首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two bcr/abl fusion gene products with tyrosine kinase activity have been found in two phenotypes of Philadelphia chromosome (Ph1)-positive leukemia. P210bcr/abl (P210) is associated with Ph1-positive chronic myelogenous leukemia (CML), while P190bcr/abl is associated with Ph1-positive acute leukemia. We compared the susceptibility of 32Pi-labeled P210 from K-562 cells and P190 from MR-87 cells to protein tyrosine phosphatase (PTPase). PTPase, present in the lysate of mature granulocytes from CML patients as well as in the lysate of these cells from normal subjects, effectively dephosphorylated the CML-associated P210 and the acute leukemia associated P190. This PTPase activity was specifically inhibited by ZnCl2; it was not present in lymphocyte lysates, and was not inhibited by neutralization with anti-CD45 antibody. Since P210 and P190 were equally sensitive to the PTPase, the difference in leukemic phenotypes associated with the expression of these two tyrosine kinases cannot be explained by the differential dephosphorylation of P210 and P190.  相似文献   

2.
He Y  Wertheim JA  Xu L  Miller JP  Karnell FG  Choi JK  Ren R  Pear WS 《Blood》2002,99(8):2957-2968
The bcr/abl fusion in chronic myelogenous leukemia (CML) creates a chimeric tyrosine kinase with dramatically different properties than intact c-abl. In P210 bcr/abl, the bcr portion includes a coiled-coil oligomerization domain (amino acids 1-63) and a grb2-binding site at tyrosine 177 (Tyr177) that are critical for fibroblast transformation, but give variable results in other cell lines. To investigate the role of the coiled-coil domain and Tyr177 in promoting CML, 4 P210 bcr/abl-derived mutants containing different bcr domains fused to abl were constructed. All 4 mutants, Delta(1-63) bcr/abl, (1-63) bcr/abl, Tyr177Phe bcr/abl, and (1-210) bcr/abl exhibited elevated tyrosine kinase activity and conferred factor-independent growth in cell lines. In contrast, differences in the transforming potential of the 4 mutants occurred in our mouse model, in which all mice receiving P210 bcr/abl-expressing bone marrow cells exclusively develop a myeloproliferative disease (MPD) resembling human CML. Of the 4 mutants assayed, only 1-210 bcr/abl, containing both the coiled-coil domain and Tyr177, induced MPD. Unlike full-length P210, this mutant also caused a simultaneous B-cell acute lymphocytic leukemia (ALL). The other 3 mutants, (1-63) bcr/abl, Tyr177Phe bcr/abl, and Delta(1-63) bcr/abl, failed to induce an MPD but instead caused T-cell ALL. These results show that both the bcr coiled-coil domain and Tyr177 are required for MPD induction by bcr/abl and provide the basis for investigating downstream signaling pathways that lead to CML.  相似文献   

3.
P Laneuville  G Sun  M Timm  M Vekemans 《Blood》1992,80(7):1788-1797
Current evidence suggests that the expression of the tyrosine kinase p210bcr/abl in chronic myelogenous leukemia (CML) may directly induce the initial phase of granulocytic hyperplasia. However, the dysregulation of additional genes appears to be required for transition to the acute leukemic phase, as inferred by the appearance of recurrent secondary cytogenetic abnormalities in the majority of patients. To determine whether the expression of p210bcr/abl alone is responsible for this genetic instability, we introduced and expressed the bcr/abl gene from a retroviral vector in a clone of the interleukin-3 (IL-3) dependent myeloblastic 32D C13(G) cell line. Clonal and polyclonal cells transformed to IL-3 independent growth were observed for a period extending up to 6 months for changes in the expression of p210bcr/abl, cell proliferation, inhibition by prostaglandin E1 (PGE1), forskolin, and cyclic adenosine monophosphate (cAMP) analogues, regulation of the cell cycle, and karyotype. Whereas the properties of control vector infected 32D C13(G)' cells remained stable over time, cells expressing p210bcr/abl were phenotypically unstable. In cells expressing p210bcr/abl, we observed selective modulation of p210bcr/abl mRNA and protein expression, evolution from partial to full abrogation of IL-3 dependence, reduced serum requirements, increased cell proliferation, decreased inhibition by PGE1 and cAMP analogues, and the appearance of new structural and numerical chromosomal abnormalities with successive cell passages. These results indicate that expression of p210bcr/abl can directly predispose 32D C13(G)' cells to genetic instability, promotes the emergence of clones with an increased proliferative advantage, and may represent an in vitro model suitable for the study of mechanisms underlying progression to the acute leukemic phase in CML.  相似文献   

4.
Expression of the 210-kD bcr/abl fusion oncoprotein can cause achronic myelogenous leukemia (CML)-like disease in mice receiving bonemarrow cells transduced by bcr/abl-encoding retroviruses. However,previous methods failed to yield this disease at a frequency sufficientenough to allow for its use in the study of CML pathogenesis. Toovercome this limitation, we have developed an efficient and reproducible method for inducing a CML-like disease in mice receiving P210 bcr/abl-transduced bone marrow cells. All mice receiving P210bcr/abl-transduced bone marrow cells succumb to a myeloproliferative disease between 3 and 5 weeks after bone marrow transplantation. Themyeloproliferative disease recapitulates many of the hallmarks of humanCML and is characterized by high white blood cell counts and extensiveextramedullary hematopoiesis in the spleen, liver, bone marrow, andlungs. Use of a retroviral vector coexpressing P210 bcr/abl and greenfluorescent protein shows that the vast majority of bcr/abl-expressingcells are myeloid. Analysis of the proviral integration pattern showsthat, in some mice, the myeloproliferative disease is clonal. Inmultiple mice, the CML-like disease has been transplantable, inducing asimilar myeloproliferative syndrome within 1 month of transfer tosublethally irradiated syngeneic recipients. The disease in many ofthese mice has progressed to the development of acute lymphoma/leukemiaresembling blast crisis. These results demonstrate that murine CMLrecapitulates important features of human CML. As such, it should be anexcellent model for addressing specific issues relating to thepathogenesis and treatment of this disease.  相似文献   

5.
Model mice for BCR/ABL-positive leukemias   总被引:4,自引:0,他引:4  
p210bcr/abl is detected in almost all chronic myelogenous leukemia (CML) patients and a significant number of acute lymphoblastic leukemia (ALL) cases. It is generated by a reciprocal chromosomal translocation, t(9;22) (q34;q11), and the enhanced kinase activity of the protein is believed to be implicated in the pathogenesis of the diseases. To examine its oncogenicity in vivo and to create an animal model for BCR/ABL-positive leukemias, we generated transgenic mice expressing p210bcr/abl driven by the promoter of the mouse tec gene, a cytoplasmic tyrosine kinase preferentially expressed in early hematopoietic progenitors. While the founder mice showed excessive proliferation of lymphoblasts shortly after birth and were diagnosed as ALL, the transgenic progeny reproducibly exhibited marked granulocyte hyperplasia with thrombocytosis after a long latent period, which closely resembles the clinical course of human CML. In addition, to investigate whether loss of p53 would play a role in the transition from chronic phase to blast crisis of CML, we crossmated p210bcr/abl transgenic (BCR/ABLtg/-) mice with p53 heterozygous (p53+/-) mice and generated p210bcr/abl transgenic, p53 heterozygous (BCR/ABLtg/- p53+/-) mice, in which a somatic alteration in the residual p53 allele directly abrogates p53 function. The BCR/ABLtg/- p53+/- mice exhibited rapid proliferation of blast cells and died in a short period compared with their wild-type (BCR/ABL-/- p53+/+), p53 heterozygous (BCR/ABL-/- p53+/-), and p210bcr/abl transgenic (BCR/ABLtg/- p53+/+) littermates. Interestingly, the normal p53 allele was frequently and preferentially lost in the tumor tissues, providing in vivo evidence that acquired loss of p53 contributes to the blastic transformation of p210bcr/abl-expressing hematopoietic cells. Our transgenic mice will be a useful model for investigating oncogenic properties of p210bcr/abl in vivo and will provide insights into the molecular mechanism(s) underlying the progression from chronic phase to blast crisis of CML.  相似文献   

6.
The P210bcr/abl protein is associated with virtually every case of human chronic myelogenous leukemia. Unlike the related P160gag/v-abl oncogene product of Abelson murine leukemia virus, P210bcr/abl does not transform NIH 3T3 fibroblasts. To assess whether P210bcr/abl might transform hematopoietic cell types, retroviral constructs encoding P210bcr/abl were used to infect the bone marrow-derived interleukin 3-dependent Ba/F3 cell line. As for P160gag/v-abl, cell lines expressing P210bcr/abl were growth factor independent and tumorigenic in nude mice. No evidence for autocrine production of interleukin 3 by factor-independent cell lines was found. These experiments establish that P210bcr/abl can transform hematopoietic cell types to tumorigenicity.  相似文献   

7.
Chronic myelogenous leukemia (CML) begins with an indolent chronic phase but inevitably progresses to a fatal blast crisis. Although the Philadelphia chromosome, which generates p210(bcr/abl), is a unique chromosomal abnormality in the chronic phase, additional chromosomal abnormalities are frequently detected in the blast crisis, suggesting that superimposed genetic events are responsible for disease progression. To investigate whether loss of p53 plays a role in the evolution of CML, we crossmated p210(bcr/abl)-transgenic (BCR/ABL(tg/-)) mice with p53-heterozygous (p53(+/-)) mice and generated p210(bcr/abl)-transgenic, p53-heterozygous (BCR/ABL(tg/-)p53(+/-)) mice, in which a somatic alteration in the residual normal p53 allele directly abrogates p53 function. The BCR/ABL(tg/-)p53(+/-) mice died in a short period compared with their wild-type (BCR/ABL(-/-)p53(+/+)), p53 heterozygous (BCR/ABL(-/-)p53(+/-)), and p210(bcr/abl) transgenic (BCR/ABL(tg/-)p53(+/+)) litter mates. They had rapid proliferation of blast cells, which was preceded by subclinical or clinical signs of a myeloproliferative disorder resembling human CML. The blast cells were clonal in origin and expressed p210(bcr/abl) with an increased kinase activity. Interestingly, the residual normal p53 allele was frequently and preferentially lost in the tumor tissues, implying that a certain mechanism facilitating the loss of p53 allele exists in p210(bcr/abl)-expressing hematopoietic cells. Our study presents in vivo evidence that acquired loss of p53 contributes to the blastic transformation of p210(bcr/abl)-expressing hematopoietic cells and provides insights into the molecular mechanism for blast crisis of human CML. (Blood. 2000;95:1144-1150)  相似文献   

8.
alpha-Interferon (IFN-alpha) is important in the management of chronic myelogenous leukemia (CML). The P210bcr/abl fusion protein, with enhanced tyrosine kinase activity, is implicated in the pathogenesis and progression of the disease. To elucidate the inhibitory mechanism of IFN-alpha on CML cell proliferation, we studied the effect of IFN-alpha on P210bcr/abl in K-562 cells. The phosphorylated level of P210bcr/abl was not altered by treatment with IFN-alpha alone despite its inhibiting cell proliferation. However, when K-562 cells were treated with either a low (5 x 10(2) U/ml) or high (10(4) U/ml) concentration of IFN-alpha in the presence of hemin, P210bcr/abl protein activity decreased through reduction of in vivo phosphorylation, but not through inhibition of de novo protein synthesis. Furthermore, hemoglobin content was increased by IFN-alpha at both low and high concentrations in tandem with hemin-induced erythroid differentiation and the change in P210bcr/abl. These results demonstrate that IFN-alpha synergises hemin-mediated erythroid differentiation as it reduces the in vivo tyrosine phosphorylation of P210bcr/abl in K-562 cells.  相似文献   

9.
Herbimycin A, a benzoquinoid ansamycin antibiotic, was demonstrated to decrease intracellular phosphorylation by protein tyrosine kinase (PTK). In Philadelphia chromosome (Ph1)-positive leukemias such as chronic myelogenous leukemia (CML) and Ph1-positive acute lymphoblastic leukemia (ALL), both of which express bcr-abl fused gene products (P210bcr-abl or P190bcr-abl protein kinase) with augmented tyrosine kinase activities, herbimycin A markedly inhibited the in vitro growth of the Ph1-positive ALL cells and the leukemic cells derived from CML blast crisis. However, the same dose of herbimycin A did not inhibit in vitro growth of a broad spectrum of Ph1-negative human leukemia cells, and several other protein kinase antagonists also displayed no preferential inhibition. Furthermore, we demonstrated that herbimycin A has an antagonizing effect on the growth of transformed cells by a transfection of retroviral amphotrophic vector expressing P210bcr/abl into a murine interleukin (IL)-3-dependent myeloid FDC-P2 cell line. This inhibition was abrogated by the addition of sulfhydryl compounds, similar to the reaction previously described for Rous sarcoma virus transformation. The inhibitory effect of herbimycin A on the growth of Ph1-positive cells was associated with decreased bcr/abl tyrosine kinase activity, but no decrease of bcr-abl mRNA and protein, suggesting that the inactivation of bcr-abl tyrosine kinase activity by herbimycin A may be induced by its binding to the bcr-abl protein portion that is rich with sulfhydryl groups. The present study indicates that herbimycin A is a beneficial agent for the investigation of the role of the bcr-abl gene in Ph1-positive leukemias and further suggests that the development of agents inhibiting the bcr-abl gene product may offer a new therapeutic potential for Ph1-positive leukemias.  相似文献   

10.
An altered c-abl protein (P210) bearing increased tyrosine kinase activity represents the product of the hybrid bcr/c-abl gene arising as a consequence of the Philadelphia (Ph1) chromosome translocation, the consistent cytogenetic abnormality of chronic myelogenous leukemia (CML). Although the chronic phase of this disease is substantially characterized by a marked proliferation of myeloid cells, the Ph1 translocation occurs in an early multipotent stem cell, giving rise to both myeloid and lymphoid cell lineages. Here we show that P210 bcr/abl protein expression varies greatly in different Ph1 chromosome positive B-lymphoid cell lines obtained from Epstein-Barr virus-transformed lymphocytes of a CML patient in the chronic phase. In addition Ph1 positive and Ph1 negative lymphoid cell lines obtained from the same patient were tested for a number of biological properties including the immunophenotype, the capacity to grow in soft agar and possible tumorigenicity in nude mice. No differences were found.  相似文献   

11.
Expression of c-abl in Philadelphia-positive acute myelogenous leukemia   总被引:6,自引:0,他引:6  
The identical cytogenetic marker, t(9;22)(q34;q11) (Philadelphia [Ph] translocation), is found in approximately 90%, 20%, and 2% of adult patients with chronic myelogenous leukemia (CML), acute lymphoblastic leukemia (ALL), and acute myelogenous leukemia (AML), respectively. In CML, the molecular events resulting from the Ph translocation include a break within the bcr locus on chromosome 22, transfer of the c-abl protooncogene from chromosome 9 to 22, and formation of an aberrant 210- kD bcr-abl fusion protein (p210bcr-abl). Recently, the absence of bcr rearrangement and expression of a distinct aberrant 190-kd abl protein (p190c-abl) has been described in Ph-positive ALL, with the suggestion that the two abl variants may be pathogenetically associated with myeloid v lymphoid leukemogenesis. Here we report that the genomic configuration and translation product of Ph-positive AML can be similar to that of Ph-positive ALL: the break at 22q11 may occur outside the 5.8 kb bcr region and result in expression of a 190-kD abl protein lacking these bcr sequences. Phosphokinase enzymatic activity, a fundamental property of p210bcr-abl, was also associated with AML- derived p190c-abl. Our current observations indicate that p190c-abl can be found in cells of lymphoid or myeloid lineage and is therefore unlikely to play a specific role in the development of lymphoid leukemias. Formation of p190c-abl instead of p210bcr-abl appears to be a characteristic of the acute rather than the chronic Ph-positive leukemic state.  相似文献   

12.
目的 研究b3a2型反义bcr-abl寡核苷酸(ASO)体外对慢性髓细胞性白血病(CML)细胞株K562的抑制作用,为反义技术用于CML患者体内基因治疗和体外骨髓净化提供依据。方法 采用体外细胞培养技术及四唑盐(MTT)比色法、免疫组织化学染色法观察b3a2-ASO体外对K562细胞的生长、克隆形成及P210 bcr-abl蛋白表达的影响。结果 经b3a2-ASO(110μm/ml)作用40h后,K562细胞生长抑制率达66.12%,集落抑制率为65.44%;作用15h后P210bcr-abl蛋白合成抑制率可达60%。而无义寡核苷酸(NSO)对前述三个指标均无显著影响;b3a2-ASO及NSO对bcr-abl阴性细胞株HL60的细胞生长和存活率亦无显著影响。结论 b3a2-ASO对K562细胞有序列特异性抑制作用,提示其可以作为CML反义基因治疗,尤其是骨髓净化的有力措施之一。  相似文献   

13.
14.
Seventy cases of chronic myelogenous leukemia (CML) were analyzed for the presence of ras mutations using polymerase chain reaction (PCR), oligonucleotide hybridization, and direct PCR sequencing. All cases had preceding cytogenetic and bcr rearrangement studies. Aberrant ras genes were detected in none of 39 patients with Philadelphia (Ph) chromosome or bcr/abl rearrangement positive chronic-phase CML and in only 1 of 18 patients in blast crisis, suggesting that ras mutations have little or no role in initiation or progression of common CML. Seven of 13, or 54% of patients with bcr/abl rearrangement negative chronic phase CML (atypical CML) harbored mutations in ras, however. This high incidence of ras mutations, together with the absence of bcr/abl rearrangement, provides evidence that atypical CML is an entity that is molecularly distinct from common CML. Moreover, the clinical characteristics and the high frequency of ras mutations suggest that atypical CML may constitute a subset of the myelodysplastic syndrome and may be best classified as a variant of chronic myelomonocytic leukemia (CMML).  相似文献   

15.
16.
17.
18.
The consistent cytogenetic translocation of chronic myelogenous leukemia (the Philadelphia chromosome, Ph1) has been observed in cells of multiple hematopoietic lineages. This translocation creates a chimeric gene composed of breakpoint-cluster-region (bcr) sequences from chromosome 22 fused to a portion of the abl oncogene on chromosome 9. The resulting gene product (P210c-abl) resembles the transforming protein of the Abelson murine leukemia virus in its structure and tyrosine kinase activity. P210c-abl is expressed in Ph1-positive cell lines of myeloid lineage and in clinical specimens with myeloid predominance. We show here that Epstein-Barr virus-transformed B-lymphocyte lines that retain Ph1 can express P210c-abl. The level of expression in these B-cell lines is generally lower and more variable than that observed for myeloid lines. Protein expression is not related to amplification of the abl gene but to variation in the level of bcr-abl mRNA produced from a single Ph1 template.  相似文献   

19.
Lethally irradiated mice reconstituted with bone marrow expressing P210 BCR-ABL can develop myeloproliferative syndromes that resemble the initial phase of human chronic myelogenous leukemia (CML). Mice that develop the CML-like syndrome can be segregated into two groups based on the latency with which the granulocytic disease appears--early onset (< 20 weeks) and late onset (> 20 weeks). Only cells from mice exhibiting the late-onset CML-like syndrome can efficiently propagate the disease when transplanted into sublethally irradiated syngeneic recipients. Mice engrafted with late-onset murine CML cells develop a range of hematopoietic disorders that originate from multipotent stem cells. The chronic granulocytic hyperplasia can be propagated by serial transplantation into secondary and tertiary recipient mice. The majority of transplanted mice succumb to acute myeloid and B- and T-lymphoid leukemias. These data support the idea that late-onset murine CML originates from a multipotent progenitor cell with a high replicating capacity. The inability to transplant the disease from mice developing the early-onset CML-like syndrome suggests that this disorder may originate from more differentiated progenitor cells with limited replication capacity that have undergone clonal expansion but are not immortalized. Although both early- and late-onset CML-like syndromes exhibit granulocytic hyperplasia, these disorders represent distinct diseases that appear to originate from different hematopoietic cell types. The late-onset CML-like disease and transfer to secondary recipients provides a useful murine model with features of the chronic and acute phases of human CML.  相似文献   

20.
Because of the probable causal relationship between constitutive p210(bcr/abl) protein tyrosine kinase activity and manifestations of chronic-phase chronic myelogenous leukemia (CML; myeloid expansion), a key goal is to identify relevant p210 substrates in primary chronic-phase CML hematopoietic progenitor cells. We describe here the purification and mass spectrometric identification of a 155-kD tyrosine phosphorylated protein associated with src homologous and collagen gene (SHC) from p210(bcr/abl)-expressing hematopoietic cells as SHIP2, a recently reported, unique SH2-domain-containing protein closely related to phosphatidylinositol polyphosphate 5-phosphatase SHIP. In addition to an N-terminal SH2 domain and a central catalytic region, SHIP2 (like SHIP1) possesses both potential PTB(NPXY) and SH3 domain (PXXP) binding motifs. Thus, two unique 5-ptases with striking structural homology are coexpressed in hematopoietic progenitor cells. Stimulation of human hematopoietic growth factor responsive cell lines with stem cell factor (SCF), interleukin-3 (IL-3), and granulocyte-macrophage colony-stimulating factor (GM-CSF) demonstrate the rapid tyrosine phosphorylation of SHIP2 and its resulting association with SHC. This finding suggests that SHIP2, like that reported for SHIP1 previously, is linked to downstream signaling events after activation of hematopoietic growth factor receptors. However, using antibodies specific to these two proteins, we demonstrate that, whereas SHIP1 and SHIP2 selectively hydrolyze PtdIns(3,4,5)P3 in vitro, only SHIP1 hydrolyzes soluble Ins(1,3,4,5)P4. Such an enzymatic difference raises the possibility that SHIP1 and SHIP2 may serve different functions. Preliminary binding studies using lysates from p210(bcr/abl)-expressing cells indicate that both Ptyr SHIP2 and Ptyr SHIP1 bind to the PTB domain of SHC but not to its SH2 domain. Interestingly, SHIP2 was found to selectively bind to the SH3 domain of ABL, whereas SHIP1 selectively binds to the SH3 domain of Src. Furthermore, in contrast to SHIP1, SHIP2 did not bind to either the N-terminal or C-terminal SH3 domains of GRB2. These observations suggest (1) that SHIP1 and SHIP2 may have a different hierarchy of binding SH3 containing proteins and therefore may modulate different signaling pathways and/or localize to different cellular compartments and (2) that they may be substrates for tyrosine phosphorylation by different tyrosine kinases. Because recent evidence has clearly implicated both PI(3,4, 5)P3 and PI(3,4)P2 in growth factor-mediated signaling, our finding that both SHIP1 and SHIP2 are constitutively tyrosine phosphorylated in CML primary hematopoietic progenitor cells may thus have important implications in p210(bcr/abl)-mediated myeloid expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号