首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
目的 制备载羟基喜树碱(hydroxycamptothecin,HCPT)还原响应mPEG-S-S-C18纳米粒,采用星点设计-效应面法筛选优化制备工艺。方法 采用乳化-溶剂挥发法制备HCPT/mPEG-S-S-C18纳米粒,应用单因素法考察投药量、水相/油相体积比、超声功率以及超声时间对载药纳米粒包封率和载药量的影响。在此基础上,以包封率和载药量作为评价指标,采用Design-Expert V8.0.6软件进行星点设计,优化载药纳米粒的制备工艺。结果 优化获得的HCPT/mPEG-S-S-C18纳米粒制备工艺投药量为1.0 mg,水相/油相体积比为4.56∶1,超声功率为562.5 W。该工艺制备的载药纳米粒包封率为(58.14±1.04)%,载药量为(3.46±0.22)%,平均粒径为(322.9±9.52) nm,多分散性指数为0.195±0.05,Zeta电位为(-17.5±2.11) mV。结论 乳化-溶剂挥发法适用于制备HCPT/mPEG-S-S-C18纳米粒,星点设计-效应面法可优化获得载药纳米粒的最佳制备工艺,所得的载药纳米粒包封率和载药量较高,所建立的数学模型预测性良好。  相似文献   

2.
目的 制备载姜黄素的透明质酸-熊果酸-硫辛酸交联纳米粒(Cur/cLA-HU NPs),并进行体外抗肿瘤活性评价。方法 以载药量、包封率为指标,采用超声法,通过单因素考察优化Cur/cLA-HU NPs的制备工艺,并对Cur/cLA-HU NPs的粒径、Zeta电位、形态和体外释药情况进行评价。通过荧光倒置显微镜分析HepG2细胞对Cur/cLA-HU NPs的摄取,以MTT法考察Cur/cLA-HU NPs对HepG2细胞的毒性。结果 最佳载药工艺为:以甲醇为药物姜黄素有机溶剂,以药质比4∶10进行投料,超声于100 W下次数为3次,每次处理3 min,超声程序设置为开2 s、停4 s。Cur/cLA-HU NPs的包封率为(87.91±1.51)%,载药量为(16.64±0.45)%,粒径为(172.3±2.57)nm,PDI为(0.174±0.021),分散均匀,Zeta电位为(−35.3±2.12)mV。Cur/cLA-HU NPs具有还原响应性,释放药物的快慢受到GSH浓度的影响;靶向肿瘤细胞,且被细胞快速摄取;对HepG2人肝癌细胞增殖具有明显抑制作用。结论 Cur/cLA-HU NPs载药量和包封率高,其体外抗肿瘤活性稍优于姜黄素,具有肿瘤靶向性。  相似文献   

3.
目的 制备Angiopep-2(ANG)修饰的载神经毒素(neurotoxin,NT)介孔二氧化硅脂质囊纳米粒(mesoporous silica nanoparticles,MSN)(ANG-LP-MSN-NT),并进行体内外评价。方法 利用改进的Stober法制备介孔二氧化硅纳米粒,然后运用薄膜水化法制备ANG-LP-MSN-NT。考察其形态、粒径、Zeta电位、载药量和包封率;通过小角粉末衍射、氮气吸-脱附法等技术对其进行表征;透析袋法考察其体外释药特性;热板法和醋酸扭体法考察其镇痛效果。结果 制备的MSN比表面积为557 m2·g-1,孔径和孔容积(Vp)分别为2.94 nm和0.58 cm3·g-1。ANG-LP-MSN-NT分布均一,无团聚现象,粒径为(123.37±3.76)nm(PDI 0.20±0.02),Zeta电位为(-16.57±1.59)mV,载药量与包封率分别为(10.75±0.54)%与(91.82±3.12)%。ANG-LP-MSN-NT较MSN-NT体外突释降低,缓释特性明显;药效学实验结果表明ANG-LP-MSN-NT起效快、最大镇痛效应优于其他组别。结论 ANG-LP-MSN-NT解决了二氧化硅易团聚、易突释的问题,且更有利于NT在脑部富集,发挥更好的镇痛效果,该纳米递药系统作为神经毒素载体在镇痛方面具有较好的应用前景。  相似文献   

4.
盐酸阿霉素聚乳酸纳米粒的制备及大鼠体内药动学研究   总被引:1,自引:1,他引:0  
目的 优化盐酸阿霉素聚乳酸纳米粒(DOX-PLA-NPs)的制备工艺,并对其理化性质、体外释放及大鼠体内药动学进行研究。方法 采用改良的复乳-溶剂挥发法制备DOX-PLA-NPs,正交设计优化其处方工艺,对其纳米粒形态、粒径、Zeta电位、包封率与载药量进行测定。以DOX原药为对照组,考察DOX-PLA-NPs的体外释药特性及大鼠尾静脉给药后的体内药动学参数。结果 DOX-PLA-NPs外观圆整,平均粒径为(125.67±3.80) nm、Zeta电位为(-35.97±1.58) mV、包封率和载药量分别为(81.23±1.46)%,(10.29±0.63)%。体外释放结果显示,DOX经纳米粒包裹后,具明显的缓释作用。DOX原药和纳米粒的体内药动学过程均符合开放式二室模型,t1/2β分别为(1.15±0.175) h、(6.43±2.12) h,CL分别为(174.76±47.22) h·L-1、(30.68±11.86) h·L-1,AUC0→t分别为(6.01±1.61)μg·h·L-1、(36.04±13.72)μg·h·L-1结论 制备的盐酸阿霉素聚乳酸纳米粒粒径较小、包封率较高,具明显的缓释作用,并能提高药物的生物利用度。  相似文献   

5.
目的 设计具有活性氧/谷胱甘肽双重响应的紫杉醇前药纳米粒(ProPTX-SS-NPs),为紫杉醇的应用提供新思路和新方法。方法 以粒径和PDI为指标,考察前药纳米粒的最佳制备方法和工艺;通过电镜观察前药纳米粒的形貌并对其粒径、电位、包封率、载药量等进行考察;考察纳米粒在活性氧和谷胱甘肽环境下的体外释放特性;通过细胞试验考察前药纳米粒的体外细胞毒性和细胞摄取情况。结果 采用最佳工艺制备的纳米粒粒径为(130.20±2.18) nm,分散系数为0.12±0.01,Zeta电位为(–8.45±0.01) mV,载药量为(10.27±1.36)%,包封率为(93.22±2.20)%。前药纳米粒具有良好的活性氧和谷胱甘肽响应特性,并且能够显著抑制MCF-7、HepG2和MDA-MB-231增殖。其对MDA-MB-231细胞的抑制作用最为显著,半数抑制浓度IC50(0.71±0.11)μmol·L-1,而PTX的IC50为(22.38±3.27)μmol·L-1。结论ProPTX-SS-NPs具有良好的肿瘤微环境响应性能,具备显著的抗肿瘤活性,是一种极具潜力和应用前景的抗肿瘤纳米系统。  相似文献   

6.
万众  孙治国  鲁莹  王林辉 《药学实践杂志》2019,37(3):246-248,259
目的 制备卡巴他赛白蛋白纳米粒(CBZ-BSA-Gd-NP)以降低药物毒性,并评价其体外生物相容性。方法 采用生物矿化法制备CBZ-BSA-Gd-NP,对其处方工艺进行优化,对粒径、Zeta电位、载药量等性质进行表征,并采用体外溶血试验考察其体外血液相容性。结果 制得的纳米粒包封率为63.04%,载药量为10.51%,平均粒径为(166.1±4.7) nm,粒径的多分散系数(PDI)为0.256,Zeta电位为(-18.14±1.16) mV,与卡巴他赛-吐温溶液相比,体外溶血作用显著降低。结论 该方法操作简便,制备的CBZ-BSA-Gd-NP载药量高,粒径均匀,体外血液相容性好,增加了药物使用的安全性。  相似文献   

7.
目的 采用正交设计试验优化载胰岛素季铵化壳聚糖纳米粒的处方工艺,并初步考察其降糖效果。 方法 用离子交联法制备载胰岛素的季铵化壳聚糖纳米粒,用正交试验确定其最佳处方工艺。用透射电子显微镜观察纳米粒的表面形态;用粒径/Zeta电位仪测定纳米粒的粒径和Zeta电位;用高效液相色谱(HPLC)法测定纳米粒的包封率、载药量及体外释放情况。对糖尿病大鼠皮下注射给药,对其药效学进行初步考察。 结果 制得的纳米粒呈球形,分布均匀;平均粒径(63.26±1.88) nm;Zeta电位(33.1±0.3) mV;包封率(37.92±2.11)%;载药量(5.42±0.3)%;24 h累计释放率63.83%。皮下注射给药8 h,糖尿病大鼠血糖较单纯注射胰岛素组下降平缓,且药效持久。 结论 优化后的载胰岛素的季铵化壳聚糖纳米粒形态较好、粒径较小,为研究胰岛素的新型给药途径奠定了基础。  相似文献   

8.
目的 制备川芎嗪PEG-PE纳米胶束,并评价该纳米胶束的细胞摄取和抗心肌细胞凋亡效果。方法 采用薄膜水化法制备川芎嗪PEG-PE纳米胶束,并进行表征。采用体外释药、细胞摄取和细胞凋亡试验对该载药系统进行评价。结果 川芎嗪PEG-PE纳米胶束粒径为(15.8±0.9) nm,Zeta电势为-(20.5±0.4) mV,载药量为(5.7±0.3)%,包封率为(87.2±5.4)%。电镜结果表明川芎嗪PEG-PE纳米胶束呈形态规则的圆球型结构;采用芘测定法测定PEG-PE纳米胶束的临界胶束浓度约为5.3 μg·mL-1;细胞摄取试验结果表明,PEG-PE纳米胶束可以增强药物的细胞摄取量,细胞外残留量减少;川芎嗪PEG-PE纳米胶束在10%胎牛血清DMEM培养基稳定性良好,采用异丙肾上腺素诱导心肌细胞凋亡,Hoechst染色提示凋亡心肌细胞出现了大量形态学改变,而川芎嗪PEG-PE纳米胶束可以明显减少凋亡细胞和促凋亡Caspase-3活性、抑制促凋亡蛋白Bax表达,提高抗凋亡蛋白Bcl-2表达,均显著优于川芎嗪(P<0.01)。结论 川芎嗪PEG-PE纳米胶束具有粒径小,载药量高,释药缓慢等优势,可很大程度上提高川芎嗪的心肌细胞摄取量,增强药物的抗心肌细胞凋亡作用。  相似文献   

9.
基于pH梯度载药技术的咪喹莫特脂质体的制备工艺研究   总被引:1,自引:1,他引:0  
目的 根据咪喹莫特的理化性质,利用pH梯度主动载药技术制备脂质体,考察其性状、粒径、表面电荷及体外释药特征。方法 葡聚糖凝胶滤过法测定脂质体的包封率,以包封率与成型性为主要指标筛选制备方法,考察水化液的种类、pH值、离子强度及pH梯度载药、磷脂-胆固醇比例、脂药比、维生素E用量对包封率的影响;正交试验优化咪喹莫特脂质体的处方,考察脂质体样品在0~4℃下的稳定性。结果 按处方咪喹莫特50 mg、大豆卵磷脂400 mg、胆固醇130 mg、油酸10 mg、维生素E 5 mg、柠檬酸pH 2.5缓冲液5 mL,采用薄膜分散法工艺制备脂质体样品,并进行pH梯度主动载药,pH值调至7.0。制得的咪喹莫特脂质体呈白色均匀的混悬液,脂质体微粒圆整,分散性好,粒径(347±21)nm,包封率(81.2±1.9)%,Zeta电位(-12.19±1.7)mV。结论 pH梯度主动载药技术适于咪喹莫特脂质体的制备。  相似文献   

10.
目的 制备负载抗龋DNA疫苗pVAX1-wapA质粒的壳聚糖和季铵化壳聚糖纳米粒,优化其制备工艺,测定其细胞转染效率。 方法 以包封率和粒径为主要指标,单因素法考察载体浓度、pH值、N/P、TPP浓度等因素的影响,Realtime-PCR检测细胞对质粒编码蛋白的转录表达水平以评价载质粒纳米粒的促转染作用。 结果 制得的载DNA疫苗纳米粒粒径均一,形态圆整。壳聚糖(CS)纳米粒粒径为(219.2±18.2) nm,Zeta电位为(24.7±3.5) mV,包封率为91.24%。季铵化壳聚糖(CSTM)纳米粒粒径为(222.5±15.6) nm,Zeta电位为(19.6±1.2) mV,包封率为87.66%。纳米粒可以促进pVAX1-wapA进入细胞,并成功被转录。 结论 制备的包载pVAX1-wapA的季铵化壳聚糖纳米粒可用于重组基因疫苗的运送。  相似文献   

11.
目的制备1,3-二羟基异丙氧基-琥珀酸-8-莪术醇酯纳米混悬剂(Cur-p-NS),并考察其一般特性、载药量和体外释放特性。方法采用超声–溶剂沉淀法制备Cur-p-NS,考察其粒度大小,多聚分散系数和Zeta电位。结果 Cur-p-NS的平均粒径为162.60±2.12 nm,多分散系数为0.182±0.002,Zeta电位为-24.60±8.97 m V,平均载药量为0.942 mg/mg,累积释放率可达到77%。结论 Cur-p-NS制备工艺简单和效果好,具有持续释放的特性。  相似文献   

12.
目的:制备载吉西他滨(gemcitabine,GemC)的介孔二氧化硅纳米粒(MSN),并对其体内外抗肿瘤活性进行评价。方法:采用聚合法制备了GemC-MSN,采用激光粒度仪测定了纳米粒的粒度分布和电位,并通过透射电镜对纳米粒的形态进行了表征。应用紫外可见分光光度法评价了纳米粒的载药量、包封率及体外释放特性。采用MTT染色法,考察了GemC-MSN对A549细胞的体外细胞毒性。建立了体内肿瘤动物模型,评价纳米粒的体内抗肿瘤活性。结果:纳米粒分布均一,平均粒径为107.29 nm,PDI为0. 167,Zeta电位为0.107mV;药物的载药量和包封率分别为(37.31±1.25)%和(87.37±2.12)%;体外释放结果显示,纳米粒具有一定的缓释作用,96h时释放达到平衡;体内外抗肿瘤试验结果表明,GemC-MSN较游离GemC具有更强的抗肿瘤活性。结论:MSN作为药物的新型载体,具有良好的生物相容性,并能显著提高GemC的载药量,控制药物的缓慢释放,能显著提高GemC的体内外抗肿瘤活性,将为GemC新型给药系统的深入研究提供参考。  相似文献   

13.
目的 将聚水杨酸(poly-salicylic acid,PSA)连接到羧甲基壳聚糖上,使其形成自组装纳米粒(nanoparticles,NPs),并进行表征和体外评价。方法O-羧甲基壳聚糖(O-carboxymethyl chitosan,OCMC)作为亲水骨链,通过二硫键将PSA连接在羧甲基壳聚糖上。利用核磁共振氢谱(1H-NMR)、红外光谱(IR)确证聚合物的结构;采用超声法制备自组装NPs,并对其粒径、Zeta电位进行表征;采用芘荧光探针法测定NPs的临界聚集浓度(critical aggregation concentration,CAC);测定载DOX NPs包封率和载药量;MTT试验考察载药NPs的体外抗肿瘤活性。结果 OCMC二硫键连接PSA NPs(OCMC-SS-PSA NPs)的粒径为(148.5±2.3)nm;CAC值为(0.069 3±0.001 3)mg·mL-1;还原响应性和pH敏感性良好。DOX/OCMC-SS-PSA NPs的粒径为(160.5±1.7)nm,载药量为(17.43±0.56)%,包封率为(89.67±1.23)%。MTT试验表明OCMC-SS-PSA NPs具有良好的生物安全性;细胞摄取试验表明DOX/OCMC-SS-PSA NPs在细胞内滞留时间更长。结论 OCMC-SS-PSA NPs粒径较小,具有良好的还原响应性、pH敏感性和生物安全性。OCMC-SS-PSA NPs可作为兼具还原响应性和pH敏感性的纳米给药系统。  相似文献   

14.
目的 合成透明质酸(HA)接枝单油酸甘油酯(GMO)两亲性聚合物HGO,并研究其所制备载阿霉素(DOX)纳米粒的理化性质及体外抗肿瘤效果。方法 HA与GMO通过酯化反应制得载体聚合物HGO,通过核磁共振波谱法及红外光谱法对其进行结构表征;采用芘荧光探针法测定聚合物临界聚集浓度(CAC)。采用透析法制备聚合物HGO载阿霉素(DOX@HGO)纳米粒,并对其进行粒径分布、Zeta电位及微观形态的表征;通过检测其在不同离子强度、不同pH条件下的粒径变化考察纳米粒的体外稳定性;考察DOX@HGO纳米粒在不同pH条件下的体外释放行为;CCK-8法考察DOX@HGO纳米粒对MDA-MB-231细胞的体外抑瘤效果;并通过荧光显微镜研究MDA-MB-231细胞对DOX溶液、DOX@HGO纳米粒的摄取能力,以及HA预处理对DOX@HGO纳米粒摄取的影响。结果 成功制得两亲性聚合物HGO,聚合物HGO中GMO的取代度为15.8%,CAC为0.023 mg·mL-1。DOX@HGO纳米粒呈规则的球形,平均粒径为(130.800±1.709)nm,平均电位为(-32.600±0.153)mV,包封率和载药量分别为(98.65±0.74)%和(33.03±0.17)%,在不同离子强度下、模拟胃肠液中表现出良好的稳定性;DOX@HGO纳米粒的体外释放表现出pH依赖性。体外抗肿瘤活性实验表明,DOX@HGO纳米粒对MDA-MB-231细胞的生长具有较好的抑制作用;与DOX溶液比较,DOX@HGO纳米粒显著增加肿瘤细胞对于DOX的摄取(P<0.05) ,HA预处理显著减少肿瘤细胞对DOX@HGO的摄取(P<0.05)。结论 所构建的DOX@HGO纳米粒具有良好的理化性质,并且具有一定的pH敏感性及靶向抗肿瘤细胞的能力,是具有应用潜力的药物载体。  相似文献   

15.
王兵 《中国药师》2014,(8):1308-1310
目的:制备葛根素聚氰基丙烯酸正丁酯纳米粒(P-PBCA),并对其进行质量评价.方法:以包封率和载药量为指标,采用正交设计综合评分法优化P-PBCA处方.结果:最佳工艺为葛根素质量20 mg、氰基丙烯酸正丁酯体积分数0.6%,pH为2.0,优化所得P-PBCA为球状,包封率为(78.13±7.42)%,载药量为(15.05±2.38)%;粒径(145.2±22.4) nm,Zeta电位(-28.7±1.1)mV.结论:正交设计综合评分法可用于P-PBCA的制备.  相似文献   

16.
目的 制备阿立哌唑自乳化释药系统(ARP-SEDDSs)以提高药物的口服生物利用度。方法 HPLC法检测ARP在不同的油、表面活性剂和助表面活性剂中的溶解度,根据溶解度确定处方组成;采用伪三元相图筛选SEDDSs的处方比例;通过动态光散射、透射电镜、稀释稳定性和体外溶出对ARP-SEDDSs进行表征;大鼠分别ig给予自制ARP-SEDDSs和ARP混悬液(20 mg·kg-1)后,HPLC法进行药动学研究,考察大鼠ig ARP-SEDDSs的生物利用度。结果 以油酸作为油相,以聚乙二醇15-羟基硬脂酸酯和异丙醇作为表面活性剂和助表面活性剂,优化得到ARP-SEDDSs处方为油酸-聚乙二醇15-羟基硬脂酸酯-异丙醇为2.0∶5.6∶2.4,载药量为10 mg·g-1;ARP-SEDDSs经水稀释后可快速形成微乳,在透射电镜下可观察到微乳呈类球形,经动态光散射仪检测其平均粒径为(54.6±2.3)nm,聚合物分散性指数(PDI)为0.201±0.011,Zeta电位(-13.5±0.4)mV;ARP-SEDDSs在pH 6.8磷酸盐缓冲液中10 min的药物溶出度接近100%,远高于阿立哌唑口崩片(约10%)。大鼠体内药动学研究表明,与ARP混悬液相比,ARP-SEDDSs相对生物利用度为248.8%。结论 将ARP制备成自乳化释药系统,有助于药物快速溶出,显著提高了ARP的口服生物利用度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号