different cortical areas, including tests of executive function, cognitive flexibility, attention, memory, language and visual perception. Patients were tested on two separate days, with the stimulators turned on or off. Test scores were also compared to preoperative performance. In our sample of 15 patients without dementia or major depression there was no deterioration on any cognitive test as a result of stimulation. We conclude that electrical stimulation of the motor subthalamic nucleus does not cause appreciable declines in cognitive function in well-selected patients.  相似文献   

16.
Neuroepithelial stem cells (NEPs) possess multipotent potential for self-renewal and neuronal differentiation. Using green fluorescent protein (GFP) positive NEPs, we explored, firstly, the survival and differentiation of grafted NEPs in the host rat and, secondly, whether or not transplantation of NEPs is a feasible therapeutic option for treating Parkinson's disease. NEPs were harvested from the neural tube of enhanced GFP transgenic embryos. In culture, GFP(+) NEPs generated abundant neurospheres and differentiated into both neurons and glia. When stereotaxically transplanted into the 6-hydroxydopamine (6-OHDA)-lesioned striatum of rats, NEPs survived and tyrosine hydroxylase (TH)-positive cells were detected in the graft. Furthermore, these grafted GFP(+) NEPs significantly ameliorated Parkinsonian behavioral symptoms compared with controls which were treated only with normal saline. Our results suggest that transplanted NEPs accomplish dopaminergic differentiation may be used for treating Parkinson's disease.  相似文献   

17.
Chronic brain inflammation is associated with Alzheimer's disease (AD) and is classically attributed to amyloid plaque deposition. However, whether the amyloid pathology can trigger early inflammatory processes before plaque deposition remains a matter of debate. To address the possibility that a pre-plaque inflammatory process occurs, we investigated the status of neuronal, astrocytic, and microglial markers in pre- and post-amyloid plaque stages in a novel transgenic rat model of an AD-like amyloid pathology (McGill-R-Thy1-APP). In this model, we found a marked upregulation of several classical inflammatory markers such as COX-2, IL-1β, TNF-α, and fractalkine (CX3CL1) in the cerebral cortex and hippocampus. Interestingly, many of these markers were highly expressed in amyloid beta-burdened neurons. Activated astrocytes and microglia were associated with these Aβ-burdened neurons. These findings confirm the occurrence of a proinflammatory process preceding amyloid plaque deposition and suggest that Aβ-burdened neurons play a crucial role in initiating inflammation in AD.  相似文献   

18.
Huntington's disease (HD) is an autosomal dominant inheritable neurodegenerative disorder currently without effective treatment. It is caused by an expanded polyglutamine (poly Q) tract in the corresponding protein, huntingtin (htt), and therefore suppressing the huntingtin expression in brain neurons is expected to delay the onset and mitigate the severity of the disease. Here, we have used small interfering RNAs (siRNAs) directed against the huntingtin gene to repress the transgenic mutant huntingtin expression in an HD mouse model, R6/2. Results showed that intraventricular injection of siRNAs at an early postnatal period inhibited transgenic huntingtin expression in brain neurons and induced a decrease in the numbers and sizes of intranuclear inclusions in striatal neurons. Treatments using this siRNA significantly prolonged model mice longevity, improved motor function and slowed down the loss of body weight. This work suggests that siRNA-based therapy is promising as a future treatment for HD.  相似文献   

19.
High-frequency deep brain stimulation (DBS) in the thalamus alleviates most kinds of tremor, yet its mechanism of action is unknown. Studies in subthalamic nucleus and other brain sites have emphasized non-synaptic factors. To explore the mechanism underlying thalamic DBS, we simulated DBS in vitro by applying high-frequency (125 Hz) electrical stimulation directly into the sensorimotor thalamus of adult rat brain slices. Intracellular recordings revealed two distinct types of membrane responses, both of which were initiated with a depolarization and rapid spike firing. However, type 1 responses repolarized quickly and returned to quiescent baseline during simulated DBS whereas type 2 responses maintained the level of membrane depolarization, with or without spike firing. Individual thalamic neurones exhibited either type 1 or type 2 response but not both. In all neurones tested, simulated DBS-evoked membrane depolarization was reversibly eliminated by tetrodotoxin, glutamate receptor antagonists, and the Ca2+ channel antagonist Cd2+. Simulated DBS also increased the excitability of thalamic cells in the presence of glutamate receptor blockade, although this non-synaptic effect induced no spontaneous firing such as that found in subthalamic nucleus neurones. Our data suggest that high-frequency stimulation when applied in the ventral thalamus can rapidly disrupt local synaptic function and neuronal firing thereby leading to a 'functional deafferentation' and/or 'functional inactivation'. These mechanisms, driven primarily by synaptic activation, help to explain the paradox that lesions, muscimol and DBS in thalamus all effectively stop tremor.  相似文献   

20.
Huntington's disease (HD) is an inherited neurodegenerative disease characterised by cell dysfunction and death in the basal ganglia and cortex. Currently there are no effective pharmacological treatments available. Loss of cannabinoid CB1 receptor ligand binding in key brain regions is detected early in HD in human postmortem tissue [Glass M, Dragunow M, Faull RL (2000) The pattern of neurodegeneration in Huntington's disease: a comparative study of cannabinoid, dopamine, adenosine and GABA(A) receptor alterations in the human basal ganglia in Huntington's disease. Neuroscience 97:505–519]. In HD transgenic mice environmental enrichment upregulates the CB1 receptors and slows disease progression [Glass M, van Dellen A, Blakemore C, Hannan AJ, Faull RL (2004) Delayed onset of Huntington's disease in mice in an enriched environment correlates with delayed loss of cannabinoid CB1 receptors. Neuroscience 123:207–212]. These findings, combined with data from lesion studies have led to the suggestion that activation of cannabinoid receptors may be protective. However, studies suggest that CB1 mRNA may be decreased early in the disease progression in HD mice, making this a poor drug target. We have therefore performed a detailed analysis of CB1 receptor ligand binding, protein, gene expression and levels of endocannabinoids just prior to motor symptom onset (12 weeks of age) in R6/1 transgenic mice. We demonstrate that R6/1 mice exhibit a 27% decrease in CB1 mRNA in the striatum compared to wild type (WT). Total protein levels, determined by immunohistochemistry, are not significantly different to WT in the striatum or globus pallidus, but are significantly decreased by 19% in the substantia nigra. CB1 receptor ligand binding demonstrates significant but small decreases (<20%) in all basal ganglia regions evaluated. The levels of the endocannabinoid 2-arachidonoyl glycerol are significantly increased in the cortex (147%) while anandamide is significantly decreased in the hippocampus to 67% of WT. Decreases are also apparent in the ligand binding of neuronal D1 and D2 dopamine receptors co-located with CB1, while there is no change in GABAA receptor ligand binding. These results suggest that in this R6/1 mouse colony at 12 weeks there are only very small changes in CB1 protein and receptors and thus this would be an appropriate time point to evaluate therapeutic interventions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号