首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
 目的对辅酶Q10水包油(O/W)型注射亚微乳进行处方设计并对其体内药动学进行研究。方法采用伪三元相图法研究不同表面活性剂、助表面活性剂及Km值下空白亚微乳体系的形成条件。优选亚微乳处方,制备载药亚微乳,并对其质量进行评价。通过静脉给药对辅酶Q10亚微乳大鼠体内药动学进行研究。结果泊洛沙姆/大豆磷脂/乙醇/聚乙二醇400形成的亚微乳黏度低,粒径小,包封率高。药动学实验表明,辅酶Q10亚微乳经静脉注射给药后具有明显的缓释作用,平均滞留时间655 h。结论经过优选的辅酶Q10亚微乳,辅料用量少,稳定性好,制备简单,便于生产及临床使用。  相似文献   

2.
紫杉醇冻干纳米乳在大鼠体内的药动学   总被引:2,自引:0,他引:2  
目的:研究紫杉醇冻干纳米乳在大鼠体内的药动学特征。方法:建立测定大鼠血浆中紫杉醇的HPLC-紫外检测法,大鼠股静脉注射给药后于不同时间点进行后眼眶静脉丛穿刺取血,测定其血浆中的血药浓度,并用3P97药动学程序对血药浓度进行处理。结果:紫杉醇可与血浆中的其它成分较好地分离,在0.12~60μg/mL的血药浓度范围内呈良好的线性关系。紫杉醇注射液和冻干纳米乳两种制剂大鼠静脉给药后体内药动学符合二室模型.后者AUC和MRT均大于前者.结论:紫杉醇纳米乳可延长药物在大鼠体内的循环时间。  相似文献   

3.
陈永顺  李静  蒋建平  梁建梅  杨斌  贾晓栋 《中成药》2023,(10):3180-3186
目的 制备叶黄素纳米混悬剂,并考察其体内药动学。方法 纳米沉淀法制备纳米混悬剂。以白蛋白浓度、吐温-80浓度、均质压力、均质次数为影响因素,粒径、PDI为评价指标,单因素试验优化处方,在扫描电镜下观察形态,进行晶型分析,测定溶解度、体外溶出、稳定性。18只大鼠随机分为3组,分别灌胃给予叶黄素、物理混合物、叶黄素纳米混悬剂的0.5%CMC-Na混悬液(30 mg/kg),于0、5、15、30、45、60、90、120、240、360、480 min采血,HPLC法测定叶黄素血药浓度,计算主要药动学参数。结果 最佳处方为叶黄素用量30 mg,白蛋白浓度1.5%,吐温-80浓度0.75%,均质压力80 MPa,均质次数8次。所得纳米混悬剂呈球形,平均粒径为(208.71±9.26)nm, PDI为0.114±0.017,Zeta电位为-(23.15±1.60)mV。原料药以无定形状态存在于纳米混悬剂中。纳米混悬剂溶解度相较于原料药增加至46.12倍,360 min内累积溶出度达95%,90 d内稳定性良好。与原料药、物理混合物比较,纳米混悬剂tmax缩短(P<0....  相似文献   

4.
水飞蓟宾自微乳化胶囊剂的制备及大鼠体内药动学   总被引:1,自引:0,他引:1  
丁沐淦  龙晓英  陈莉  何琳 《中成药》2012,34(2):242-247
目的 研制水飞蓟宾自微乳化胶囊剂并对其进行体内外评价.方法 通过正交设计和伪三元相图的绘制,对自微乳化系统中的油相、乳化剂及助乳化剂的组成、用量进行研究,筛选最佳处方组成和组成比例.以自制水飞蓟宾胶囊作对照,RP-HPLC测定大鼠灌胃后的血药浓度,用3p97计算药物动力学参数.结果 水飞蓟宾最佳自微乳化给药系统处方组成及其比例为水飞蓟宾-中链甘油三酯-Cremophor RH40-PEG400=3.85∶16.15∶60∶20,所形成的微乳的平均粒径为14.6 nm,在人工胃液和人工肠液中16 min内累积溶出百分率均超过95%,自制水飞蓟宾颗粒胶囊溶出很少.胶囊内容物水飞蓟宾预乳化浓缩液(SLB-PMC)和水飞蓟宾颗粒浓度-时间数据符合一级吸收单室模型,水飞蓟宾预乳化浓缩液的Cmax为0.70 μg/mL,而自制水飞蓟宾颗粒仅为0.104 μg/mL,水飞蓟宾预乳化浓缩液的AUC比水飞蓟宾颗粒提高了11.7倍,其相对生物利用度为1 265.22%.结论 将水飞蓟宾制成自微乳化胶囊能显著提高其体外溶出和体内吸收.  相似文献   

5.
张小飞  果秋婷 《中药材》2015,(1):163-166
目的:制备姜黄素纳米混悬剂,并考察其在大鼠口服给药后体内的药动学特征。方法:采用高压均质法制备姜黄素纳米混悬剂,以纳米混悬剂粒径、多聚分散系数(Pd I)和Zeta电位为指标,考察制备姜黄素纳米混悬剂的影响因素,并对制得的纳米粒进行表征;采用高效液相色谱法测定大鼠血浆中的姜黄素浓度,计算相应的药动学参数。结果:姜黄素纳米混悬剂平均粒径为396.4±67.2 nm,Pd I为0.369±0.061,Zeta电位为-16.7±3.5 m V。姜黄素原料药和纳米混悬剂在大鼠体内的AUC(0-t)分别为3.62±0.66 mg/(L·h)和14.36±1.20 mg/(L·h);t1/2分别为0.62±0.06 h和2.15±0.15 h;tmax分别为1.83±0.11 h和1.02±0.09 h;Cmax分别为0.94±0.12 mg/L和5.78±0.46 mg/L。结论:姜黄素原料药制成纳米混悬剂后能显著提高药物在大鼠体内的生物利用度。  相似文献   

6.
寇应琳  徐向宇  孙宁 《中成药》2023,(4):1045-1051
目的 制备染料木素纳米混悬剂,并考察其体内药动学。方法 采用高压均质法制备纳米混悬剂,单因素试验分析稳定剂(大豆卵磷脂+PVP K30)用量、大豆卵磷脂与PVP K30比例、均质压力、均质次数对粒径、PDI的影响。以蔗糖-甘露醇(1∶2)为冻干保护剂制备冻干粉,测定溶解度、体外溶出度。18只大鼠随机分为3组,分别灌胃给予染料木素、物理混合物、染料木素纳米混悬剂的0.5%CMC-Na混悬液(40 mg/kg),于0.25、0.5、1、1.5、2、3、4、6、8、12 h采血,HPLC法测定染料木素血药浓度,计算主要药动学参数。结果 最佳处方工艺为染料木素用量20 mg,稳定剂用量50 mg,大豆卵磷脂与PVP K30比例2∶3,均质压力100 MPa,均质次数10次,平均粒径为184.63 nm, PDI为0.090,Zeta电位为-33.69 mV。纳米混悬剂在不同pH值介质中的溶解度、累积溶出度明显高于原料药、物理混合物。与原料药、物理混合物比较,纳米混悬剂tmax缩短(P<0.01),t1/2延长(P<0.01),C...  相似文献   

7.
张亚林  喻海洋  黄涛 《中成药》2020,(11):2829-2834
目的制备大黄酸纳米混悬剂,并考察其体内药动学。方法高压均质法制备纳米混悬剂。在单因素试验基础上,以PVP K30用量、均质压力、均质次数为影响因素,粒径为评价指标,正交试验优化制备工艺,检测纳米混悬剂形态、载药量、粒径、Zeta电位、体外释药。大鼠随机分为2组,分别灌胃给予大黄酸及其纳米混悬剂的0.5%CMC-Na混悬液(50 mg/kg),于0.083、0.167、0.25、0.5、1.0、2.0、4.0、6.0、8.0、10.0、12.0 h采血,HPLC法测定大黄酸血药浓度,计算主要药动学参数。结果最佳条件为PVP K30用量75 mg,均质压力100 MPa,均质次数15次,所得纳米混悬剂中纳米粒呈球形,分布均匀,无粘连,平均载药量为(32.14±0.92)%,Zeta电位为(-31.90±1.34)mV,粒径为(170.86±3.07)nm,40 min内累积溶出度为95.73%。纳米混悬剂t1/2、Cmax、AUC0~t、AUC0~∞高于原料药(P<0.01),相对生物利用度提高至...  相似文献   

8.
房伟  王奎鹏  韩德恩 《中成药》2022,(3):689-694
目的 制备松萝酸纳米混悬剂,并考察其体内药动学.方法 高压均质法制备纳米混悬剂.以稳定剂种类、稳定剂用量、均质压力、均质次数为影响因素,粒径、PDI、Zeta电位为评价指标,单因素试验优化制备工艺.在扫描电镜下观察纳米混悬剂形态,测定溶解度、体外释药.12只大鼠分别灌胃给予松萝酸及其纳米混悬剂的0.5%CMC-Na混悬...  相似文献   

9.
目的:制备As2O3纳米粒(As2O3-PLA-NPs、As2O3-mPEG-PLA-NPs),并考察其在大鼠体内吸收生物利用度.方法:采用复乳溶剂挥发法制备三氧化二砷纳米粒(As2 O3-PLA-NPs、As2 O3-mPEG-PLA-NPs),表征其外观形态、粒径、Zeta电位,并检测包封率、载药量及体外释放度.S...  相似文献   

10.
蝙蝠葛碱复合纳米胶束的制备及大鼠体内药动学研究   总被引:1,自引:0,他引:1  
张菊  魏丹  张雪  赵江丽  贾东升 《中草药》2021,52(8):2276-2284
目的 使用聚乙烯己内酰胺-聚醋酸乙烯酯-聚乙二醇接枝共聚物(Soluplus(R))和D-α-维生素E聚乙二醇琥珀酸酯(TPGS)作为载体材料制备蝙蝠葛碱复合纳米胶束(dauricine composite nanomicelles,Dau-CNMs),并通过大鼠ig给药评价其药动学情况.方法 采用溶剂蒸发-薄膜分散法...  相似文献   

11.
秦芳芳  彭有梅  苏海波  高守甲 《中草药》2022,53(13):3980-3990
目的 制备鞣花酸纳米混悬剂(ellagic acid nanosuspensions,EA-NPs),并考察在SD大鼠体内的药动学特征。方法采用高压均质法制备EA-NPs。在单因素实验基础上,以稳定剂与药物用量比例、均质压力、均质次数为主要影响因素,粒径和多分散系数(polydispersity index,PDI)为考察指标,采用Box-Behnken设计-效应面法优化EA-NPs制备工艺。采用透射电子显微镜(TEM)和X射线粉末衍射(XRPD)对EA-NPs进行表征,透析袋法考察体外释药情况。SD大鼠分别ig给予鞣花酸混悬液、物理混合物(比例同EA-NPs)和EA-NPs,HPLC法测定大鼠血浆中的鞣花酸质量浓度,并计算主要药动学参数。结果 EA-NPs的最处方工艺:以磷脂-聚乙烯吡咯烷酮(polyvinylpyrrolidone,PVP)K30(2∶3)为稳定剂,稳定剂与药物比例4∶1,制备温度为25℃,均质压力73 MPa,均质次数为11次。EA-NPs呈球形或类球形,粒径为70~400 nm,平均粒径为(148.16±7.61)nm,PDI为0.089±0.014,ζ电位为(...  相似文献   

12.
张纯刚  唐静雅  于琛琛  程岚  康廷国 《中草药》2018,49(12):2908-2913
目的研究白藜芦醇(RES)原料药、聚乙二醇固体分散体(RES-PEG)在大鼠体内的药动学过程和药动学参数。方法建立大鼠血浆中RES的HPLC-UV检测方法。考察大鼠ig给予RES原料药和RES-PEG以及尾iv RES后血药浓度变化。采用DAS3.0软件计算药动学参数。结果 RES质量浓度在10~2.5×104 ng/m L内线性关系良好(r=0.999 3);定量下限为10 ng/m L;日内和日间精密度RSD小于5.1%;准确度在-1.1%~0.7%;提取回收率在97.8%~104.1%。大鼠ig RES原料药和RES-PEG以及尾iv RES后,RES在大鼠体内消除半衰期(t1/2)分别为(2.6±2.0)、(2.3±0.8)、(6.3±1.1)h,血药浓度曲线下面积(AUC 0~12)分别为(514.7±117.5)、(1 084.6±836.9)、(2 697.3±289.8)ng·h/m L;ig RES原料药和RES-PEG的达峰浓度(Cmax)分别为(473.3±200.8)、(814.1±246.6)ng/m L。RES-PEG与原料药对比,其相对生物利用度约为200%;RES原料药的绝对生物利用度约为5%。结论 RES口服生物利用度低,RES原料药制备成固体分散体后相对生物利用度显著提高。  相似文献   

13.
目的制备白藜芦醇苷(PD)固体分散体(SD),以期提高PD的生物利用度。方法以溶出度为指标,采用溶剂蒸发法制备PD-SD,利用傅里叶变换红外光谱(FT-IR)、差示扫描量热分析(DSC)、粉末X衍射(XRD)和扫描电子显微镜(SEM)对PD-SD进行表征。采用HPLC法测定大鼠ig给药后的血药浓度。结果 PD-SD的体外溶出度较PD明显提高,FT-IR显示药物与载体间没有形成新的化学键,DSC和XRD结果显示PD在载体中以无定型的形式存在,SEM结果表明制备成的PD-SD外观形态为不规则球形。ig给药后,PD-SD和PD的药时曲线下面积(AUC0-∞)分别为328.79、139.70μg·min/m L。结论溶剂蒸发法制备PD-SD工艺简单可行,PD-SD能显著提高PD的生物利用度。  相似文献   

14.
相妍笑  刘沙  魏春敏  魏欣冰  郭瑞臣  张岫美 《中草药》2012,43(11):2247-2249
目的 考察乙酰葛根素ig和iv给药后葛根素在大鼠体内的药动学特征.方法 大鼠ig给予400 mg/kg或尾iv给予160 mg/kg乙酰葛根素.采用高效液相色谱(HPLC)法检测血浆样品中葛根素.结果 乙酰葛根素在大鼠体内代谢为葛根素,葛根素药动学过程符合二室模型,主要药动学参数:ig给药葛根素AUC0~∞为(44.76±4.13) mg·h·L-1,iv给药葛根素AUC为(36.67±5.3) mg·h·L-1,ig给予乙酰葛根素后大鼠体内葛根素的暴露水平(生物利用度)为48.12%,ig给药的Cmax为(12.07±0.15) μg/mL,tmax(1±0.33)h,t1/2为(2.52±0.21)h.结论 HPLC法可作为乙酰葛根素在大鼠体内药动学的检测手段,ig乙酰葛根素后,葛根素在大鼠体内的暴露水平得到显著提高.  相似文献   

15.
目的评价鸢尾苷元胃内漂浮缓释片(TFSRT)的体外释药特性、兔体内药动学及其体内外相关性。方法以人工胃液为介质,HPLC法考察TFSRT的体外释放特性。以6只日本大耳白兔自身交叉对照,单剂量ig给予TFSRT和鸢尾苷元悬浮液各200 mg,HPLC法测定血浆鸢尾苷元质量浓度,并用PKsolver 2.0药动学软件进行数据处理。结果 TFSRT体外10 h累积释放度大于70%。兔体内药动学表明TFSRT和鸢尾苷元悬浮液均符合单室模型特征,药动学参数:tmax分别为(2.809±0.371)、(0.442±0.138)h,Cmax分别为(6.317±1.337)、(9.662±2.759)μg/m L,AUC0~t分别为(74.156±10.420)、(57.059±13.309)μg?h/m L,两者比较均有显著性差异(P0.05、0.01)。TFSRT相对鸢尾苷元悬浮液的生物利用度为(134.63±27.94)%。结论 TFSRT达到了缓慢释药、显著提高生物利用度的设计目的;其体内吸收与体外释药具有良好的相关性(r=0.987 9),表明可以采用体外释放度来控制其制剂质量。  相似文献   

16.
目的制备聚丙烯酸(PAA)修饰氨基改性介孔二氧化硅(MSNs)载三氧化二砷(ATO)纳米粒(PAA-ATO-MSNs),并考察其理化性质、体外释药特性及大鼠体内药动学行为。方法共沉淀法制备氨基改性MSNs,静电吸附载入ATO,PAA酸碱共轭制备PAA-ATO-MSNs。采用透射电镜、小角粉末衍射仪、氮气吸脱附仪、红外光谱仪、热重分析仪、激光粒度仪等考察其理化性质;高速离心法结合电感耦合等离子发射光谱(ICP)测定其包封率及载药量;选用磷酸盐缓冲液(PBS)(p H 5.0、6.0和7.4)作为释放介质,透析袋法考察其体外释药特性;大鼠尾iv给药后,考察ATO体内药动学行为。结果制备的PAA-ATO-MSNs透射电镜下外观呈圆形或类圆形,平均粒径为(158.60±1.32)nm,Zeta电位为(-28.40±0.34)m V,包封率和载药量分别为(40.95±3.21)%和(11.42±1.75)%。体外释药具有p H值响应性,累积释药量随p H值减小而增大。药动学研究表明,与ATO原料药和ATO-MSNs相比,PAA-ATO-MSNs给药后ATO的t1/2β显著延长,AUC显著增大(P0.01)。结论 PAA-ATO-MSNs体外释药具有明显的p H值响应性及缓释特性,能明显改善ATO大鼠体内药动学行为,该载体作为ATO肿瘤靶向递药系统具有较好的应用前景。  相似文献   

17.
杭凌宇  申宝德  沈成英  杨阔  袁海龙 《中草药》2021,52(7):1898-1905
目的 制备不同粒径波棱甲素纳米混悬剂(herpetrione nanosuspension,Her-NS),并探讨粒径对Her-NS 口服生物利用度的影响.方法 采用反溶剂沉淀法制备2种不同粒径Her-NS,采用单因素实验以平均粒径、多分散系数、稳定性指数为评价指标优化处方工艺参数,扫描电子显微镜(SEM)观察Her-...  相似文献   

18.
目的 建立测定血浆中阿魏酸浓度的 HPL C法 ,并用于心舒口服液中阿魏酸在大鼠体内的药动学研究。方法 色谱柱为 Nucleosil C1 8柱 ,流动相为甲醇 -水 -冰乙酸 (35∶ 6 5∶ 0 .1) ,流速为 1.0 m L / m in,检测波长为 32 0 nm。以替硝唑为内标 ,血浆样品酸化后用醋酸乙酯提取。结果 标准曲线线性范围 0 .2 5~ 16 .0 m g/ L,r=0 .9992。阿魏酸平均回收率 96 .9%~ 10 0 .6 % ,最低检测浓度为 0 .2 m g/ L,日内 RSD<3.0 % ,日间 RSD<5 .3%。心舒口服液中阿魏酸在大鼠体内的药 -时曲线符合二房室模型 ,T1 /2α为 12 .6 m in,T1 /2β为 30 5 m in。结论 方法简便、快速、准确、重现性好 ,适用于阿魏酸血药浓度测定及药代动力学研究。  相似文献   

19.
常子晨  李颖  张颖  阴龙飞  刘春艳 《中草药》2019,50(24):5963-5969
目的 制备聚酰胺-胺树枝状大分子包载白藜芦醇纳米载体复合物(Res-PAMAM-Ac),并考察其稳定性和安全性。方法 采用发散法合成空白载体,并进行乙酰化修饰,核磁共振图谱(1H-NMR)、红外光谱(IR)对载体进行表征,粒径及Zeta电位检测考察载体性质;逆相蒸发法制备Res-PAMAM-Ac,HPLC检测载药量、包封率以及稳定性;MTT法考察载体和复合物对人肺癌A549细胞的细胞毒性;溶血性试验评价载体和复合物的生物安全性。结果 成功合成Res-PAMAM-Ac,大小均匀,平均粒径(167.30±21.70)nm,PDI为0.115±0.006,电位(19.27±0.35)mV;平均载药量(76.99±1.30)mg/g,包封率(29.63±2.70)%,稳定性参数(KE)小于0.15,且药物无明显析出;复合物质量浓度在30 μg/mL以下时对人肺癌A549细胞具有较小毒性;载体及复合物溶血率低于5%,视为生物安全。结论 制备的Res-PAMAM-Ac粒径均匀、载药量较好、稳定性高、毒性小。  相似文献   

20.
李茜  张文周  郝海军 《中草药》2022,53(24):7740-7750
目的 制备橙皮苷磷脂复合物(hesperidin phospholipids complex,HD-PC)纳米混悬剂(HD-PC nanosuspensions,HD-PC-NPs),并考察在SD大鼠体内口服药动学行为。方法 将橙皮苷制备成HD-PC,以提高橙皮苷溶解度。采用纳米沉淀-高压均质法制备HD-PC-NPs。在单因素实验基础上,以稳定剂与HD-PC用量比、高压均质压力和均质次数为主要影响因素,粒径、PDI值和ζ电位的总评归一值(OV)作为考察指标,采用Box-Behnken设计-效应面法优化HD-PC-NPs制备工艺,并制备成冻干粉末。采用透射电子显微镜(TEM)观察HD-PC-NPs形态,透析袋法考察药物释放情况。SD大鼠分为橙皮苷混悬液组、HD-PC组和HD-PC-NPs组,HPLC法测定大鼠血浆中的橙皮苷质量浓度,计算主要药动学参数及相对口服吸收生物利用度。结果 HD-PC-NPs的最处方工艺为稳定剂与HD-PC用量比为3.2,均质压力95MPa,均质次数为10次,制备温度为50℃。5%甘露醇制得的冻干粉末外观饱满。HD-PC-NPs呈球形或类球形,平均粒径为(268.62±18.14)nm,PDI为0.122±0.013,ζ电位为(-31.79±1.37)mV。HD-PC-NPs 将橙皮苷的溶解度提高至77.06倍,6h累积释放率达到94.68%。药动学结果显示,HD-PC-NPs达峰时间显著性提前,半衰期(t1/2)延长至(5.69±0.82)h,达峰浓度(Cmax)提高至(1213.96±149.88)ng/mL,相对口服生物利用度提高至3.09倍。结论 HD-PC-NPs可提高橙皮苷溶解度,促进药物体外溶出及体内吸收。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号