首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Alzheimer’s disease (AD) is the primary cause of dementia in the elderly. It remains incurable and poses a huge socio-economic challenge for developed countries with an aging population. AD manifests by progressive decline in cognitive functions and alterations in behaviour, which are the result of the extensive degeneration of brain neurons. The AD pathogenic mechanism involves the accumulation of amyloid beta peptide (Aβ), an aggregating protein fragment that self-associates to form neurotoxic fibrils that trigger a cascade of cellular events leading to neuronal injury and death. Researchers from academia and the pharmaceutical industry have pursued a rational approach to AD drug discovery and targeted the amyloid cascade. Schemes have been devised to prevent the overproduction and accumulation of Aβ in the brain. The extensive efforts of the past 20 years have been translated into bringing new drugs to advanced clinical trials. The most progressed mechanism-based therapies to date consist of immunological interventions to clear Aβ oligomers, and pharmacological drugs to inhibit the secretase enzymes that produce Aβ, namely β-site amyloid precursor-cleaving enzyme (BACE) and γ-secretase. After giving an update on the development and current status of new AD therapeutics, this review will focus on BACE inhibitors and, in particular, will discuss the prospects of verubecestat (MK-8931), which has reached phase III clinical trials.  相似文献   

3.
Dementia with Lewy Bodies (DLB) is a common neurodegenerative disorder of the aging population characterized by α-synuclein accumulation in cortical and subcortical regions. Although neuropathology in advanced age has been investigated in dementias such as Alzheimer Disease (AD), severity of the neuropathology in the oldest old with DLB remains uncharacterized. For this purpose we compared characteristics of DLB cases divided into three age groups 70–79, 80–89 and ≥90 years (oldest old). Neuropathological indicators and levels of synaptophysin were assessed and correlated with clinical measurements of cognition and dementia severity. These studies showed that frequency and severity of DLB was lower in 80–89 and ≥90 year cases compared to 70–79 year old group but cognitive impairment did not vary with age. The extent of AD neuropathology correlated with dementia severity only in the 70–79 year group, while synaptophysin immunoreactivity more strongly associated with dementia severity in the older age group in both DLB and AD. Taken together these results suggest that the oldest old with DLB might represent a distinct group.  相似文献   

4.
Alzheimer's disease (AD) is a progressive degenerative disease of the brain and the most frequent cause of dementia among elderly. The etiology of AD is still obscure, but genetic and environmental factors appear to play differential roles in the disease. Several evidence suggest that inflammation or altered immune responses may play an important role in this disease. The following topics will be discussed: (1) the association of inflammation with brain degenerative processes in AD; (2) the influence of cytokine gene polymorphism upon the risk of developing AD and/or the age at onset of manifestation clinical dementia; (3) the effects of gene allele variations upon the phenotype of immune molecules in the blood and brain of AD patients; (4) the association of genetic variations in some of this molecules with the progression of the disease and cognitive decline.  相似文献   

5.
Alzheimer's disease (AD) is thought to be the most common cause of late-life dementia. But pure AD is infrequent whereas AD pathology is often insufficient to explain dementia in the elderly. Conversely, cerebrovascular disease is omnipresent and the crucial role of microvascular alterations increasingly recognized in late dementia or "Alzheimer syndrome". Pathomechanisms of vascular cognitive impairment are still debated but recent data indicate that the initial concept of chronic low grade cerebral hypoxia should not have been abandoned. Thus, it is proposed that windkessel dysfunction is the missing link between vascular and craniospinal senescence on the one hand, and chronic low grade cerebral hypoxia, "senile brain degeneration" and "Alzheimer syndrome" on the other hand. An age-related decrease in the buffering capacity of both the vessels and the craniospinal cavity favours cerebral hypoxia; due to increased capillary pulsatility with disturbances in capillary exchanges or due to a marked reduction in craniospinal compliance with a mechanical reduction in cerebral arterial inflow. "Invisible" windkessel dysfunction, most often related to "hardening of the arteries" may be the most frequent pathomechanism of late-onset dementia whereas associated mild or moderate AD may be merely a toxic manifestation of a primarily hypoxic disease. Structural patterns of arteriosclerotic dementia fit well with an underlying arterial windkessel dysfunction: with secondary mechanical damage to the cerebral small vessels and the brain and predominantly deep hypoxia. The clinical significance of leukoara?osis, small foci of necrosis, ventricular dilatation, hippocampal and cortical atrophy is in good agreement with their value as indirect markers of windkessel dysfunction. An age-related "invisible" reduction in craniospinal compliance may also contribute to the associations between heart failure, arterial hypotension and cognitive impairment in the elderly and to the high percentage of dementia of unknown origin in the very old. Both neuropathological and clinical overlap between AD and windkessel dysfunction can explain that cerebrovascular dysfunction remains misdiagnosed for AD in the elderly. Evidence of the key role of cerebrovascular dysfunction should markedly facilitate and widen therapeutic research in late-life dementia. Routine MRI including direct assessment of intracranial dynamics should be increasingly used to define etiological subtypes of the "Alzheimer syndrome" and develop a well-targeted therapeutic strategy.  相似文献   

6.
Recent Alzheimer's trials have recruited cognitively normal people at risk for Alzheimer's dementia. Due to the lack of clinical symptoms in normal population, conventional clinical outcome measures are not suitable for these early trials. While several groups are developing new composite cognitive tests that could serve as potential outcome measures by detecting subtle cognitive changes in normal people, there is a need for longitudinal brain imaging techniques that can correlate with temporal changes in these new tests and provide additional objective measures of neuropathological changes in brain. Positron emission tomography (PET) is a nuclear medicine imaging procedure based on the measurement of annihilation photons after positron emission from radiolabeled molecules that allow tracking of biological processes in body, including the brain. PET is a well‐established in vivo imaging modality in Alzheimer's disease diagnosis and research due to its capability of detecting abnormalities in three major hallmarks of this disease. These include (1) amyloid beta plaques; (2) neurofibrillary tau tangles and (3) decrease in neuronal activity due to loss of nerve cell connection and death. While semiquantitative PET imaging techniques are commonly used to set discrete cut‐points to stratify abnormal levels of amyloid accumulation and neurodegeneration, they are suboptimal for detecting subtle longitudinal changes. In this study, we have identified and discussed four critical barriers in conventional longitudinal PET imaging that may be particularly relevant for early Alzheimer's disease studies. These include within and across subject heterogeneity of AD‐affected brain regions, PET intensity normalization, neuronal compensations in early disease stages and cerebrovascular amyloid deposition.  相似文献   

7.
The three common forms of dementias in the elderly include Alzheimer's disease (AD), vascular dementia (VD) and normal pressure hydrocephalus (NPH). These disorders are distinguished by their specific pathological features. However, overlapping clinical and imaging features in a given case are not too uncommon. Based on alterations in CSF dynamics study, a unifying concept in the pathogenesis of AD and NPH has been proposed recently which may have therapeutic implications. Altered CSF dynamics by affecting the absorptive process may lead to hydrocephalic change. This may also affect clearance of amyloid protein leading to increased amyloid deposition in brain parenchyma resulting in AD pathology. Hence it is likely that a subgroup of patients may have an AD-NPH syndrome who may be benefitted by CSF drainage procedure. The present author attempts to extend this concept to hypothesise a unifying concept to explain the pathophysiology of all the three disorders which may explain overlapping features observed clinically and in neuroimaging studies. It is surmised that altered CSF dynamics and hypoperfusion from vascular disease may be interlinked. The defective clearance of amyloid may also lead to amyloid angiopathy perpetuating hypoperfusion. Hypoperfusion may also affect formation as well as absorption of CSF altering clearance of amyloid and promoting vascular and parenchymal deposition. Thus the pathologies of AD, VaD and NPH get interrelated.  相似文献   

8.
9.
10.
We compared magnetization transfer ratios (MTRs) in the brains of patients with dementia with Lewy bodies (DLB) and Alzheimer's disease (AD) to determine whether regional differences in the brain structures between DLB and AD are detectable with magnetization transfer imaging. Seventeen patients with DLB, 31 patients with AD and 18 elderly normal controls were included. Although no significant differences were found in MTRs in the frontal white matter between the three groups, MTRs in the hippocampus, parahippocampus, and posterior cingulate white matter in both patients with DLB and AD were significantly lower than those in age-matched control subjects. However, MTRs in the hippocampus of patients with DLB were significantly higher than those in patients with AD. Logistic regression analysis revealed that hippocampal MTR yielded a sensitivity of 76% and a specificity of 71% in discriminating DLB from AD. These results may reflect underlying histopathological differences with less severe neuronal degeneration in the hippocampus of DLB. MTR measurement of the hippocampus may contribute to the clinical differentiation between DLB and AD.  相似文献   

11.
非阿尔茨海默型痴呆的病理诊断   总被引:2,自引:1,他引:2  
目的认识非阿尔茨海默型痴呆的组织学特征和组织类型以及免疫组织化学在诊断中的意义。方法对22例尸检确诊的神经变性痴呆脑组织进行了Bodian、Gallyas—Braak染色,tau和泛素免疫组织化学染色,观察脑组织中神经元和胶质细胞包涵体的形态特征,分布和蛋白质表达活性。根据非阿尔茨海默型痴呆的组织学标准,结合临床进行病理诊断。结果22例神经变性痴呆中,12例诊断为非阿尔茨海默型痴呆。其中皮克病2例,进行性核上性麻痹和皮质基底节变性各3例,皮质型路易小体痴呆1例,帕金森病合并痴呆3例。其余10例中,9例诊断为单纯阿尔茨海默病,1例为阿尔茨海默病合并嗜银颗粒痴呆。在非阿尔茨海默型痴呆的脑组织观察到特征性神经元和胶质细胞包涵体,包括经典型和皮质型路易小体,皮克小体,球形团样神经原纤维缠结,星形细胞斑和葱状星形细胞,嗜银颗粒。除路易小体外,其他包涵体结构具有嗜银性;路易小体主要表达泛素,皮克小体可表达tau和泛素,而球形团样神经原纤维缠结、星形细胞斑、葱状星形细胞、嗜银颗粒仅对tau免疫染色敏感。结论采用Gallyas-Braak染色,tau和泛素免疫组织化学染色等新方法能够敏感地显示特征性神经元和胶质细胞包涵体,观察到这些神经元和神经胶质细胞包涵体可进一步明确非阿尔茨海默型痴呆的组织类型。  相似文献   

12.
Dementia is a progressive, irreversible decline in cognition that, by definition, impacts on a patient's pre-existing level of functioning. The clinical syndrome of dementia has several aetiologies of which Alzheimer's disease (AD) is the most common. Drug development in AD is based on evolving pathophysiological theory. Disease modifying approaches include the targeting of amyloid processing, aggregation of tau, insulin signalling, neuroinflammation and neurotransmitter dysfunction, with efforts thus far yielding abandoned hopes and ongoing promise. Reflecting its dominance on the pathophysiological stage the amyloid cascade is central to many of the emerging drug therapies. The long preclinical phase of the disease requires robust biomarker means of identifying those at risk if timely intervention is to be possible.  相似文献   

13.
Neuronal loss is the best neuropathological substrate that correlates with cortical atrophy and dementia in Alzheimer's disease (AD). Defective GABAergic neuronal functions may lead to cortical network hyperactivity and aberrant neuronal oscillations and in consequence, generate a detrimental alteration in memory processes. In this study, using immunohistochemical and stereological approaches, we report that the two major and non‐overlapping groups of inhibitory interneurons (SOM‐cells and PV‐cells) displayed distinct vulnerability in the perirhinal cortex of APP/PS1 mice and AD patients. SOM‐positive neurons were notably sensitive and exhibited a dramatic decrease in the perirhinal cortex of 6‐month‐old transgenic mice (57% and 61% in areas 36 and 35, respectively) and, most importantly, in AD patients (91% in Braak V–VI cases). In addition, this interneuron degenerative process seems to occur in parallel, and closely related, with the progression of the amyloid pathology. However, the population expressing PV was unaffected in APP/PS1 mice while in AD brains suffered a pronounced and significant loss (69%). As a key component of cortico‐hippocampal networks, the perirhinal cortex plays an important role in memory processes, especially in familiarity‐based memory recognition. Therefore, disrupted functional connectivity of this cortical region, as a result of the early SOM and PV neurodegeneration, might contribute to the altered brain rhythms and cognitive failures observed in the initial clinical phase of AD patients. Finally, these findings highlight the failure of amyloidogenic AD models to fully recapitulate the selective neuronal degeneration occurring in humans.  相似文献   

14.
Results of a standardized histochemical and immunocytochemical analysis of the brains of 14 nondemented elderly humans for whom prospective neurological and neuropsychological data had been collected for 3 to 8 years before death suggested that nondemented elderly humans fall into two pathological subgroups that are not clinically distinguishable. One was associated with moderate to marked cerebral amyloid deposition ("pathological aging"), while the other had either minimal or no amyloid deposition ("normal aging"). Neocortical and hippocampal neurofibrillary degeneration was either completely absent or of very limited degree in both subgroups. Both subgroups had ubiquitin-immunoreactive dystrophic neurites in the cerebral cortex and granular degeneration of myelin in white matter. These ubiquitin-immunoreactive structures seem to be a universal and invariant manifestation of brain aging, but the same cannot be said for amyloid deposition and neurofibrillary degeneration. Pathological aging might be preclinical Alzheimer's disease, but it currently cannot be distinguished from normal aging by even sensitive neuropsychological measures. These findings provide strong support for the hypothesis that cerebral amyloid deposition is not necessarily associated with clinically apparent cognitive dysfunction and that additional factors, such as neuronal or synaptic loss or widespread cytoskeletal aberrations, are necessary for dementia in AD.  相似文献   

15.
16.
In addition to the deposition of β-amyloid plaques, neurofibrillary tangles composed of aggregated hyperphosphorylated tau are one of the pathological hallmarks of Alzheimer’s disease and other neurodegenerative disorders. Until now, our understanding about the natural history and topography of tau deposition has only been based on post-mortem and cerebrospinal fluid studies, and evidence continues to implicate tau as a central driver of downstream neurodegenerative processes and cognitive decline. Recently, it has become possible to assess the regional distribution and severity of tau burden in vivo with the development of novel radiotracers for positron emission tomography (PET) imaging. In this article, we provide a comprehensive discussion of tau pathophysiology, its quantification with novel PET radiotracers, as well as a systematic review of tau PET imaging in normal aging and various dementia conditions: mild cognitive impairment, Alzheimer’s disease, frontotemporal dementia, progressive supranuclear palsy, and Lewy body dementia. We discuss the main findings in relation to group differences, clinical-cognitive correlations of tau PET, and multi-modal relationships among tau PET and other pathological markers. Collectively, the small but growing literature of tau PET has yielded consistent anatomical patterns of tau accumulation that recapitulate post-mortem distribution of neurofibrillary tangles which correlate with cognitive functions and other markers of pathology. In general, AD is characterised by increased tracer retention in the inferior temporal lobe, extending into the frontal and parietal regions in more severe cases. It is also noted that the spatial topography of tau accumulation is markedly distinct to that of amyloid burden in aging and AD. Tau PET imaging has also revealed characteristic spatial patterns among various non-AD tauopathies, supporting its potential role for differential diagnosis. Finally, we propose novel directions for future tau research, including (a) longitudinal imaging in preclinical dementia, (b) multi-modal mapping of tau pathology onto other pathological processes such as neuroinflammation, and (c) the need for more validation studies against post-mortem samples of the same subjects.  相似文献   

17.
Pericytes are cells in the blood–brain barrier (BBB) that degenerate in Alzheimer's disease (AD), a neurodegenerative disorder characterized by early neurovascular dysfunction, elevation of amyloid β‐peptide (Aβ), tau pathology and neuronal loss, leading to progressive cognitive decline and dementia. Pericytes are uniquely positioned within the neurovascular unit between endothelial cells of brain capillaries, astrocytes and neurons. Recent studies have shown that pericytes regulate key neurovascular functions including BBB formation and maintenance, vascular stability and angioarchitecture, regulation of capillary blood flow, and clearance of toxic cellular by‐products necessary for normal functioning of the central nervous system (CNS). Here, we review the concept of the neurovascular unit and neurovascular functions of CNS pericytes. Next, we discuss vascular contributions to AD and review new roles of pericytes in the pathogenesis of AD such as vascular‐mediated Aβ‐independent neurodegeneration, regulation of Aβ clearance and contributions to tau pathology, neuronal loss and cognitive decline. We conclude that future studies should focus on molecular mechanisms and pathways underlying aberrant signal transduction between pericytes and its neighboring cells within the neurovascular unit, that is, endothelial cells, astrocytes and neurons, which could represent potential therapeutic targets to control pericyte degeneration in AD and the resulting secondary vascular and neuronal degeneration.  相似文献   

18.
Alzheimer's disease (AD) and vascular dementia (VaD) are widely accepted as the most common forms of dementia. Cerebrovascular lesions frequently coexist with AD, creating an overlap in the clinical and pathological features of VaD and AD. This review assembles evidence for a role for cholinergic mechanisms in the pathogenesis of VaD, as has been established for AD. We first consider the anatomy and vascularization of the basal forebrain cholinergic neuronal system, emphasizing its susceptibility to the effects of arterial hypertension, sustained hypoperfusion, and ischemic cerebrovascular disease. The impact of aging and consequences of disruption of the cholinergic system in cognition and in control of cerebral blood flow are further discussed. We also summarize preclinical and clinical evidence supporting cholinergic deficits and the use of cholinesterase inhibitors in patients with VaD. We postulate that vascular pathology likely plays a common role in initiating cholinergic neuronal abnormalities in VaD and AD.  相似文献   

19.
Mild cognitive impairment (MCI) represents a heterogeneous group of cognitive disturbances at high risk of dementia. The amnestic subtype (aMCI) might be a prodromal state of Alzheimer's disease (AD). The aim of this study is the identification, by proton magnetic resonance spectroscopy (1H MRS), of modifications in brain metabolites able to detect subjects with aMCI at risk of conversion towards AD. Twenty-five subjects with aMCI and 29 normal elderly were enrolled; they underwent a comprehensive clinical and instrumental assessment, a cerebral 1H MRS scan to measure N-acetyl aspartate (NAA), choline (Cho), myo-inositol (mI) and creatine (Cr) in the paratrigonal white matter, bilaterally. After 1 year, 5 MCI subjects became demented (progressive MCI, pMCI). Their baseline levels of metabolites were compared with those evaluated in stable MCI (sMCI) and in controls. We observed a significant difference of the NAA/Cr ratio between pMCI (1.48+/-0.08) and sMCI (1.65+/-0.12) and between pMCI and controls (1.63+/-0.16) in the left hemisphere, suggesting that this metabolic alteration can be detected before the clinical appearance of dementia.  相似文献   

20.
Alzheimer's disease (AD) is the most common cause of dementia in the aged population. Most cases are sporadic although a small percent are familial (FAD) linked to genetic mutations. AD is caused by severe neurodegeneration in the hippocampus and neocortical regions of the brain but the cause of this neuronal loss is unclear. A widely discussed theory posits that amyloid depositions of Aβ peptides or their soluble forms are the causative agents of AD. Extensive research in the last 20 years however, failed to produce convincing evidence that brain amyloid is the main cause of AD neurodegeneration. Moreover, a number of observations, including absence of correlations between amyloid deposits and cognition, detection in normal individuals of amyloid loads similar to AD, and animal models with behavioral abnormalities independent of amyloid, are inconsistent with this theory. Other theories propose soluble Aβ peptides or their oligomers as agents that promote AD. These peptides, however, are normal components of human CSF and serum and there is little evidence of disease-associated increases in soluble Aβ and oligomers. That mutants of amyloid precursor protein (APP) and presenilin (PS) promote FAD suggests these proteins play crucial roles in neuronal function and survival. Accordingly, PS regulates production of signaling peptides and cell survival pathways while APP functions in cell death and may promote endosomal abnormalities. Evidence that FAD mutations inhibit the biological functions of PS combined with absence of haploinsufficiency mutants, support a model of allelic interference where inactive FAD mutant alleles promote autosomal dominant neurodegeneration by also inhibiting the functions of wild type alleles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号