首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: The aim of this study was to evaluate MR imaging changes of the pancreas in patients with transfusion-dependent beta-thalassemia major. SUBJECTS AND METHODS: Twenty patients with transfusion-dependent beta-thalassemia major were examined using MR imaging at 0.5 T, with spin-echo T1-weighted, fast spin-echo T2-weighted, and gradient-echo T2*-weighted sequences. Image analysis was performed to assess pancreas-to-fat signal intensity ratios for all pulse sequences. Pancreatic exocrine and endocrine function and serum ferritin levels were assessed. Twenty healthy volunteers underwent MR imaging with the same three sequences and served as a control group. RESULTS: The pancreas-to-fat signal intensity ratio was significantly decreased in 17 (85%) of the 20 patients on spin-echo T1-weighted images (p < .05), fast spin-echo T2-weighted images (p < .01), and gradient-echo T2*-weighted images (p < .01) when compared with the 20 volunteers in the control group. The pancreas-to-fat signal intensity ratio was significantly increased in three (15%) of the 20 patients on spin-echo T1-weighted images (p < .01) and fast spin-echo T2-weighted images (p < .05). In addition, in the 20 patients, we found a significant correlation between increased pancreas-to-fat signal intensity ratios and decreased serum trypsin levels (r = -.77, p < .01 for spin-echo T1-weighted sequences; r = -.75, p < .05 for fast spin-echo T2-weighted sequences; and r = -.74, p < .05 for gradient-echo T2*-weighted sequences). Likewise, for the 20 patients, we found a significant correlation between decreased pancreas-to-fat signal intensity ratios and increased serum ferritin levels for gradient-echo T2*-weighted images (r = -.65, p < .01). No correlation was found for the other clinical parameters evaluated. CONCLUSION: MR imaging revealed signal intensity changes in the pancreas of patients with transfusion-dependent beta-thalassemia major. Patients with a major impairment of the exocrine pancreatic function had higher signal intensity of the pancreas because of fatty replacement of the parenchyma.  相似文献   

2.
Imaging of pancreatic neoplasms: comparison of MR and CT   总被引:2,自引:0,他引:2  
Thirty-two patients with pathologically proved pancreatic carcinomas or cystadenomas were evaluated with MR images obtained with T1-weighted spin echo (short TR/short TE), inversion recovery, and T2-weighted spin-echo (long TR/long TE) pulse sequences. CT was used as the reference standard to determine the ability of MR to delineate normal and abnormal pancreatic anatomy and thereby to exclude or detect pancreatic malignancy. Short TR/short TE spin-echo sequences were significantly better (p less than .05) than inversion recovery or T2-weighted spin-echo sequences in resolution of both normal and abnormal anatomy. Resolution of pancreatic anatomy correlated (r = .9) with the image signal-to-noise ratio. In seven (22%) of 32 cases, MR visualized pancreatic tumors better than CT did because it showed a signal intensity difference between the tumor and normal pancreatic tissue. Overall, the slight superiority of MR over CT for tumor visualization tended to occur in larger tumors and was not statistically significant. On T1-weighted images, 63% (20 of 32) of pancreatic tumors studied had lower signal intensities than normal pancreatic tissue, whereas on T2-weighted sequences (TE = 60, 120, and 180 msec) only 41% (13 of 32) of tumors had increased signal intensities. Currently available MR imaging techniques offer no significant advantages over CT for evaluating the pancreas for neoplasia.  相似文献   

3.
The purpose of this study was to evaluate the technical efficacy and safety of iv ferumozldes (Feridexa), a superparamagnetic iron oxide contrast agent for detection of hepatic lesions using conventional spin-echo and fast spin-echo MR images. Precontract and postcontrast MR studies were performed on 25 patients with suspected focal hepatic lesions. Conventional Tl-and T2-weighted MR images, as well as fast spin-echo and fat suppressed fast spin-echo MR images, were evaluated. Quantitative assessment of the contrast agent was performed obtaining region of interest measurements of the liver, spleen, and selected hepatic lesions. The pulse sequences were also evaluated subjectively for overall image quality and a subjective assessment of lesion detection. The use of a superparamagnetic iron oxide contrast agent led to a decrease in hepatic signal intensity on all pulse sequences. Lesion-to-liver contrast increased 41.1%, 36.5%, and 32.0% on the conventional T2, fast spin-echo, and fat suppressed fast spin echo pulse sequences, respectively. Lesion-to-liver contrast decreased on the T1-weighted postcontrast pulse sequence by 23.8%. Despite Improvement in lesion-to-liver contrast, radiologists subjectively preferred the precontract sequences because of overall better image quality. At a dose of 10 μmol/kg, fenunoxides favorably impacts lesion-to-liver contrast, and may be useful in hepatic imaging, more with conventional T2-weighted spin-echo pulse sequences than with T2-weighted fast spin-echo pulse sequences.  相似文献   

4.
To determine the safety and imaging characteristics of OMR--an effervescent solution of ferric ammonium citrate--as a bowel contrast agent, magnetic resonance (MR) imaging at 1.5 T was performed in 29 volunteers. T1- and T2-weighted images of the upper abdomen and pelvis were obtained before and after oral administration of OMR at doses of 100-400 mg of iron in 300-600 mL of water. Respiratory-ordered phase encoding and presaturation pulses were used routinely for artifact suppression. All dose levels of OMR provided marking of the bowel by increasing intraluminal signal intensity; however, the degree and percentage of small bowel opacification appeared more prominent at higher dose levels of iron. Semisolid or watery bowel movements were noted in 31% of subjects, but no clinically important laboratory abnormalities were seen. OMR improved delineation of the head of the pancreas on T1-weighted images in 72% of subjects but was less useful in defining the body and tail. OMR is a safe and effective bowel contrast agent for MR imaging. Because artifacts due to movement of hyperintense bowel may degrade the images, OMR may be most useful on short TR/TE or fast imaging pulse sequences or when combined with antiperistaltic agents.  相似文献   

5.
OBJECTIVE: We retrospectively evaluated the use of echo-planar imaging for ultrafast detection of brain lesions. MATERIALS AND METHODS: In our retrospective study, 61 patients were imaged with the following echo-planar sequences: single-shot proton density-weighted, single-shot T2-weighted, single-shot T2-weighted high-resolution, multishot proton density-weighted, and multishot T2-weighted. Lesions revealed in these patients ranged from 0.5 to 12.0 cm (mean, 3.7 cm) and were the result of tumor (n = 16), stroke (n = 21), demyelination (n = 18), and toxoplasmosis (n = 2). Four patients had scans with normal findings. Two neuroradiologists who were unaware of pertinent clinical data reviewed the images. The images were retrospectively compared with conventional spin-echo images for diagnosis, sensitivity of lesion detection, and qualitative criteria: subjective image quality, gray and white matter differentiation, lesion conspicuity, delineation of lesion borders, and artifacts. (Artifacts included those caused by motion, susceptibility, pulsation, and ghosting.) Quantitative criteria, including signal-to-noise and signal difference-to-noise measurements, were also evaluated in 40 lesions. RESULTS: Sensitivity for lesion detection was 97% for single-shot echo-planar T2-weighted MR images and 100% for multishot echo-planar T2-weighted MR images. Single-shot echo-planar proton density-weighted MR images had the highest signal-to-noise ratio (91.2+/-19.3). Echo-planar T2-weighted MR images had the highest signal difference-to-noise (33.8+/-22.9). Echo-planar sequences were superior to spin-echo sequences regarding motion and pulsation artifacts. Spin-echo sequences lacked susceptibility and ghosting artifacts, and were superior in lesion conspicuity and delineation of lesion borders. CONCLUSION: In this study, echo-planar sequences were as sensitive as conventional spin-echo imaging for the diagnostic assessment of lesions. Echo-planar sequences had a strikingly shorter acquisition time and substantially reduced motion and pulsation artifacts. Echo-planar sequences may be a useful diagnostic tool for use in claustrophobic and unstable patients.  相似文献   

6.
PURPOSE: To evaluate the MR signal intensity characteristics in Legg-Calvé-Perthes disease on fat-suppressed (STIR) images and contrast-enhanced T1-weighted spin-echo images, and to develop criteria for the administration of contrast material. MATERIAL AND METHODS: Twenty children with Legg-Calvé-Perthes disease underwent conventional radiography and MR imaging of the hip utilizing fat-suppressed (STIR) sequences and T1-weighted spin-echo sequences before and after i.v. contrast administration. The signal intensity characteristics of the femoral head and the proximal femoral metaphysis were assessed retrospectively by two pediatric radiologists. RESULTS: Evaluation of the MR images revealed six different signal patterns within the femoral head: 1) isointense signal on all images; 2) complete signal void on all images; 3) hyperintense signal on STIR images with; or 4) without contrast enhancement on T1-weighted spin-echo images; 5) isointense signal on STIR images with; or 6) without contrast enhancement on T1-weighted images. Within the metaphysis three different signal patterns were differentiated. CONCLUSION: Combination of fat-suppressed (STIR) sequences and T1-weighted pre- and post-contrast sequences allows an accurate evaluation of Legg-Calvé-Perthes disease. In patients without signal alterations or complete signal loss on fat-suppressed and T1-weighted spin-echo images, administration of i.v. contrast is not necessary. In case of bone marrow edema on fat-supressed images, contrast-enhanced T1-weighted images are required to identify viable osseous fragments.  相似文献   

7.
Focal nodular hyperplasia of the liver: MR findings in 35 proved cases   总被引:6,自引:0,他引:6  
MR images of 28 patients with 35 lesions of hepatic focal nodular hyperplasia were reviewed to determine the frequency of findings considered typical of this condition (isointensity on T1- and T2-weighted pulse sequences, a central hyperintense scar on T2-weighted images, and homogeneous signal intensity). Fifteen lesions were imaged at 0.6 T with T1- and T2-weighted spin-echo (SE) pulse sequences; 20 lesions were imaged at 1.5 T with T1-weighted SE and gradient-echo pulse sequences and T2-weighted SE pulse sequences. Diagnosis of focal nodular hyperplasia was made pathologically in 25 patients, with nuclear scintigraphy in four, and with follow-up imaging in six. Only seven lesions (20%) were isointense relative to normal liver on both T1- and T2-weighted images. On T1-weighted SE images, 21 lesions (60%) were isointense relative to normal liver, 12 (34%) were hypointense, and two (6%) were hyperintense. On T2-weighted SE images, 12 lesions (34%) were isointense and 23 (66%) were hyperintense relative to normal liver. A central scar was present in 17 lesions (49%) and was hypointense relative to the lesion on T1-weighted images and hyperintense on T2-weighted images. Twenty lesions (57%) were of homogeneous signal intensity throughout the lesion, except for the presence of a central scar. All three MR imaging characteristics were present in three cases (9%). We conclude that hepatic focal nodular hyperplasia has a wide range of signal intensity on MR imaging.  相似文献   

8.
PURPOSE: To assess the magnetic resonance (MR) imaging appearance of the successfully repaired rotator cuff in an asymptomatic population. MATERIALS AND METHODS: Fifteen subjects who had undergone clinically successful rotator cuff repair were included in the study. All underwent functional testing of the affected shoulder and had good to excellent scores on the Constant scale. Standard MR imaging sequences were performed at 1.5 T, including oblique coronal fast spin-echo T2-weighted MR imaging with fat saturation. RESULTS: Three (10%) of 30 supraspinatus and infraspinatus tendons had normal signal intensity, and 16 (53%) had mildly increased signal intensity on fast spin-echo T2-weighted fat-saturated images, compatible with tendonitis or tendinosis. Three partial and four complete tears of the supraspinatus tendon and two partial and two complete tears of the infraspinatus tendon were seen. Other findings included subacromial-subdeltoid effusion (10 subjects), joint effusions (five subjects), and bone marrow edema (six subjects). CONCLUSION: Postoperative signal intensity changes consistent with tendonitis or tendinosis were common, and clinically "silent" partial and complete rotator cuff tears were seen. Such postoperative MR imaging findings should be interpreted with caution, and meticulous correlation with symptoms and clinical results is recommended.  相似文献   

9.
Forty patients with prostatic carcinoma or benign prostatic hyperplasia (BPH) underwent magnetic resonance (MR) imaging of the prostate. In vitro MR images of six prostate specimens were also obtained. The prostatic parenchyma was best evaluated by a T2-weighted spin-echo pulse sequence. The prostate both in patients with prostatic carcinoma and patients with BPH often had an inhomogeneous and nodular appearance on T2-weighted images. While most of the prostatic carcinomas appeared hyperintense relative to muscle and adjacent prostatic parenchyma, some of the hyperplastic nodules had a signal intensity similar to carcinoma. With current imaging techniques, MR imaging cannot differentiate prostatic carcinoma from BPH with certainty.  相似文献   

10.
RATIONALE AND OBJECTIVES: The purpose of this study was to calculate the gain in signal-to-noise ratio (SNR) of four human abdominal tissues at 3.0 Tesla (T) compared with standard 1.5 T and to validate this calculation in vivo. MATERIALS AND METHODS: The expected gain in SNR at 3.0 T in the liver, pancreas, spleen, and kidney compared with standard 1.5 T was approximated theoretically for a T2-weighted HASTE (half-Fourier acquisition single-shot turbo spin-echo) and a T1-weighted gradient-echo in- and opposed-phase sequence. Fifteen healthy male subjects underwent abdominal MR imaging using a 1.5 T and 3.0 T scanner. Coronal T2-weighted HASTE images and axial T1-weighted gradient-echo in- and opposed-phase images were acquired using the sequence parameters optimized by the vendor. RESULTS: Except for opposed-phased imaging of pancreatic tissue, in vivo adjusted SNR values of all abdominal tissues were significantly higher at 3.0 T for all sequences (P < .05). The highest overall gain in SNR was achieved with the HASTE sequence ranging from 3.8-fold for renal imaging to 7.4-fold for hepatic imaging. The theoretical calculation of SNR gain was in good agreement with the experimentally measured gain in SNR for the HASTE and the in-phase sequence. CONCLUSION: High-field abdominal MR imaging at 3.0 T offers significantly higher SNR compared with standard 1.5 T MR imaging.  相似文献   

11.
BACKGROUND AND PURPOSE: Age-related iron accumulation in extrapyramidal nuclei causes T2 shortening, which may result in decreased signal intensity in these areas on MR images. Because the dynamic susceptibility contrast-enhanced technique uses heavily T2*- or T2-weighted images, the iron-induced susceptibility may have direct impact on perfusion imaging. The purpose of this study was to assess the effect of iron-induced susceptibility on the calculated perfusion parameters. The difference of this effect between gradient-echo and spin-echo sequences was also assessed. METHODS: Dynamic susceptibility contrast-enhanced MR perfusion imaging data of 12 patients were used for this study. Perfusion images were obtained using a single shot spin-echo echo-planar imaging sequence in seven patients and a gradient-echo echo-planar imaging sequence in five patients. Region of interest measurements of relative cerebral blood flow, relative cerebral blood volume, and mean transit time were obtained at various parts of the gray matter, including the globus pallidus, putamen, caudate nucleus, thalamus, and cerebral cortex of temporal, frontal, and occipital lobes. The baseline signal intensity on the source images and the magnitude of signal change (DeltaR2* or DeltaR2) were also assessed. RESULTS: The globus pallidus had statistically significantly lower values of relative cerebral blood flow, relative cerebral blood volume, baseline signal intensity, and magnitude of signal change compared with other parts of the gray matter for both gradient-echo and spin-echo sequences (P <.05). Underestimations of these values were more prominent for the gradient-echo than for the spin-echo sequence. Little variance in the measured mean transit time was noted. CONCLUSION: Iron-induced susceptibility effect may lead to underestimation of relative cerebral blood flow and relative cerebral blood volume in the basal ganglia.  相似文献   

12.
BACKGROUND AND PURPOSE: The purposes of this study were to find the role of diffusion-weighted MR imaging in characterizing intracerebral masses and to find a correlation, if any, between the different parameters of diffusion-weighted imaging and histologic analysis of tumors. The usefulness of diffusion-weighted imaging and apparent diffusion coefficient (ADC) maps in tumor delineation was evaluated. Contrast with white matter and ADC values for tumor components with available histology were also evaluated. METHODS: Twenty patients with clinical and routine MR imaging/CT evidence of intracerebral neoplasm were examined with routine MR imaging and echo-planar diffusion-weighted imaging. The routine MR imaging included at least the axial T2-weighted fast spin-echo and axial T1-weighted spin-echo sequences before and after contrast enhancement. The diffusion-weighted imaging included an echo-planar spin-echo sequence with three b values (0, 300, and 1200 s/mm(2)), sensitizing gradient in the z direction, and calculated ADC maps. The visual comparison of routine MR images with diffusion-weighted images for tumor delineation was performed as was the statistical analysis of quantitative diffusion-weighted imaging parameters with histologic evaluation. RESULTS: For tumors, the diffusion-weighted images and ADC maps of gliomas were less useful than the T2-weighted spin-echo and contrast-enhanced T1-weighted spin-echo images in definition of tumor boundaries. Additionally, in six cases of gliomas, neither T2-weighted spin-echo nor diffusion-weighted images were able to show a boundary between tumor and edema, which was present on contrast-enhanced T1-weighted and/or perfusion echo-planar images. The ADC values of solid gliomas, metastases, and meningioma were in the same range. In two cases of lymphomas, there was a good contrast with white matter, with strongly reduced ADC values. For infection, the highest contrast on diffusion-weighted images and lowest ADC values were observed in association with inflammatory granuloma and abscess. CONCLUSION: Contrary to the findings of previous studies, we found no clear advantage of diffusion-weighted echo-planar imaging in the evaluation of tumor extension. The contrast between gliomas, metastases, meningioma, and white matter was generally lower on diffusion-weighted images and ADC maps compared with conventional MR imaging. Unlike gliomas, the two cases of lymphomas showed hyperintense signal on diffusion-weighted images whereas the case of cerebral abscess showed the highest contrast on diffusion-weighted images with very low ADC values. Further study is required to find out whether this may be useful in the differentiation of gliomas and metastasis from lymphoma and abscess.  相似文献   

13.
K Ohtomo  S Furui  M Onoue  Y Okada  S Kusano  J Shiga  K Suda 《Radiology》1992,184(2):567-570
Correlation of magnetic resonance (MR) imaging findings and those at pathologic evaluation was attempted in six cases of solid and papillary epithelial neoplasm of the pancreas. All patients were female, and the mean patient age was 26 years (range, 13-73 years). On T1-weighted spin-echo images, tumors were well demarcated, and areas of high signal intensity were evident within them. At macroscopic examination, these areas corresponded to solid portions with marked hemorrhagic necrosis or cystic portions filled with hemorrhagic debris. In three of four masses surrounded by macroscopically evident fibrous capsules, a rim of low intensity was revealed at T1-weighted imaging. When T1-weighted spin-echo imaging reveals obvious areas of high intensity within a sharply marginated tumor of the pancreas, especially in a young woman, solid and papillary epithelial neoplasm might be a primary diagnostic consideration.  相似文献   

14.
To develop guidelines for clinical magnetic resonance imaging of the liver, the authors undertook an animal study to investigate the effect of dose and pulse sequence on liver signal intensity in gadopentetate dimeglumine—enhanced echo-planar imaging. Serial imaging of the liver was performed in anesthetized rats after intravenous administration of five different doses (0.01, 0.05, 0.1, 0.2, and 0.5 mmol/kg) of contrast agent, with six different pulse sequences. The results show that gadopentetate dimeglumine—enhanced echo-planar images obtained during the perfusion phase can yield either positive (due to increased T1 relaxation rates) or negative (due to susceptibility-induced increased T2 relaxation rates) liver enhancement depending on choice of pulse sequence and dose. At the current clinically recommended dose of 0.1 mmol/kg, maximal liver signal enhancement was seen with a T1-weighted inversion-recovery sequence, while maximal liver signal diminution was seen with a T2*-weighted gradient-echo sequence. The authors conclude that gadopentetate dimeglumine—enhanced echo-planar imaging can provide T1, T2, and T2* contrast that may be exploited for both lesion detection and lesion characterization.  相似文献   

15.
To determine the safety of a manganese chloride-based oral magnetic resonance (MR) contrast agent and the ideal concentration of the agent for marking in three different anatomic sites (stomach, middle of the small bowel, and ileocecal region), six healthy volunteers were evaluated before and after administration of 900 mL of three different concentrations of the contrast agent. Images were evaluated subjectively and objectively. No adverse events were noted. There was a minimal rise in manganese blood levels at 6 hours after administration, with a return to baseline at 24 hours. The imaging data demonstrated good-to-excellent bowel marking on T1-weighted images at all three concentrations. However, on T2-weighted images, the 40 mg Mn+2/L concentration provided improved hypointense bowel marking relative to the 20 mg/L concentration. Little difference was seen between the 40 and 60 mg/L concentrations. Fast T1-and T2-weighted sequences provided superior image quality to that of conventional spin-echo sequences.  相似文献   

16.
Twenty-two women with previous malignancies of the pelvis were examined with magnetic resonance (MR) imaging. In 21 of 22 patients, the MR imaging findings were confirmed with laparotomy on transvaginal biopsy. Twelve of the 22 patients had recurrent tumors; ten had a localized fibrotic mass, and two were found to have coexistent local fibrotic masses and distant recurrence. In 11 of the 12 patients with recurrence, MR imaging demonstrated the recurrent tumor as an area of increased signal intensity on long repetition time, long echo time spin-echo pulse sequences. Signal intensity of localized fibrosis varied with the time since initial treatment. Separate signal intensity measurements for T1- and T2-weighted images were obtained in regions of interest in recurrent tumors, early fibrosis (1-6 months after first treatment), and late fibrosis (more than 12 months). Ratios of signal intensity of muscle to that of fat were calculated, and a statistical analysis (Student t test) was performed. On heavily T2-weighted pulse sequences, the differences in signal intensity between late fibrosis and recurrent tumors were statistically significant (P less than .001). MR imaging is useful in identifying recurrent pelvic neoplasm and distinguishing it from posttreatment fibrosis.  相似文献   

17.
Eight healthy volunteers and 11 patients with pancreatic abnormalities were studied using a conventional body coil and a prototype magnetic resonance (MR) surface coil. Final pathologic diagnoses included carcinoma of the head (six), body (one), and tail of the pancreas (two) and chronic pancreatitis (two). In surface coil images of the volunteers, the body and tail of the pancreas was visualized in all cases but one, and the pancreatic duct was seen in five of eight cases. In-plane spatial resolution of 0.9 X 0.9 mm and 5-mm section thickness was obtained. At the same time, pancreatic surface coil images had a twofold improvement in the signal-to-noise ratio (SNR) compared with body coil images. T1-weighted spin-echo images gave greater SNR, reduced motion artifacts, provided superior anatomic detail, and offered more diagnostic information than comparable T2-weighted images. Significant abnormalities detected only by surface coil imaging included a small tumor surrounded by reactive edema and periglandular tumor invasion. This study demonstrates that surface coil imaging of the pancreas not only is feasible but provides an improved method for examining the pancreas by MR.  相似文献   

18.
19.
The authors studied the ability to improve detection of splenic lesions during suspended respiration with dynamic gadolinium-enhanced T1-weighted spin-echo magnetic resonance (MR) imaging. In the first phase of the study, normal splenic contrast material enhancement patterns were assessed in 10 control patients without splenic lesions. A heterogeneous signal intensity pattern was observed in 11 patients with splenic lesions during bolus injection of gadopentetate dimeglumine, with conversion to homogeneous enhancement 1 minute later. Mean splenic enhancement was 321% during bolus injection, with a rapid return toward baseline signal intensity thereafter. In the second phase, evaluation of 18 splenic lesions detected with contrast-enhanced computed tomography in 11 patients revealed that dynamic gadolinium-enhanced MR pulse sequences significantly improved lesion conspicuity and detectability compared with conventional T1-and T2-weighted pulse sequences. Contrast-to-artifact ratio measurements were 0.5, 3.7, and 9.3 for conventional T1-weighted, T2-weighted, and dynamic gadolinium-enhanced MR images, respectively.  相似文献   

20.
Spin-echo MR imaging at 0.35 T was used to image hepatic focal nodular hyperplasia (FNH) and to attempt to distinguish it from primary malignant hepatic tumors. There were six FNH and 10 malignant tumors including seven hepatocellular carcinomas, two cholangiocarcinomas, and one hepatoblastoma. Our results show that FNH has a fairly consistent appearance, dissimilar from that of malignant primary hepatic tumors. Four of six FNH lesions were isointense (except for a central scar in three) and indistinguishable from normal hepatic parenchyma on all pulse sequences, whereas two of six were homogeneous but slightly hyperintense on T2-weighted sequences. Furthermore, a central hyperintense scar was seen in three of six lesions on T2-weighted sequences. In contrast, each of the malignant primary hepatic tumors was hyperintense on T2-weighted sequences and seven of 10 were hypointense on T1-weighted sequences; in nine of 10, heterogeneous areas of intensity were noted. In two fibrolamellar hepatocellular carcinomas a central scar was seen that was hypointense on all pulse sequences. By using quantitative data, the best characterization was obtained by using lesion/normal-liver intensity ratios from a T2-weighted sequence; all FNH had a ratio less than 1.33, while in nine of 10 primary malignant tumors it was greater than 1.41. We conclude that focal nodular hyperplasia may have a consistent appearance on spin-echo MR imaging and probably can be distinguished from primary malignant lesions in most instances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号