首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的: 观察PPARα激动剂非诺贝特及PPARγ激动剂赛格列酮对人脐静脉内皮细胞(HUVECs)血管紧张素Ⅱ(AngⅡ)抑制NO生成的作用。 方法: 体外培养HUVECs,用1×10-7-1×10-4mol/L赛格列酮和10-5、10-4mol/L非诺贝特预处理HUVECs 24 h,再与10-6mol/L AngⅡ 共同孵育12 h,通过RT-PCR和Western blotting分别检测eNOS mRNA和蛋白表达水平;通过Griees反应测定NO2-/NO3-浓度。 结果: 与对照组相比,10-7mol/L AngⅡ刺激HUVEC 12 h下调eNOS mRNA(0.38±0.19 vs 0.13±0.18,P<0.01)和蛋白(35.90±3.18 vs 6.95±2.19,P<0.01)表达,减少NO生成(50.21 μmol/L vs 21.33 μmol/L,P<0.01)。用10-7、10-6、10-5、10-4 mol/L赛格列酮预处理24 h,上调eNOS mRNA表达(分别为0.36±0.03、0.36±0.14、0.37±0.16、0.43±0.06,与AngⅡ组比较,均P<0.01)和蛋白表达(分别为11.60±3.31、11.78±5.45、13.93±2.46、22.93±3.17,与AngⅡ组相比,均P<0.01),增加细胞培养液NO2-/NO3-浓度。非诺贝特也上调eNOS mRNA和蛋白表达,增加细胞培养液NO2-/NO3-浓度(P<0.01)。 结论: AngⅡ减少eNOS表达,从而减少NO生成。赛格列酮和非诺贝特预处理24 h,可拮抗AngⅡ对HUVECs eNOS mRNA和蛋白表达的抑制作用,增加NO的释放。  相似文献   

2.
Angiopoietin1 (Ang1) is a novel angiogenic factor with important actions on endothelial cell (EC) differentiation and vascular maturation. Ang1 has been shown to prevent EC apoptosis through activation of PI3-kinase/Akt, a pathway that is also known to activate endothelium nitric oxide synthase (eNOS). Therefore, we hypothesized that the angiogenic effects of Ang1 would also be dependent on the PI3-kinase/Akt pathway, possibly mediated by increased eNOS activity and NO release. Treatment of human umbilical vein endothelial cells with recombinant Ang1* (300 ng/ml) for 15 minutes resulted in PI3-kinase-dependent Akt phosphorylation, comparable to that observed with vascular endothelial growth factor (VEGF) (50 ng/ml), and increased NO production in a PI3-kinase/Akt-dependent manner. Capillary-like tube formation induced by Ang1* in fibrin matrix at 24 hours (differentiation index, DI: 13.74 +/- 0.76 versus control 1.71 +/- 0.31) was abolished in the presence of the selective PI3-kinase inhibitor, LY294002 (50 micro mol/L) (DI: 0.31 +/- 0.31, P < 0.01) or the NOS inhibitor, L-NAME (3 mmol/L) (DI: 4.10 +/- 0.59, P < 0.01). In subcutaneous Matrigel implants in vivo, addition of recombinant Ang1* or wild-type Ang1 from conditioned media of COS-1 cells transfected with a pFLAG Ang1 expression vector, induced significant neovascularization to a degree similar to VEGF. Finally, angiogenesis in vivo in response to both Ang1 and VEGF was significantly reduced in eNOS-deficient compared with wild-type mice. In summary, our results demonstrate for the first time that endothelial-derived NO is required for Ang1-induced angiogenesis, and that the PI3-kinase signaling mediates the activation of eNOS and NO release in response to Ang1.  相似文献   

3.
The aim of this study was to investigate the effect of PI3K/AKT signaling pathway in the activity of recombinant human angiotensin converting enzyme 2 (rhACE2) promoted the activity of endothelial nitric oxide synthase (eNOS). The human umbilical vein endothelial cells (HUVEC) were cultured in vitro. Then treated with Ang II (1×10-6 mol/L) for 24 h. The rhACE2 (100 μmol/L) was added and incubated for 5, 10, 15, 30, 60 min respectively which was based on Ang II intervention. The effect of rhACE2 on phosphorylation eNOS level was also observed in the presence of LY294002 (10 μmol/L) (PI3K/AKT inhibitors). Griess reagent method was applied to measure NO contents in cell culture supernatant, RT-PCR to detect the expression of eNOSmRNA in HUVEC, and Western blot to detect the expression of eNOS and phosphorylated eNOS. In Ang II intervention group, NO contents were significantly lower than control group (P < 0.05). Through rhACE2 treatment, the NO contents in cell culture medium and the expression level of phosphorylated eNOS were significantly higher than in Ang II intervention group (P < 0.05), but eNOSmRNA and non-phosphorylated eNOS protein expression level showed no significant difference (P > 0.05). After HUVEC was intervened by PI3K/AKT pathway inhibitor LY294002, the expression level of phosphorylated eNOS was significantly lower than that in the rhACE2 30 min treatment group (P < 0.05). rhACE2 may reduce the activity of Ang II inhibited endothelial cell eNOS, which can be blocked by PI3K/AKT pathway inhibitor LY294002, suggesting PI3K/AKT signaling pathway plays an important role in rhACE2’s promotion of the activity of endothelial cell eNOS.  相似文献   

4.
We have previously demonstrated that angiotensin II (Ang II) stimulates nitric oxide (NO) production in bovine pulmonary artery endothelial cells (BPAECs) by increasing NO synthase (NOS) expression via the type 2 receptor. The purpose of this study was to identify the Ang II-dependent signaling pathway that mediates this increase in endothelial NOS (eNOS). The Ang II-dependent increase in eNOS expression is prevented when BPAECs are pretreated with the tyrosine kinase inhibitors, herbimycin A and 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-D]pyrimidine, which also blocked Ang II-dependent mitogen-activated protein kinase (MAPK) kinase/extracellular-regulated protein kinase (MEK)-1 and MAPK phosphorylation, suggesting that Src is upstream of MAPK in this pathway. Transfection of BPAECs with an Src dominant negative mutant cDNA prevented the Ang II-dependent Src activation and increase in eNOS protein expression. PD98059, a MEK-1 inhibitor, prevented the Ang II-dependent phosphorylation of extracellular-regulated protein kinases 1 and 2 and increase in eNOS expression. Neither AG1478, an epidermal growth factor receptor kinase inhibitor, nor AG1295, a platelet derived growth factor receptor kinase inhibitor, had any effect on Ang II-stimulated Src activity, MAPK activation, or eNOS expression. Pertussis toxin prevented the Ang II-dependent increase in Src activity, MAPK activation, and eNOS expression. These data suggest that Ang II stimulates Src tyrosine kinase via a pertussis toxin-sensitive pathway, which in turn activates the MAPK pathway, resulting in increased eNOS protein expression in BPAECs.  相似文献   

5.
Previous studies have shown that connexin (Cx) expression is considerably higher in the preglomerular compared to postglomerular vasculature and that these differences are accentuated during diabetes. Since nitric oxide (NO) has been reported to alter Cx expression in endothelial cells and muscle cells and NO bioavailability is altered in diabetes, we hypothesized that NO may be responsible for the changes during diabetes. Cx expression was studied using immunohistochemistry in mice in which eNOS expression was either upregulated (eNOS transgenic) or downregulated (eNOS knockout). Diabetes was induced intraperitoneally with a single dose of alloxan or multiple low doses of streptozotocin. Expression of Cx40 in smooth muscle cells of afferent arterioles was increased, while expression of Cx43 in endothelial cells of efferent arterioles was absent in eNOS transgenic mice, similar to the changes occurring in wild-type mice during diabetes. Expression of Cx40 and Cx43 in eNOS knockout mice was not different from control; however, induction of diabetes in eNOS knockout mice failed to produce any changes in Cx40 or Cx43 in either afferent or efferent arterioles. Immunohistochemistry showed that eNOS expression was increased in the endothelium of renal arterioles in wild-type diabetic and eNOS transgenic mice, but absent from arterioles of eNOS knockout mice. We conclude that changes occurring in Cx expression in afferent and efferent arterioles during diabetes may result from increased eNOS.  相似文献   

6.
Although accumulating lines of evidence indicate the proangiogenic role of angiotensin II (Ang II), little is known about the molecular mechanisms associated with such an effect. This study aimed to identify molecular events involved in Ang II-induced angiogenesis in the Matrigel model in mice. C57Bl/6 female mice received a subcutaneous injection of either Matrigel or Matrigel with Ang II (10(-7) M) alone, with Ang II and an AT1 receptor antagonist (candesartan, 10(-6) M), or with Ang II and AT2 receptor antagonist (PD123319, 10(-6) M). After 14 days, angiogenesis was assessed in the Matrigel-plug by histological evaluation and cellular counting. Ang II increased by 1.9-fold the number of cells within the Matrigel (p < 0.01 versus control). Immunohistological analysis revealed the presence of macrophages, endothelial and smooth muscle cells, and the development of vascular-like structure. Such an angiogenic effect was associated with an increase in vascular endothelial growth factor (VEGF) (1.5-fold, p < 0.01), endothelial nitric oxide (eNOS) (1.7-fold, p < 0.01), and cyclooxygenase-2 (1.4-fold, p < 0.05) protein levels measured by Western blotting. Conversely, Ang II treatment did not affect MMP-9 and MMP-2 activity, assessed by zymography. Blockade of AT1 receptor completely prevented the Ang II-induced angiogenesis and protein regulations, whereas that of AT2 was ineffective. Administration of VEGF neutralizing antibody (2.5 microg ip twice a week) and cyclooxygenase-2 selective inhibitor (nimesulide, 30 mg/L) also hampered Ang II proangiogenic effect. In addition, Ang II-induced cell ingrowth was impaired by treatment with nitric oxide synthase inhibitor (L-NAME, 10 mg/kg/day) and in eNOS-deficient mice. Therefore, in an in vivo model, Ang II induced angiogenesis through AT1 receptor, which involved activation of VEGF/eNOS-related pathway and of the inflammatory process.  相似文献   

7.
8.
Nitric oxide (NO) radicals generated by endothelial nitric oxide synthase (eNOS) are involved in the regulation of vascular tone. In addition, NO radicals derived from eNOS inhibit platelet aggregation and leukocyte adhesion to the endothelium and, thus, may have anti-inflammatory effects. To study the role of eNOS in renal inflammation, the development of accelerated anti-glomerular basement membrane (GBM) glomerulonephritis was examined in mice lacking a functional gene for eNOS and compared with wild-type (WT) C57BL/B6j mice. WT C57BL/6j mice (n = 12) and eNOS knockout (-/-) mice (n = 12) were immunized intraperitoneally with sheep IgG (0.2 mg in complete Freund's adjuvant). At day 6.5 after immunization, mice received a single i.v. injection of sheep anti-mouse GBM (1 mg in 200 microl PBS). Mice were sacrificed at day 1 and 10 after induction of the disease. All WT mice survived until day 10, whereas 1 eNOS-/- mouse died and 2 more became moribund, requiring sacrifice. At day 10, eNOS-/- mice had higher levels of blood urea nitrogen than WT mice (P < 0.02), although proteinuria was comparable. Immunofluorescence microscopy documented similar IgG deposition in both WT and eNOS-/- mice, but eNOS-/- mice had more extensive glomerular staining for fibrin at day 10 (P < 0.007). At day 10, light microscopy demonstrated that eNOS-/- mice had more severe glomerular thrombosis (P < 0.003) and influx of neutrophils (P < 0. 006), but similar degrees of overall glomerular endocapillary hypercellularity and crescent formation. In conclusion, accelerated anti-GBM glomerulonephritis is severely aggravated in eNOS-/- mice, especially with respect to glomerular capillary thrombosis and neutrophil infiltration. These results indicate that NO radicals generated by eNOS play a protective role during renal inflammation.  相似文献   

9.
Recent studies have implicated dysfunctional endothelial nitric-oxide synthase (eNOS) as a common pathogenic pathway in diabetic vascular complications. However, functional consequences are still incompletely understood. To determine the role of eNOS-derived nitric oxide (NO) in diabetic nephropathy, we induced diabetes in eNOS knockout (KO) and wild-type (WT) mice on the C57BL6 background, using low-dose streptozotocin injection, and we investigated their glomerular phenotype at up to 20 weeks of diabetes. Although the severity of hyperglycemia in diabetic eNOS KO mice was similar to diabetic WT mice, diabetic eNOS KO mice developed overt albuminuria, hypertension, and glomerular mesangiolysis, whereas diabetic WT and nondiabetic control mice did not. Glomerular hyperfiltration was also significantly reduced in diabetic eNOS KO mice. Electron micrographs from diabetic eNOS KO mice revealed an injured endothelial morphology, thickened glomerular basement membrane, and focal foot process effacement. Furthermore, the anionic sites at glomerular endothelial barrier estimated by cationic ferritin binding were reduced in diabetic eNOS KO mice. In aggregate, these results demonstrate that deficiency of eNOS-derived NO causes glomerular endothelial injury in the setting of diabetes and results in overt albuminuria and glomerular mesangiolysis in nephropathy-resistant inbred mice. The findings indicate a vital role for eNOS-derived NO in the pathogenesis of diabetic nephropathy.  相似文献   

10.
Nitric oxide (NO) has been established as a neurotransmitter in both the central and peripheral nervous systems. Three isoforms of its synthetic enzyme, NO synthase (NOS), have been identified: 1) in the endothelial lining of blood vessels (eNOS), 2) an inducible form found in macrophages (iNOS), and 3) in neurons (nNOS). Previous studies using pharmacological agents that block all three isoforms of NOS have revealed that NO mediates several aspects of reproductive physiology and behavior, including anomalies in male sexual behavior and erectile function. To determine the specific contribution of the endothelial isoform of NOS in male reproductive behavior, we studied mice missing the gene for only eNOS (eNOS-/-). Wild-type (WT) and eNOS-/- animals were placed with an estrous WT female and observed for 45 min. Both WT and eNOS-/- mice displayed equivalent motivation to mount the stimulus female. However, eNOS-/- mice exhibited striking anomalies in ejaculatory function. A higher percentage of eNOS-/- than WT mice ejaculated during the testing period (p < 0.001). This increased propensity to ejaculate was apparently due to reduced stimulation required to elicit ejaculation; eNOS-/- mice required significantly fewer mounts (p < 0.003) and intromissions (p < 0.001) to ejaculate compared to WT mice. Taken together, these results suggest that NO synthesized by eNOS may be involved in ejaculatory physiology, but not sexual motivation.  相似文献   

11.
目的:观察PPARα激动剂非诺贝特对牛主动脉(BAECs)内皮细胞一氧化氮合酶(eNOS)活性和表达的影响。方法:制备5-9代BAECs,加入不同浓度的非诺贝特(0, 5, 10, 50, 100 μmol/L)后,用NOS Assay Kit测定eNOS活性,RT-PCR法检测eNOS mRNA表达,Western blot分析检测eNOS蛋白质表达。结果: 非诺贝特以浓度和时间依赖的方式增加eNOS活性,非诺贝特浓度10 μmol/L以上时,明显增加eNOS活性。50μmol/L非诺贝特处理48 h时eNOS活性最大(为对照组的2.32±0.47倍,P<0.01)。非诺贝特处理1 h和12 h不增加eNOS活性。RT-PCR分析表明,非诺贝特浓度大于5 μmol/L以上时,明显增加eNOS mRNA水平,在非诺贝特浓度为50 μmol/L时作用最大,为对照组的2.08±0.33倍(P<0.01)。此作用在6 h时出现,持续到48 h。Western blot显示,非诺贝特处理48 h,eNOS蛋白表达明显增加,在浓度为10,50 和100 μmol/L时,eNOS蛋白表达分别为对照组的1.80±0.45, 2.70±0.42 和 2.20±0.32 倍,均P<0.01。在非诺贝特处理12 h后出现,持续到48 h。结论:PPARα激动剂非诺贝特增加BAECs eNOS基因表达,提高eNOS活性及增加蛋白表达。  相似文献   

12.
Angiotensin-converting enzyme 2 (ACE2), a homologue of angiotensin-converting enzyme (ACE), converts angiotensin (Ang) I to Ang(1-9) and Ang II to Ang(1-7), but does not directly process Ang I to Ang II. Cardiac function is compromised in ACE2 null mice; however, the importance of ACE2 in the processing of angiotensin peptides within the murine heart is not known. We determined the metabolism of angiotensins in wild-type (WT), ACE (ACE(-/-)) and ACE2 null mice (ACE2(-/-)). Angiotensin II was converted almost exclusively to Ang(1-7) in the cardiac membranes of WT and ACE(-/-) strains, although generation of Ang(1-7) was greater in the ACE(-/-) mice (27.4 +/- 4.1 versus 17.5 +/- 3.2 nmol(-1) mg h(-1) for WT). The ACE2 inhibitor MLN4760 significantly attenuated Ang II metabolism and the subsequent formation of Ang(1-7) in both strains. In the ACE2(-/-) hearts, Ang II metabolism and the generation of Ang(1-7) were significantly attenuated; however, the ACE2 inhibitor reduced the residual Ang(1-7)-forming activity in this strain. Angiotensin I was primarily converted to Ang(1-9) (WT, 28.9 +/- 3.1 nmol(-1) mg h(-1); ACE(-/-), 49.8 +/- 5.3 nmol(-1) mg h(-1); and ACE2(-/-), 35.9 +/- 5.4 nmol(-1) mg h(-1)) and to smaller quantities of Ang(1-7) and Ang II. Although the ACE2 inhibitor had no effect on Ang(1-9) formation, the carboxypeptidase A inhibitor benzylsuccinate essentially abolished the formation of Ang(1-9) and increased the levels of Ang I in cardiac membranes. In conclusion, our studies in the murine heart suggest that ACE2 is the primary pathway for the metabolism of Ang II and the subsequent formation of Ang(1-7), a peptide that, in contrast to Ang II, exhibits both antifibrotic and antiproliferative actions.  相似文献   

13.
目的:在培养的人内皮细胞上观察内皮素(ET)、血管紧张素Ⅱ(AngⅡ)和同型半胱氨酸(Hcy)对C-型利钠利尿肽(CNP)生成和释放的影响,以探讨CNP生成和释放的机制。方法:人内皮细胞培养;CNP放免测定。结果:ET、AngⅡ均可刺激内皮细胞CNP的生成,10-9、10-8、10-7mol/L的ET和AngⅡ分别使细胞CNP含量较对照组高1%(P>0.05),49%(P<0.05),117%(P<0.01)和137%(P<0.01),165%(P<0.01),201%(P<0.01),大剂量ET、AngⅡ可刺激CNP的释放。Hcy对内皮细胞CNP的生成没有影响,但10 -9、10-8、10-7mol/LHcy可使其释放增加17%(P>0.05),84%(P<0.01)和555%(P<0.01)。结论:ET、Ang和Hcy可调节CNP的释放和/或生成。  相似文献   

14.
The role of endogenous NO in the regulation of acute lung injury is not well defined. We investigated the effects of inducible nitric oxide synthase (iNOS) and endothelial NOS (eNOS) on the acute inflammatory response in mouse lungs. Acute lung injury was induced by intratracheal instillation of bacterial lipopolysaccharide (LPS) into wild-type (WT) mice and mice deficient in iNOS (iNOS(-/-)) or eNOS (eNOS(-/-)). Endpoints of inflammatory injury were myeloperoxidase (MPO) content and leak of albumin into lung. Inflammatory injury was similar in WT and eNOS(-/-) mice but was substantially increased in iNOS(-/-) mice. Bronchoalveolar lavage (BAL) fluids of iNOS(-/-) and WT mice showed similar levels of CXC chemokines (MIP-2, KC) but enhanced levels of CC chemokines (MCP-1, MCP-3). Increased lung content of MPO in iNOS(-/-) mice was reduced by anti-MCP-1 to values found in WT mice. In vitro stimulation of microvascular endothelial cells with LPS and IFN gamma revealed elevated production of CXC and CC chemokines in cells from iNOS(-/-) mice when compared to endothelial cells from iNOS(+/+) mice. Peritoneal macrophages from iNOS(-/-) donors also revealed increased production of CC chemokines after stimulation with LPS and interferon (IFN gamma). These data indicate that absence of iNOS causes enhanced lung inflammatory responses in mice which may be related to enhanced production of MCP-1 by endothelial cells and macrophages. It appears that iNOS affects the lung inflammatory response by regulating chemokine production.  相似文献   

15.
目的: 探讨15-羟化二十烷四烯酸(15-HETE)对肺动脉内皮细胞(pulmanory artery endothelial cells, PAECs)一氧化氮合酶(endothelia nitric oxide synthase, eNOS)活性的影响。 方法: 通过测定大鼠离体肺动脉环张力,比较去血管内皮、eNOS抑制剂L-NAME对15-HETE收缩肺动脉的影响;通过免疫沉淀和免疫印迹方法测定牛PAECs经2×10-6 mol/L 15-HETE作用后,eNOS Thr 495磷酸化情况;用免疫印迹方法测定15-HETE对牛PAECs eNOS总蛋白表达的影响;用Greiss法检测15-HETE及15-脂氧酶(15-LO)抑制剂CDC和NDGA对牛肺动脉内皮细胞一氧化氮(NO)产量的影响。 结果: (1)除去肺动脉内皮后, 15-HETE收缩血管作用明显增强(P<0.01)。(2)抑制剂L-NAME 10-4 mol/L 可使15-HETE收缩肺动脉的作用明显增强(P<0.05)。(3)牛PAECs经2×10-6 mol/L 15-HETE作用后,eNOS Thr 495位点磷酸化水平增强(P<0.01)。(4)10-6 mol/L 15-HETE可抑制亚硝酸盐(NO-2/NO-3)的产生(P<0.05),抑制内源性15-HETE可明显增加NO-2/NO-3的产量,和对照组相比 10-5 mol/L CDC组P<0.05,10-4 mol/L NDGA组P<0.01。 结论: 肺动脉内皮细胞eNOS/NO通路参与抑制15-HETE收缩大鼠肺动脉,15-HETE抑制肺动脉内皮细胞eNOS活性,使NO产量(NO-2/NO-3)下降。  相似文献   

16.
Arterial hypertension is a major risk factor that can lead to complication of peripheral vascular disease due, in part, to endothelial dysfunction. Because sodium nitrite (SN) can be converted to nitric oxide (NO), which counteracts endothelial dysfunction, we explored the effect of nitrite on neovascularization following hind limb ischemia in different models of hypertension (HT). Chronic delivery of angiotensin II (Ang II, 400?ng/kg/min) or N(omega)-nitro-l-arginine-methyl-ester (L-NAME, 0.1?g/L) was used for a 2-week period to induce hypertension. Mice were subjected to femoral artery ligation-induced ischemia in the hind limb followed by treatment with SN (50?mg/L) for 2?weeks. SN significantly reduced systolic arterial blood pressure in mice receiving Ang II and L-NAME but had no effect in sham animals. After 2?weeks, blood flow and microangiography showed 60?%?±?1.0 recovery in sham compared with 40?%?±?1.3 in HT mice. Importantly, sham and HT mice treated with SN showed a 100?% blood flow recovery associated with normalization in capillary density. The inhibition of xanthine-oxido-reductase (allopurinol) or VEGFR (SU-5416) prevented the neovascularization in HT mice treated with SN. Cyclic GMP (cGMP) content in the hind limb was significantly increased in mice treated with SN compared with non-treated mice. Nitrite/nitrate content was only increased in the sham group treated with SN. Immunoprecipitation and Western blot analysis revealed an increase in eNOS/Akt/VEGFR phosphorylation in skeletal muscle from mice treated with SN compared with non-treated mice. Our findings indicate that SN therapy rescues the neovascularization and blood flow recovery in the ischemic hind limb of sham and HT mice likely through the Akt/NO/cGMP and VEGFR pathways.  相似文献   

17.
Microvascular injury has been proposed to be a main cause of ischemia-reperfusion (I/R) injury. The roles of endothelial nitric oxide synthase (eNOS)-derived NO, a key regulator of vascular function, in I/R injury are incompletely understood. We used transgenic mice overexpressing eNOS in endothelial cells (eNOS-Tg) and their littermates wild-type mice (WT) to investigate the roles of eNOS in I/R injury in skeletal muscle. Superoxide levels in the affected muscles were reduced by approximately 50% in eNOS-Tg compared with WT during reperfusion. In WT, the disassembly of endothelial junctional proteins seen in the early period of reperfusion was recovered in the later phase. These findings were correlated with the increased vascular permeability in vivo. In contrast, eNOS-Tg maintained the endothelial junction assembly as well as vascular permeability during reperfusion. Leukocyte extravasation into tissue and up-regulated expression of adhesion molecules in the reperfused vessels were significantly inhibited in eNOS-Tg. Tissue viability of the affected muscle was decreased in WT time-dependently after reperfusion, whereas eNOS-Tg showed no significant reduction. NOS inhibition completely reversed these protective effects of eNOS overexpression in I/R injury. Thus, eNOS overexpression appears to prevent the I/R injury in skeletal muscle by maintaining vascular integrity.  相似文献   

18.
During normal pregnancy, elevated angiotensin II (Ang II) concentrations in the maternal and fetal circulations are associated with dramatic increases in placental angiogenesis and blood flow. Much is known about a local renin–angiotensin system within the uteroplacental vasculature. However, the roles of Ang II in regulating fetoplacental vascular functions are less well defined. In the fetal placenta, the overall in vivo vasoconstrictor responses of the blood vessels to Ang II infusion is thought to be less than that in its maternal counterpart, even though infused Ang II induces vasoconstriction. Recent data from our laboratories suggest that Ang II stimulates cell proliferation and increases endothelial nitric oxide synthase (eNOS) and production of nitric oxide (NO) in ovine fetoplacental artery endothelial cells. These data imply that elevations of the known vasoconstrictor Ang II in the fetal circulation may indeed play a role in the marked increases in fetoplacental angiogenesis and that Ang II-elevated endothelial NO production may partly attenuate Ang II-induced vasoconstriction on vascular smooth muscle. Together with both of these processes, the high levels of Ang II in the fetal circulation may serve to modulate overall fetoplacental vascular resistance. In this article, we review currently available data on the expression of Ang II receptors in the ovine fetal placenta with particular emphasis on the effects of Ang II on ovine fetoplacental endothelium. The potential cellular mechanisms underlying the regulation of Ang II on endothelial growth and vasodilator production are discussed.  相似文献   

19.
12/15-Lipoxygenase (12/15-LOX) plays a pathogenic role in atherosclerosis. To characterize whether 12/15-LOX also contributes to endothelial dysfunction and hypertension, regulation of vessel tone and angiotensin II (ang II) responses were characterized in mice deficient in 12/15-LOX. There was a twofold increase in the magnitude of l-nitroarginine-methyl ester-inhibitable, acetylcholine-dependent relaxation or phenylephrine-dependent constriction in aortic rings isolated from 12/15-LOX(-/-) mice. Plasma NO metabolites and aortic endothelial NO synthase (eNOS) expression were also elevated twofold. Angiotensin II failed to vasoconstrict 12/15-LOX(-/-) aortic rings in the absence of L-nitroarginine-methyl ester, and ang II impaired acetylcholine-induced relaxation in wild-type, but not 12/15-LOX(-/-) rings. In vivo, 12/15-LOX(-/-) mice had similar basal systolic blood pressure measurements to wild type, however, blood pressure elevations in response to ang II infusion (1.1 mg/kg/day) were significantly attenuated (maximal pressure, 143.4 +/- 4 mmHg versus 122.1 +/- 5.3 mmHg for wild type and 12/15-LOX(-/-), respectively). In contrast, vascular hypertrophic responses to ang II, and ang II type 1 receptor (AT1-R) expression were similar in both strains. This study shows that 12/15-LOX(-/-) mice have increased NO biosynthesis and impaired ang II-dependent vascular responses in vitro and in vivo, suggesting that 12/15-LOX signaling contributes to impaired NO bioactivity in vascular disease in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号