首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Objective

To determine interhemispheric differences and effect of postmenstrual age (PMA), height, and gender on somatosensory evoked magnetic fields (SEFs) from the primary (SI) and secondary (SII) somatosensory cortices in healthy newborns.

Methods

We recorded SEFs to stimulation of the contralateral index finger (right in 46 and left in 12) healthy fullterm newborns and analyzed the magnetic responses with equivalent current dipoles.

Results

Activity from both the SI and SII was consistently detectable in the contralateral hemisphere of the newborns during quiet sleep. No significant interhemispheric differences existed in SI or SII response peak latencies, source strengths, or location (n = 8, quiet sleep). SI or SII response peak latency or source strength were not significantly affected by PMA, height, or gender.

Conclusions

During the neonatal period (PMA 37–44 weeks), activity from the contralateral SI and SII can be reliably evaluated with MEG. The somatosensory responses are similar in the left and right hemispheres and no corrections for exact PMA, height, or gender are necessary for interpreting the results. However, the evaluation should be conducted in quiet sleep.

Significance

The reproducibility of the magnetic SI and SII responses suggests clinical applicability of the presented MEG method.  相似文献   

2.
Neuroanatomical and -radiological studies have converged to suggest an atypical organisation in the temporal bank of the left-hemispheric Sylvian fissure for dyslexia. Against the background of this finding, we applied high temporal resolution magnetoencephalography (MEG) to investigate functional aspects of the left-hemispheric auditory cortex in 11 right-handed dyslexic children (aged 8–13 years) and nine matched normal subjects (aged 8–14 years). Event-related field components during a passive oddball paradigm with pure tones and consonant–vowel syllables were evaluated. The first major peak of the auditory evoked response, the M80, showed identical topographical distributions in both groups. In contrast, the generating brain structures of the later M210 component were located more anterior to the earlier response in children with dyslexia only. Control children exhibited the expected activation of more posterior source locations of the component that appeared later in the processing stream. Since the group difference in the relative location of the M210 source seemed to be independent of stimulus category, it is concluded that dyslexics and normally literate children differ as to the organisation of their left-hemispheric auditory cortex.  相似文献   

3.
OBJECTIVE: We investigate the synaptic factor for the recovery function of evoked responses using a repetitive stimulation technique. METHODS: Somatosensory evoked cortical magnetic field (SEF) was recorded following stimulation of the median nerve using single to 6-train stimulation in 8 healthy subjects. The SEF responses after each stimulus in the train stimulation were extracted by subtraction of the waveforms. RESULTS: An attenuation of the SEF components was recognized after the second of the stimuli, but there was no significant attenuation with the third or later stimulations. The root mean square (RMS) of the 1M (peak latency at 20 ms after stimulation) and 4M (70 ms) components were smaller than that of the single stimulation during the train stimulation, while the 2M (30 ms) and 3M (45 ms) components were not attenuated, but the 3M was facilitated at the fourth to sixth stimulation. CONCLUSION: The synaptic factor was not responsible for the attenuation of the SEF components during repetitive stimulation in healthy subjects. The SEF change disclosed a functional difference among the SEF components during the train stimulation, especially among the later components.  相似文献   

4.
目的:研究急性脑梗死患者脑磁图(magnetoencephalography,MEG)体感诱发磁场发生源等价电流偶极子(equivalentcurrentdipole,ECD)强度变化特征。方法:对15例急性脑梗死患者于发病后3~4周进行体感诱发磁场(SEFS)检测;同时检测16例健康志愿者作为对照。电刺激部位为腕部正中神经处,电流脉冲宽度0.3ms,刺激间隔0.5s。SEFS波峰由ECD评估。结果:所有受检者SEFs的最基本波形为M20,急性脑梗死患者患侧ECD强度减小(P<0.01)。结论:MEG可灵敏地检测出急性脑梗死患者体感皮层中枢功能损伤。  相似文献   

5.
Posttraumatic stress disorder (PTSD) has been associated with an altered processing of threat-related stimuli. In particular, an attentional bias towards threat cues has been consistently found in behavioral studies. However, it is unclear whether increased attention towards threat cues translates into preferential processing as neurophysiological studies have yielded inconsistent findings. The aim of the present study was to investigate the neocortical activity related to the processing of aversive stimuli in patients with PTSD. 36 survivors of war and torture with PTSD, 21 Trauma Controls and 20 Unexposed Subjects participated in a visual evoked magnetic field study using flickering pictures of varying affective valence as stimulus material. Minimum norm source localization was carried out to estimate the distribution of sources of the evoked neuromagnetic activity in the brain. Statistical permutation analyses revealed reduced steady-state visual evoked field amplitudes over occipital areas in response to aversive pictures for PTSD patients and for Trauma Controls in comparison to unexposed subjects. Furthermore, PTSD patients showed a hyperactivation of the superior parietal cortex selectively in response to aversive stimuli, which was related to dissociative symptoms as well as to torture severity. The results indicate a different pattern of cortical activation driven by aversive stimuli depending on the experience of multiple traumatic events and PTSD. Whereas, a decreased visual processing of aversive stimuli seems to be associated with trauma exposure in general, the superior parietal activity might represent a specific process linked to the diagnosis of PTSD.
Claudia CataniEmail:
  相似文献   

6.
The functional source separation procedure (FSS) was applied to identify the activities of the primary sensorimotor areas (SM1) devoted to hand control. FSS adds a functional constraint to the cost function of the basic independent component analysis, and obtains source activity all along different processing states. Magnetoencephalographic signals from the left SM1 were recorded in 14 healthy subjects during a simple sensorimotor paradigm--galvanic right median nerve stimuli intermingled with submaximal isometric thumb opposition. Two functional sources related to the sensory flow in the primary cortex were extracted requiring maximal responsiveness to the nerve stimulation at around 20 and 30 ms (S1a, S1b). Maximal cortico-muscular coherence was required for the extraction of the motor source (M1). Sources were multiplied by the Euclidean norm of their corresponding weight vectors, allowing amplitude comparisons among sources in a fixed position. In all subjects, S1a, S1b, M1 were successfully obtained, positioned consistently with the SM1 organization, and behaved as physiologically expected during the movement and processing of the sensory stimuli. The M1 source reacted to the nerve stimulation with higher intensity at latencies around 30 ms than around 20 ms. The FSS method was demonstrated to be able to obtain the dynamics of different primary cortical network activities, two devoted mainly to sensory inflow, and the other to the motor control of the contralateral hand. It was possible to observe each source both during pure sensory processing and during motor tasks. In all conditions, a direct comparison of source intensities can be achieved.  相似文献   

7.
The present magnetoencephalography (MEG) study on auditory evoked magnetic fields (AEFs) was aimed at verifying whether during dichotic listening the contralateral auditory pathway inhibits the ipsilateral one, as suggested by behavioural and patient studies. Ten healthy subjects were given a randomized series of three complex tones (261, 293 and 391 Hz, 500 ms duration), which were delivered monotically and dichotically with different intensities [60, 70 or 80 dBA (audio decibels)]. MEG data were recorded from the right auditory cortex. Results showed that the M100 amplitude over the right auditory cortex increased progressively when tones of increasing intensity were provided at the ipsilateral (right) ear. This effect on M100 was abolished when a concurrent tone of constant intensity was delivered dichotically at the contralateral (left) ear, suggesting that the contralateral pathway inhibited the ipsilateral one. The ipsilateral inhibition was present only when the contralateral tone fundamental frequency was similar to the ipsilateral tone. It was proposed that the occlusion mechanism would be exerted in cortical auditory areas as the dichotic effects were observed at M100 but not M50 component. This is the first evidence showing a neurophysiological inhibition driven by the contralateral auditory pathway over the ipsilateral one during dichotic listening.  相似文献   

8.
《Brain stimulation》2020,13(5):1218-1225
BackgroundDirect electrical stimulation of the human brain has been used to successfully treat several neurological disorders, but the precise effects of stimulation on neural activity are poorly understood. Characterizing the neural response to stimulation, however, could allow clinicians and researchers to more accurately predict neural responses, which could in turn lead to more effective stimulation for treatment and to fundamental knowledge regarding neural function.ObjectiveHere we use a linear systems approach in order to characterize the response to electrical stimulation across cortical locations and then to predict the responses to novel inputs.MethodsWe use intracranial electrodes to directly stimulate the human brain with single pulses of stimulation using amplitudes drawn from a random distribution. Based on the evoked responses, we generate a simple model capturing the characteristic response to stimulation at each cortical site.ResultsWe find that the variable dynamics of the evoked response across cortical locations can be captured using the same simple architecture, a linear time-invariant system that operates separately on positive and negative input pulses of stimulation. We demonstrate that characterizing the response to stimulation using this simple and tractable model of evoked responses enables us to predict the responses to subsequent stimulation with single pulses with novel amplitudes, and the compound response to stimulation with multiple pulses.ConclusionOur data suggest that characterizing the response to stimulation in an approximately linear manner can provide a powerful and principled approach for predicting the response to direct electrical stimulation.  相似文献   

9.
Transient nociceptive stimuli elicit consistent brain responses in the primary and secondary somatosensory cortices (S1, S2), the insula and the anterior and mid‐cingulate cortex (ACC/MCC). However, the functional significance of these responses, especially their relationship with sustained pain perception, remains largely unknown. Here, using functional magnetic resonance imaging, we characterize the differential involvement of these brain regions in the processing of sustained nociceptive and non‐nociceptive somatosensory input. By comparing the spatial patterns of activity elicited by transient (0.5 ms) and long‐lasting (15 and 30 s) stimuli selectively activating nociceptive or non‐nociceptive afferents, we found that the contralateral S1 responded more strongly to the onset of non‐nociceptive stimulation as compared to the onset of nociceptive stimulation and the sustained phases of nociceptive and non‐nociceptive stimulation. Similarly, the anterior insula responded more strongly to the onset of nociceptive stimulation as compared to the onset of non‐nociceptive stimulation and the sustained phases of nociceptive and non‐nociceptive stimulation. This suggests that S1 is specifically sensitive to changes in incoming non‐nociceptive input, whereas the anterior insula is specifically sensitive to changes in incoming nociceptive input. Second, we found that the MCC responded more strongly to the onsets as compared to the sustained phases of both nociceptive and non‐nociceptive stimulation, suggesting that it could be involved in the detection of change regardless of sensory modality. Finally, the posterior insula and S2 responded maximally during the sustained phase of non‐nociceptive stimulation but not nociceptive stimulation, suggesting that these regions are preferentially involved in processing non‐nociceptive somatosensory input. Hum Brain Mapp 36:4346–4360, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

10.
OBJECTIVES: It is known that the high-frequency oscillations (above 400 Hz) of the somatosensory evoked potentials (SEPs) diminish during sleep while the N20 persists (Neurology 38 (1988) 64; Electroenceph clin Neurophysiol 70 (1988) 126; Electroenceph clin Neurophysiol 100 (1996) 189). We investigated possible differential effects of sleep on the 600 Hz SEPs at the thalamus and cortex. METHODS: SEPs from 10 subjects were recorded using 64 channels following electric stimulation at the wrist during awake state and sleep stages II, IV and REM. Dipole source analysis was applied to separate brain-stem, thalamic and cortical activity in the low-frequency (20-450 Hz) and the high-frequency (450-750 Hz) part of the signal. RESULTS: The low-frequency SEPs showed a non-significant increase of the latency of the N20 and a bifid change of the waveform in 3 subjects. The high-frequency SEPs showed a significant decrease of their amplitude at the level of the thalamus and cortex but not at the brain-stem. This decrease in amplitude at the thalamus and cortex were significantly correlated. There was no effect on the latency of the signal. In addition, at the cortex, differential effects on early and late parts of the 600 Hz oscillations were found by time-frequency analysis using a wavelet transformation. CONCLUSIONS: Sleep dependent decrease of the high-frequency SEPs were first observed at the thalamus pointing to the known function of the reticular thalamic nucleus regulating arousal. The results presented here provide further evidence for a thalamic origin of the 600 Hz oscillations. In addition, on the basis of the differential effects on early (up to the N20 peak) and late (between 20 and 25 ms) parts of the signal, at least one intracortical generator of these oscillations is proposed. In general, the high-frequency SEPs (600 Hz oscillations) are supposed to reflect activity of a somatosensory arousal system.  相似文献   

11.
Mismatch negativity (MMN) and its magnetic counterpart (MMNm) have been shown to be altered in patients with various psychiatric and neurological disorders, e.g. Alzheimer's disease and schizophrenia, indicating deficits in involuntary attention. N-Methyl-D-aspartate (NMDA) receptor-mediated glutamate dysfunction is suggested to underlie these deficits. However, the role of NMDA receptors in involuntary attention is poorly understood. Memantine is an NMDA receptor antagonist that has been demonstrated to be effective in the treatment of patients with Alzheimer's disease. We aimed to investigate whether a single dose of memantine would affect MMN/MMNm in healthy subjects studied with simultaneous electroencephalography (EEG) and magnetoencephalography (MEG). Monaural left-ear auditory stimuli were presented in a passive oddball paradigm with infrequent deviant tones differing in frequency and duration. Neuronal activity was recorded in 13 healthy subjects after oral administration of 30mg of memantine or placebo in a randomized, double-blind, cross-over design. MMNm was analyzed using equivalent current dipoles. MMN was evaluated from frontocentral electrodes. Memantine lowered subjects' arousal level as measured by visual analog scales, and enhanced the amplitude of MMN in EEG. No differences in MMN latency were observed in MEG or EEG. Memantine did not affect the location, strength, amplitude or latency of MMNm, P1m, and N1m components. No changes in amplitude or latency were observed for P1 and N1 peaks. These results indicate that memantine affects involuntary attention without otherwise changing auditory processing of the stimuli. As memantine-induced changes in MMN were detected only in EEG, we suggest that the effect is mostly related to the frontal cortex.  相似文献   

12.
《Clinical neurophysiology》2021,132(2):382-391
ObjectiveTo obtain magnetic recordings of electrical activities in the cervical cord and visualize sensory action currents of the dorsal column, intervertebral foramen, and dorsal horn.MethodsNeuromagnetic fields were measured at the neck surface upon median nerve stimulation at the wrist using a magnetospinography system with high-sensitivity superconducting quantum interference device sensors. Somatosensory evoked potentials (SEPs) were also recorded. Evoked electrical currents were reconstructed by recursive null-steering beamformer and superimposed on cervical X-ray images.ResultsEstimated electrical currents perpendicular to the cervical cord ascended sequentially. Their peak latency at C5 and N11 peak latency of SEP were well-correlated in all 16 participants (r = 0.94, p < 0.0001). Trailing axonal currents in the intervertebral foramens were estimated in 10 participants. Estimated dorsal–ventral electrical currents were obtained within the spinal canal at C5. Current density peak latency significantly correlated with cervical N13–P13 peak latency of SEPs in 13 participants (r = 0.97, p < 0.0001).ConclusionsMagnetospinography shows excellent spatial and temporal resolution after median nerve stimulation and can identify the spinal root entry level, calculate the dorsal column conduction velocity, and analyze segmental dorsal horn activity.SignificanceThis approach is useful for functional electrophysiological diagnosis of somatosensory pathways.  相似文献   

13.
Recent research suggests that rapid visual stimulation can induce long-term potentiation-like effects non-invasively in humans. However, to date, this research has provided only limited evidence for input-specificity, a fundamental property of cellular long-term potentiation. In the present study we extend the evidence for input-specificity by investigating the effect of stimulus orientation. We use sine wave gratings of two different orientations to show that rapid visual stimulation can induce orientation-specific potentiation, as indexed by changes in the amplitude of a late phase of the N1 complex of the visual-evoked potential. This result suggests that discrete populations of orientation-tuned neurons can be selectively potentiated by rapid visual stimulation. Furthermore, our results support earlier studies that have suggested that the locus of potentiation induced by rapid visual stimulation is visual cortex.  相似文献   

14.
Previous research has shown that eye gaze affects infants' processing of novel objects. In the current study we address the question whether presenting a highly familiar face vs. a stranger enhances the effects of gaze cues on object processing in 4-month-olds. Infants were presented pictures of the infant's caregiver and another infant's caregiver (stranger) either turning eye gaze toward an object next to the face or looking away from the object. Then objects were presented again without the face and event-related potentials (ERP) were recorded. An enhanced positive slow wave (PSW) was found for objects that were not cued by the caregiver's eye gaze, indicating that these objects required increased encoding compared to objects that were cued by the caregiver's gaze. When a stranger was presented, a PSW was observed in response to objects regardless of whether the objects were gaze-cued or not. Thus, the caregiver's eye gaze had a larger effect on infants' object processing than the stranger's gaze. This suggests that at 4 months of age the caregiver's eye gaze is easier to process for infants, more salient, or both. The findings are discussed in terms of early social cognitive development and face processing models.  相似文献   

15.
16.
Responses to focal application of gamma-aminobutyric acid (GABA) were compared to synaptic potentials elicited by afferent stimulation of rat visual cortical neurons, using a slice preparation and conventional intracellular recording techniques. GABA produced three types of responses: a brief hyperpolarization (mean reversal potential, -72 mV), brief depolarization (mean reversal potential, -50 mV), or a prolonged hyperpolarization (mean reversal potential, -80 mV). Synaptic potentials included simple or complex EPSPs and EPSPs followed by mono- or biphasic IPSPs. A comparison of the characteristics of the GABA responses and synaptic potentials indicated that GABA may mediate both phases of the IPSP in these cells. Our results suggest that despite differences in the circuitry of the visual cortex as opposed to other neocortical and allocortical (hippocampal) areas (Mountcastle and Poggio, 1968; Colonnier and Rossignol, 1969; Creutzfeldt, 1978; Kuhlenbeck, 1978), the inhibitory control of cortical pyramidal and nonpyramidal neurons by GABA is quite similar.  相似文献   

17.
The relative dispositions of cells in immature and mature barrel field cortices that bind antibody to glial fibrillary acidic protein (GFAP) were examined and photographed under the light microscope. Light micrographs demonstrate that radially oriented glial cells are present in the barrel field of postnatal day 6 cortices and that they are located predominantly within the presumptive barrel sides and/or septae, thus sharply delineating individual barrels from each other. The relative dispositions of radial glial fibers observed at this time implicate glia in development of topographic order during early postnatal development of the somatosensory cortex. In contrast, no such delineation could be detected in the cortices of more mature mice, because GFAP-positive astrocytes are present throughout the barrel field and are not confined to barrel sides. This ephemeral nature of the GFAP-delineated barrel field is of interest with respect to the recently reported ephemeral lectin-delineated barrel field.  相似文献   

18.
《Clinical neurophysiology》2021,132(3):708-719
ObjectiveTo clarify the effects of unfused cranial bones on magnetoencephalography (MEG) signals during early development.MethodsIn a simulation study, we compared the MEG signals over a spherical head model with a circular hole mimicking the anterior fontanel to those over the same head model without the fontanel for different head and fontanel sizes with varying skull thickness and conductivity.ResultsThe fontanel had small effects according to three indices. The sum of differences in signal over a sensor array due to a fontanel, for example, was < 6% of the sum without the fontanel. However, the fontanel effects were extensive for dipole sources deep in the brain or outside the fontanel for larger fontanels. The effects were comparable in magnitude for tangential and radial sources. Skull thickness significantly increased the effect, while skull conductivity had minor effects.ConclusionMEG signal is weakly affected by a fontanel. However, the effects can be extensive and significant for radial sources, thicker skull and large fontanels. The fontanel effects can be intuitively explained by the concept of secondary sources at the fontanel wall.SignificanceThe minor influence of unfused cranial bones simplifies MEG analysis, but it should be considered for quantitative analysis.  相似文献   

19.
The binding of [125I]2-(β-4-hydroxyphenylethylamino-ethyltetralone ([125I]HEAT), an α1-adrenergic receptor antagonist, to human brain membranes was characterized and the binding assessed in tissue from subjects with Alzheimer's disease (AD) and aging controls. Under Na+-K+ phosphate buffer conditions, [125I]HEAT bound to a single class of binding sites in prefrontal cortex (Brodmann area 10) with a Kd of about 120 pM. High binding capacities of [125I]HEAT were evident in the hippocampus and neocortex but were low in subcortical areas and cerebral microvessels comparable to the regional distribution of [3H]prazosin binding reported previously. Displacement of [125I]HEAT by various adrenergic drugs was consistent with its binding to α1-adrenergic receptors. The specific binding was not affected by postmortem delay between death and freezing of tissue at autopsy. There was no correlation of [125I]HEAT binding with age of subjects. In AD subjects, the binding was significantly decreased in prefrontal cortex by about 25% but not changed in hippocampus, putamen or cerebellum compared to age-matched controls. The reduced binding of [125I]HEAT in prefrontal cortex may reflect a region-specific change in α1-adrenergic receptors associated with neuronal loss in AD.  相似文献   

20.
Low intensity transcranial electrical stimulation (TES) in humans, encompassing transcranial direct current (tDCS), transcutaneous spinal Direct Current Stimulation (tsDCS), transcranial alternating current (tACS), and transcranial random noise (tRNS) stimulation or their combinations, appears to be safe. No serious adverse events (SAEs) have been reported so far in over 18,000 sessions administered to healthy subjects, neurological and psychiatric patients, as summarized here. Moderate adverse events (AEs), as defined by the necessity to intervene, are rare, and include skin burns with tDCS due to suboptimal electrode-skin contact. Very rarely mania or hypomania was induced in patients with depression (11 documented cases), yet a causal relationship is difficult to prove because of the low incidence rate and limited numbers of subjects in controlled trials. Mild AEs (MAEs) include headache and fatigue following stimulation as well as prickling and burning sensations occurring during tDCS at peak-to-baseline intensities of 1–2 mA and during tACS at higher peak-to-peak intensities above 2 mA.The prevalence of published AEs is different in studies specifically assessing AEs vs. those not assessing them, being higher in the former. AEs are frequently reported by individuals receiving placebo stimulation. The profile of AEs in terms of frequency, magnitude and type is comparable in healthy and clinical populations, and this is also the case for more vulnerable populations, such as children, elderly persons, or pregnant women. Combined interventions (e.g., co-application of drugs, electrophysiological measurements, neuroimaging) were not associated with further safety issues.Safety is established for low-intensity ‘conventional’ TES defined as <4 mA, up to 60 min duration per day. Animal studies and modeling evidence indicate that brain injury could occur at predicted current densities in the brain of 6.3–13 A/m2 that are over an order of magnitude above those produced by tDCS in humans. Using AC stimulation fewer AEs were reported compared to DC. In specific paradigms with amplitudes of up to 10 mA, frequencies in the kHz range appear to be safe.In this paper we provide structured interviews and recommend their use in future controlled studies, in particular when trying to extend the parameters applied. We also discuss recent regulatory issues, reporting practices and ethical issues. These recommendations achieved consensus in a meeting, which took place in Göttingen, Germany, on September 6–7, 2016 and were refined thereafter by email correspondence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号