首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The causative agents of Lyme disease, Borrelia burgdorferi s.s., B. garinii, and B. afzelii, differ in their susceptibility to complement-mediated lysis. This phenomenon apparently depends on the expression of proteins termed complement regulator-acquiring surface proteins (CRASP) and their binding to the inhibitory plasma proteins factor H and FHL-1. To characterize these bacterial proteins in more detail we have now isolated from a B. burgdorferi expression library a novel factor H-binding protein. In accordance with our previous studies this protein was termed BbCRASP-3 and represents a novel member of the polymorphic Erp (OspE/F-related) protein family. On the basis of protease accessibility assays using intact spirochetes, BbCRASP-3 is identified as a surface-exposed protein and binds the C-terminal short consensus repeats of factor H. Applying deletion mutants of BbCRASP-3, the factor H-binding site was mapped to the nine-amino-acid motif LEVLKKNLK localized at the C-terminal end of BbCRASP-3. Factor H bound to BbCRASP-3 maintains its cofactor activity in factor I-mediated C3b inactivation. Binding of BbCRASP-3 to factor H can be inhibited by heparin, a physiological ligand of the complement regulator factor H. Blocking of factor-H-binding by soluble BbCRASP-3 leads to an increase of complement deposition on intermediate serum-resistant strain ZS7. In conclusion, BbCRASP-3 has been identified as a novel factor H-binding protein on B. burgdorferi which by conferring complement resistance to the pathogen may contribute to its persistence in the mammalian host.  相似文献   

2.
Previous immunological studies indicated that the Lyme disease spirochete, Borrelia burgdorferi, expresses Erp outer surface proteins during mammalian infection. We conducted analyses of Erp expression throughout the entire tick-mammal infectious cycle, which revealed that the bacteria regulate Erp production in vivo. Bacteria within unfed nymphal ticks expressed little to no Erp proteins. However, as infected ticks fed on mice, B. burgdorferi increased production of Erp proteins, with essentially all transmitted bacteria expressing these proteins. Mice infected with B. burgdorferi mounted rapid IgM responses to all tested Erp proteins, followed by strong immunoglobulin G responses that generally increased in intensity throughout 11 months of infection, suggesting continued exposure of Erp proteins to the host immune system throughout chronic infection. As naive tick larvae acquired B. burgdorferi by feeding on infected mice, essentially all transmitted bacteria produced Erp proteins, also suggestive of continual Erp expression during mammalian infection. Shortly after the larvae acquired bacteria, Erp production was drastically downregulated. The expression of Erp proteins on B. burgdorferi throughout mammalian infection is consistent with their hypothesized function as factor H-binding proteins that protect the bacteria from host innate immune responses.  相似文献   

3.
The causative agent of Lyme disease, Borrelia burgdorferi, is naturally resistant to its host's alternative pathway of complement-mediated killing. Several different borrelial outer surface proteins have been identified as being able to bind host factor H, a regulator of the alternative pathway, leading to a hypothesis that such binding is important for borrelial resistance to complement. To test this hypothesis, the development of B. burgdorferi infection was compared between factor H-deficient and wild-type mice. Factor B- and C3-deficient mice were also studied to determine the relative roles of the alternative and classical/lectin pathways in B. burgdorferi survival during mammalian infection. While it was predicted that B. burgdorferi should be impaired in its ability to infect factor H-deficient animals, quantitative analyses of bacterial loads indicated that those mice were infected at levels similar to those of wild-type and factor B- and C3-deficient mice. Ticks fed on infected factor H-deficient or wild-type mice all acquired similar numbers of bacteria. Indirect immunofluorescence analysis of B. burgdorferi acquired by feeding ticks from the blood of infected mice indicated that none of the bacteria had detectable levels of factor H on their outer surfaces, even though such bacteria express high levels of surface proteins capable of binding factor H. These findings demonstrate that the acquisition of host factor H is not essential for mammalian infection by B. burgdorferi and indicate that additional mechanisms are employed by the Lyme disease spirochete to evade complement-mediated killing.  相似文献   

4.
During the natural mammal-tick infection cycle, the Lyme disease spirochete Borrelia burgdorferi comes into contact with components of the alternative complement pathway. B. burgdorferi, like many other human pathogens, has evolved the immune evasion strategy of binding two host-derived fluid-phase regulators of complement, factor H and factor H-like protein 1 (FHL-1). The borrelial complement regulator-acquiring surface protein 1 (CRASP-1) is a surface-exposed lipoprotein that binds both factor H and FHL-1. Analysis of CRASP-1 expression during the mammal-tick infectious cycle indicated that B. burgdorferi expresses this protein during mammalian infection, supporting the hypothesized role for CRASP-1 in immune evasion. However, CRASP-1 synthesis was repressed in bacteria during colonization of vector ticks. Analysis of cultured bacteria indicated that CRASP-1 is differentially expressed in response to changes in pH. Comparisons of CRASP-1 expression patterns with those of other infection-associated B. burgdorferi proteins, including the OspC, OspA, and Erp proteins, indicated that each protein is regulated through a unique mechanism.  相似文献   

5.
Several Borrelia burgdorferi outer surface proteins have been identified over the past decade that are up-regulated by temperature- and/or mammalian host-specific signals as this spirochete is transmitted from ticks to mammals. Given the potential role(s) that these differentially up-regulated proteins may play in B. burgdorferi transmission and Lyme disease pathogenesis, much attention has recently been placed on identifying additional borrelial outer surface proteins. To identify uncharacterized B. burgdorferi outer surface proteins, we previously performed a comprehensive gene expression profiling analysis of temperature-shifted and mammalian host-adapted B. burgdorferi. The combined microarray analyses revealed that many genes encoding known and putative outer surface proteins are down-regulated in mammalian host-adapted B. burgdorferi. At the same time, however, several different genes encoding putative outer surface proteins were found to be up-regulated during the transmission and infection process. Among the putative outer surface proteins identified, biochemical and surface localization analyses confirmed that seven (Bb0405, Bb0689, BbA36, BbA64, BbA66, BbA69, and BbI42) are localized to the surface of B. burgdorferi. Furthermore, enzyme-linked immunosorbent assay analysis using serum from tick-infested baboons indicated that all seven outer surface proteins identified are immunogenic and that antibodies are generated against all seven during a natural infection. Specific antibodies generated against all seven of these surface proteins were found to be bactericidal against B. burgdorferi, indicating that these newly identified outer surface proteins are prime candidates for analysis as second-generation Lyme disease vaccinogens.  相似文献   

6.
The three genospecies Borrelia burgdorferi, Borrelia garinii, and Borrelia afzelii, all causative agents of Lyme disease, differ in their susceptibilities to human complement-mediated lysis. We recently reported that serum resistance of borrelias correlates largely with their ability to bind the human complement regulators FHL-1/reconectin and factor H. To date, two complement regulator-acquiring-proteins (CRASP-1 and CRASP-2) have been identified in serum-resistant B. afzelii isolates (P. Kraiczy, C. Skerka, M. Kirschfink, V. Brade, and P. F. Zipfel, Eur. J. Immunol. 31:1674-1684, 2001). Here, we present a comprehensive study of the CRASPs detectable in both serum-resistant and intermediate serum-sensitive B. afzelii and B. burgdorferi isolates. These CRASPs were designated according to the genospecies either as BaCRASPs, when derived from B. afzelii, or as BbCRASPs, for proteins identified in B. burgdorferi isolates. Each borrelial isolate expresses distinct CRASPs that can be differentiated by their mobility and binding phenotypes. A detailed comparison reveals overlapping and even identical binding profiles for BaCRASP-1 (27.5 kDa), BbCRASP-1 (25.9 kDa), and BbCRASP-2 (23.2 kDa), which bind FHL-1/reconectin strongly and interact weakly with factor H. In contrast, two B. afzelii proteins (BaCRASP-4 [19.2 kDa] and BaCRASP-5 [22.5 kDa]) and three B. burgdorferi proteins (BbCRASP-3 [19.8 kDa], BbCRASP-4 [18.5 kDa], and BbCRASP-5 [17.7 kDa]) bind factor H but not FHL-1/reconectin. Most CRASPs bind both human immune regulators at their C-terminal ends. Temperature-dependent up-regulation of CRASPs (BaCRASP-1, BaCRASP-2, and BaCRASP-5) is detected in low-passage borrelias cultured at 33 or 37 degrees C compared with those cultured at 20 degrees C. The characterization of the individual CRASPs on the molecular level is expected to identify new virulence factors and potential vaccine candidates.  相似文献   

7.
8.
Lyme borreliae naturally maintain numerous distinct DNA elements of the cp32 family, each of which carries a mono- or bicistronic erp locus. The encoded Erp proteins are surface-exposed outer membrane lipoproteins that are produced at high levels during mammalian infection but largely repressed during colonization of vector ticks. Recent studies have revealed that some Erp proteins can serve as bacterial adhesins, binding host proteins such as the complement regulator factor H and the extracellular matrix component laminin. These results suggest that Erp proteins play roles in multiple aspects of mammalian infection.  相似文献   

9.
Borrelia burgdorferi differentially expresses many of the OspE/F/Elp paralogs during tick feeding. These findings, combined with the recent report that stable B. burgdorferi infection of mammals occurs only after 53 h of tick attachment, prompted us to further analyze the expression of the OspE/F/Elp paralogs during this critical period of transmission. Indirect immunofluorescence analysis revealed that OspE, p21, ElpB1, ElpB2, and OspF/BbK2.11 are expressed in the salivary glands of ticks allowed to feed on mice for 53 to 58 h. Interestingly, many of the spirochetes in the salivary glands that expressed abundant amounts of these antigens were negative for OspA and OspC. Although prior reports have indicated that OspE/F/Elp orthologs are surface exposed, none of the individual lipoproteins or combinations of the lipoproteins protected mice from challenge infections. To examine why these apparently surface-exposed lipoproteins were not protective, we analyzed their genetic stability during infection and their cellular locations after cultivation in vitro and within dialysis membrane chambers, mimicking a mammalian host-adapted state. Combined restriction fragment length polymorphism and nucleotide sequence analyses revealed that the genes encoding these lipoproteins are stable for at least 8 months postinfection. Interestingly, cellular localization experiments revealed that while all of these proteins can be surface localized, there were significant populations of spirochetes that expressed these lipoproteins only in the periplasm. Furthermore, host-specific signals were found to alter the expression patterns and final cellular location of these lipoproteins. The combined data revealed a remarkable heterogeneity in populations of B. burgdorferi during tick transmission and mammalian infection. The diversity is generated not only by temporal changes in antigen expression but also by modulation of the surface lipoproteins during infection. The ability to regulate the temporal and spatial expression patterns of lipoproteins throughout infection likely contributes to persistent infection of mammals by B. burgdorferi.  相似文献   

10.
Maintenance in nature of Borrelia burgdorferi, the pathogenic bacterium that causes Lyme disease, requires transmission through an infectious cycle that includes a tick vector and a mammalian host. The genetic requirements for persistence in these disparate environments have not been well defined. B. burgdorferi has a complex genome composed of a chromosome and >20 plasmids. Previous work has demonstrated that B. burgdorferi requires two plasmids, lp25 and lp28-1, in the mammalian host. To investigate the requirement for these same two plasmids during tick infection, we experimentally infected larval ticks with B. burgdorferi lacking either lp25 or lp28-1 and then assessed the spirochete load in ticks at different points of the infection. Whereas plasmid lp28-1 was dispensable in ticks, plasmid lp25 was essential for tick infection. Furthermore, we investigated the requirement in ticks for the lp25 gene bbe22, which encodes a nicotinamidase that is necessary and sufficient for mammalian infection by B. burgdorferi clones lacking lp25. This gene was also sufficient in ticks to restore survival of spirochetes lacking lp25. This is the first study to investigate the requirement for specific plasmids by B. burgdorferi within the tick vector, and it begins to establish the genomic components required for persistence of this pathogen throughout its natural infectious cycle.  相似文献   

11.
BBK32, a fibronectin-binding protein of Borrelia burgdorferi, is one of many surface lipoproteins that are differentially expressed by the Lyme disease spirochete at various stages of its life cycle. The level of BBK32 expression in B. burgdorferi is highest during infection of the mammalian host and lowest in flat ticks. This temporal expression profile, along with its fibronectin-binding activity, strongly suggests that BBK32 may play an important role in Lyme pathogenesis in the host. To test this hypothesis, we constructed an isogenic BBK32 deletion mutant from wild-type B. burgdorferi B31 by replacing the BBK32 gene with a kanamycin resistance cassette through homologous recombination. We examined both the wild-type strain and the BBK32 deletion mutant extensively in the experimental mouse-tick model of the Borrelia life cycle. Our data indicated that B. burgdorferi lacking BBK32 retained full pathogenicity in mice, regardless of whether mice were infected artificially by syringe inoculation or naturally by tick bite. The loss of BBK32 expression in the mutant had no adverse effect on spirochete acquisition (mouse-to-tick) and transmission (tick-to-mouse) processes. These results suggest that additional B. burgdorferi proteins can complement the function of BBK32, fibronectin binding or otherwise, during the natural spirochete life cycle.  相似文献   

12.
The ability of Borrelia burgdorferi sensu lato to survive and persist in a variety of vertebrate hosts is a multifactorial process. Several potential mechanisms of immune evasion have been identified. We have shown that some Borrelia species bind host-derived fluid-phase immune regulators FHL-1 and factor H to their surface via complement regulator-acquiring surface proteins (CRASPs). Factor H and FHL-1 serve as cofactors for factor I, a serine protease that cleaves C3b directly on the cell surface and thereby confers resistance of spirochetes to complement-mediated lysis. Among the CRASP molecules produced by B. burgdorferi, BbCRASP-2 represents a novel FHL-1 and factor H binding protein that is distinct from other borrelial CRASP molecules and is predominantly expressed by serum-resistant Borrelia strains. The aim of this study was to identify BbCRASP-2 determinants required for FHL-1 and factor H binding. A number of recombinant BbCRASP-2 mutants were generated by in vitro mutagenesis and tested for factor H and FHL-1 binding employing ELISA. Up to 8 amino acid substitutions in the proposed binding regions 2 and 3 of BbCRASP-2 resulted in reduced or complete loss of FHL-1 and/or factor H binding. These results suggest that the factor H/FHL-1 binding regions are discontinuous and long distance interaction is involved in binding of both immune regulators. Furthermore, putative coiled-coil structural elements as recently discussed to be important in the interaction of BbCRASP-1 with factor H seem to play a subordinate role for binding of BbCRASP-2 to FHL-1 and factor H. The elucidation of host–pathogen interactions will help to develop novel therapeutic strategies against Lyme disease/borreliosis.  相似文献   

13.
Borrelia burgdorferi is maintained in an infection cycle between mammalian and arthropod hosts. Appropriate gene expression by B. burgdorferi at different stages of this cycle is probably essential for transmission and establishment of infection. The B. burgdorferi beta(3) integrin ligand P66 is expressed by the bacteria in mammals, laboratory culture, and engorged but not unfed ticks. No in vitro culture conditions in which P66 expression reflected that in the unfed tick were found, suggesting that there are aspects of B. burgdorferi-tick interaction that remain unexplored.  相似文献   

14.
This study demonstrates a strict temporal requirement for a virulence determinant of the Lyme disease spirochete Borrelia burgdorferi during a unique point in its natural infection cycle, which alternates between ticks and small mammals. OspC is a major surface protein produced by B. burgdorferi when infected ticks feed but whose synthesis decreases after transmission to a mammalian host. We have previously shown that spirochetes lacking OspC are competent to replicate in and migrate to the salivary glands of the tick vector but do not infect mice. Here we assessed the timing of the requirement for OspC by using an ospC mutant complemented with an unstable copy of the ospC gene and show that B. burgdorferi's requirement for OspC is specific to the mammal and limited to a critical early stage of mammalian infection. By using this unique system, we found that most bacterial reisolates from mice persistently infected with the initially complemented ospC mutant strain no longer carried the wild-type copy of ospC. Such spirochetes were acquired by feeding ticks and migrated to the tick salivary glands during subsequent feeding. Despite normal behavior in ticks, these ospC mutant spirochetes did not infect naive mice. ospC mutant spirochetes from persistently infected mice also failed to infect naive mice by tissue transplantation. We conclude that OspC is indispensable for establishing infection by B. burgdorferi in mammals but is not required at any other point of the mouse-tick infection cycle.  相似文献   

15.
16.
17.
18.
Borrelia burgdorferi, the causative agent of Lyme disease, produces RevA protein during the early stages of mammalian infection. B. burgdorferi apparently uses temperature as a cue to its location, producing proteins required for infection of warm-blooded animals at temperatures corresponding to host body temperature, but does not produce such virulence factors at cooler, ambient temperatures. We have observed that B. burgdorferi regulates expression of RevA in response to temperature, with the protein being synthesized by bacteria cultivated at 34 degrees C but not by those grown at 23 degrees C. Tissues encountered by B. burgdorferi during its infectious cycle vary in their pH values, and the level of RevA expression was also found to be dependent upon pH of the culture medium. The cellular localization of RevA was also analyzed. Borrelial inner and outer membranes were purified by isopycnic centrifugation, and membrane fractions were conclusively identified by immunoblot analysis using antibodies raised against the integral inner membrane protein MotB and outer membrane-associated Erp lipoproteins. Immunoblot analyses indicated that RevA is located in the B. burgdorferi outer membrane. These analyses also demonstrated that an earlier report (H. A. Bledsoe et al., Infect. Immun. 176:7447-7455, 1994) had misidentified such B. burgdorferi membrane fractions. RevA was further demonstrated to be exposed to the external environment, where it could facilitate interactions with host tissues.  相似文献   

19.
The establishment of Borrelia burgdorferi infection involves numerous interactions between the bacteria and a variety of vertebrate host and arthropod vector tissues. This complex process requires regulated synthesis of many bacterial proteins. We now demonstrate that these spirochetes utilize a LuxS/autoinducer-2 (AI-2)-based quorum-sensing mechanism to regulate protein expression, the first system of cell-cell communication to be described in a spirochete. The luxS gene of B. burgdorferi was identified and demonstrated to encode a functional enzyme by complementation of an Escherichia coli luxS mutant. Cultured B. burgdorferi responded to AI-2 by altering the expression levels of a large number of proteins, including the complement regulator factor H-binding Erp proteins. Through this mechanism, a population of Lyme disease spirochetes may synchronize production of specific proteins needed for infection processes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号