首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 250 毫秒
1.
目的:建立测定大鼠血浆中舒巴坦血药浓度的液相色谱-串联质谱(LC-MS/MS)法,探讨美罗培南、亚胺培南对舒巴坦在大鼠体内的药动学影响。方法:将18只SD大鼠随机分为舒巴坦组、美罗培南+舒巴坦组和亚胺培南+舒巴坦组,分别静脉注射给药,按规定时间点采血,血浆样品经乙酸乙酯萃取,LC-MS/MS法测定血药浓度;采用负离子模式,多重反应监测(multiple reaction monitoring,MRM),定量离子对为m/z 232.3→m/z 139.9(舒巴坦)和m/z 423.4→m/z 207.1(头孢呋辛,内标)。经DAS 2.0.1计算药动学参数,并进行统计学比较。结果:舒巴坦在0.250~200 μg·mL-1范围内线性关系良好,方法学符合要求。药动学试验结果表明,合用美罗培南或亚胺培南后,舒巴坦在大鼠体内的主要药动学参数tmaxCmax、AUC、MRT、t1/2zCLzVz与单用舒巴坦相比,无显著性差异。结论:和已报道的方法比较,本研究所建方法具有快速、高效,生物样品用量小的特点,适用于舒巴坦在大鼠体内药动学的研究;美罗培南、亚胺培南对舒巴坦在大鼠体内的药动学过程无明显影响,提示评价此类药物相互作用还需同时考虑药效学等方法。  相似文献   

2.
目的:考察辣椒素对文拉法辛及其活性代谢物O-去甲基文拉法辛体内药动学的影响。方法:选取10只健康SD大鼠,采用自身对照方法,考察单剂量给予盐酸文拉法辛(20.25 mg·kg-1)(对照组)以及连续7 d灌胃辣椒素后再给予盐酸文拉法辛(实验组)的药动学差异。采用已验证的液相色谱-串联质谱法(LC-MS/MS)测定血浆中文拉法辛及O-去甲基文拉法辛的浓度,经DAS 3.2.4软件计算药动学参数,SPSS软件计算两组实验的差异是否具有显著性。结果:对照组和实验组大鼠血浆中文拉法辛的AUC0-10CmaxTmaxt1/2分别为(780.81±709.76)μg·L-1·h-1和(1037.84±582.63)μg·L-1·h-1、(517.57±462.46)μg·L-1和(876.64±301.79)μg·L-1、(0.32±0.20)h和(0.25±0.09)h、(1.00±0.84)h和(0.89±0.18)h;O-去甲基文拉法辛的AUC0-10CmaxTmaxt1/2分别为(163.60±77.93)μg·L-1·h-1和(240.41±62.69)μg·L-1·h-1、(96.83±46.51)μg·L-1和(182.52±46.40)μg·L-1、(0.46±0.30)h和(0.25±0.06)h、(1.19±0.32)h和(2.65±1.58)h;其中实验组的AUC0-10Cmax均增加,差异具有显著性。结论:辣椒素增加文拉法辛的吸收,提高生物利用度,即能影响文拉法辛的体内药动学过程。  相似文献   

3.
目的:建立同时测定食蟹猴体内地高辛、安非他酮及其活性代谢物血浆浓度的方法,并评价药动学特征。方法:以乙腈沉淀蛋白处理血浆样品。色谱柱Agilent Zorbax SB-C8(4.6×100 mm 3.5 μm);流动相为甲醇-水(含5 mmol·L-1甲酸铵,pH 3.6),梯度洗脱;质谱条件为电喷雾离子源,正离子模式,扫描方式为多反应离子监测,m/z 798.4→651.3(地高辛);m/z 240.2→184.0(安非他酮);m/z 256.3→238.0(羟基安非他酮);m/z 242.2→168.1(赤式/苏式羟化安非他酮);m/z 172.2→128.2(甲硝唑,内标)。食蟹猴3只,♂,体质量2~4 kg,0.1 mg·5 mL-1·kg-1地高辛和1.5 mg·5 mL-1·kg-1盐酸安非他酮静滴给药。给药前后0.08,0.25,0.5,1,1.5,2,4,6,8,12,24,48 h采血。测定地高辛、安非他酮及其活性代谢物浓度。结果:血浆标准曲线在0.25~100 ng·mL-1(地高辛),0.2~1 000 ng·mL-1(安非他酮/羟基安非他酮),0.2~50 ng·mL-1(赤式/苏式羟化安非他酮),定量范围内线性良好(r≥0.995)。批内批间精密度均小于13.7%,绝对回收率为83.8%~104.2%,基质效应小于10.6%。地高辛、安非他酮、羟基安非他酮、赤式、苏式羟化安非他酮药动学参数Cmax分别为(29.32±7.31)、(254.00±68.23)、(22.43±7.56)、(1.53±0.27)、(3.96±0.42) ng·mL-1Tmax分别为(0.14±0.10)、(0.08±0)、(1.50±0.00)、(1.17±0.29)、(4.06±1.46) h,AUC0-48h分别为(123.87±9.59)、(550.68±17.43)、(160.47±62.92)、(9.26±3.65)、(24.43±5.28) ng·h·mL-1,半衰期分别为(21.26±3.77)、(5.54±1.76)、(3.96±1.21)、(5.58±2.40)、(4.06±1.46) h。结论:和已报道的方法比较,建立的分析方法灵敏、准确,样品处理简便、快速,适用于药动学研究以及地高辛-安非他酮药物相互作用的评价,也能为临床个体化用药实践提供方法学参考。  相似文献   

4.
目的:评价空腹和餐后两种状态下口服雷贝拉唑钠肠溶微丸型胶囊的人体生物利用度。方法:22位健康志愿受试者随机分成2组,每组11人,分别空腹或餐后口服给予雷贝拉唑钠肠溶微丸型胶囊或雷贝拉唑钠肠溶片各20 mg,7 d清洗后交叉给药。采用高效液相色谱-串联质谱(HPLC/MS/MS)法测定血浆中雷贝拉唑的血药浓度。结果:空腹口服雷贝拉唑钠肠溶微丸型胶囊与雷贝拉唑钠肠溶片的主要药动学参数如下:t1/2分别为(2.75±1.14)h和(2.57±1.03)h;Tmax(2.57±1.04)h和(3.14±1.09)h;Cmax分别为(372.55±169.10)ng·ml-1和(386.35±174.14)ng·ml-1;AUC0→t分别为(955.98±586.10)ng·h·ml-1和(918.84±445.69)ng·h·ml-1;AUC0→∞(978.14±610.44)ng·h·ml-1和(946.6±473.30)ng·h·ml-1。MRT0→t分别为(3.85±1.11)h和(4.59±1.28)h; MRT0→∞分别为(4.12±1.26)h和(4.92±1.56)h;Vd分别为(100.38±51.26)L· kg-1和(60.81±61.20)L·kg-1。空腹状态下给药的相对生物利用度F为(113.2±59.6)%。餐后口服雷贝拉唑钠肠溶微丸型胶囊与雷贝拉唑钠肠溶片的主要药动学参数如下:t1/2分别为(2.47±0.69)h和(1.94±0.65)h;Tmax(3.27±0.80)h和(4.50±1.13)h;Cmax分别为(404.00±134.38)ng·ml-1和(410.14±126.98)ng·ml-1;AUC0→t分别为(969.66±372.63)ng·h·ml-1和(998.71±443.56)ng·h·ml-1;AUC0→∞分别为(984.97±385.42)ng·h·ml-1和(1 010.56±455.27)ng·h·ml-1;MRT0→t分别为(4.30±0.97)h和(5.50±1.14)h;MRT0→∞分别为(4.50±1.16)h和(5.62±1.19)h;Vd分别为(84.40±42.11)L· kg-1和(67.72±41.67)L· kg-1。餐后给药的相对生物利用度F为(118.1±94.1)%。统计学检验结果表明空腹及餐后给药两制剂间具有生物等效性。试验药组的Tmax在空腹状态下相比参比药组略快,但无显著性差异(P>0.05),而在餐后状态下,试验药组Tmax更快,且有显著性差异(P<0.05)。空腹及餐后两种状态下试验药组Vd较参比药Vd均有显著性差异(P<0.05)。结论:空腹及餐后两种状态下口服雷贝拉唑钠肠溶微丸型胶囊其弥散程度较高、释放药物较快、吸收迅速,用餐对药物的释放及生物利用度的影响较小。  相似文献   

5.
目的:建立超高效液相色谱串联质谱(UPLC-ESI-MS/MS)法测定大鼠血浆中埃索美拉唑的含量,并应用于药动学研究。方法:血浆样品经蛋白沉淀法处理后,采用Agilent ZORBAX Eclipse Plus C18色谱柱(50 mm×2.1 mm,1.8 μm),以A(0.1%甲酸)-B(乙腈)(80:20)为流动相,柱温为35℃,采用电喷雾电离源(ESI)源,以多反应监测(MRM)方式进行正离子检测。通道分别为m/z 346→198(埃索美拉唑)和m/z 254→156(内标,磺胺甲卟唑),用非室模型计算药动学参数。结果:埃索美拉唑的线性范围为0.2~20 ng·mL-1r=0.999 7),检出限为0.12 ng·mL-1,日内日间精密度均小于10%。低、中、高3个浓度提取回收率均大于90%,达峰时间(tmax)为(1.5±0.5)h,达峰浓度(Cmax)为(620.65±2.89)ng·mL-1,药物浓度-时间曲线下面积(AUC0-t)为(2 530.68±60.17)ng·h·mL-1,半衰期(t1/2)为(3.87±0.03)h。结论:该方法操作简便、快速、准确度高、重复性好,可用于大鼠血浆中埃索美拉唑的测定和药动学研究。  相似文献   

6.
目的:建立LC-MS/MS法测定人血浆中卡泊芬净的浓度。方法:采用安捷伦ZORBAX Eclipse Plus C18色谱柱(2.1 mm×100 mm, 3.5 μm),柱温25℃,流动相为含0.1%甲酸的水和含0.1%甲酸的乙腈溶液,梯度洗脱,流速为0.3 mL·min-1,分析时长8 min。采用电喷雾离子化,正离子模式多反应监测扫描分析,用于定量分析的离子对分别为:m/z 547.600→137.200(卡泊芬净),m/z 749.800→591.400(内标阿奇霉素)。结果:卡泊芬净在0.06~14.27 μg·mL-1范围内线性关系良好,定量下限为0.06 μg·mL-1,准确度在±15%之间,日内及日间精密度RSD均小于10%,提取回收率为96.6%~102.0%。样本在室温放置4 h、4℃放置24 h、反复冻融3次、冰冻放置5 d和处理后自动进样器(4℃)放置8 h等条件下均稳定,RSD ≤ 7.1%。结论:本方法简便、快捷、灵敏、准确,适合临床上对卡泊芬净血药浓度的监测以及后续的药动学研究。  相似文献   

7.
目的:建立一种灵敏快速的LC-MS/MS方法,能够同时测定大鼠血浆中的柔红霉素(DNR)和汉防己甲素(Tet)含量。方法:色谱柱使用的是BDS HYPERSIL-C8柱(2.1 mm×100 mm,3 μm);采用乙腈-5 mmoL·L-1醋酸铵(46:54 V/V)作为流动相, 其中含千分之四的甲酸;流速设为0.2 ml·min-1。采用醋酸乙酯对血浆样品进行液液萃取,选择阿霉素(DOX)为内标,进行HPLC-MS/MS分析,正离子扫描, MRM模式检测。DNR、Tet和IS的定量检测离子对分别为m/z 528.4→321.3,m/z 623.1→381.8,m/z 544.4→397.6。结果:大鼠血浆中检测DNR及Tet的线性范围分别为2~500 ng·ml-1,0.5~400 ng·ml-1,DNR与Tet高、中、低浓度提取回收率均>86%,日内精密度RSD<7.3%,日间精密度RSD<4.9%,准确度RE在-0.4%~4.5%范围内。结论:本方法可灵敏、快速地测定大鼠血浆中DNR及Tet 浓度。  相似文献   

8.
目的:研究双氯芬酸钠双释放肠溶胶囊在健康人体的药动学参数,评价其生物等效性。方法:采用随机交叉试验设计,40名健康男性受试者单剂量和多剂量口服双氯芬酸钠双释放肠溶胶囊受试与参比制剂,用高效液相色谱-串联质谱法(LC-MS/MS)测定血浆中双氯芬酸的血药浓度。结果:单剂量口服受试和参比制剂的主要药动学参数如下:Cmax分别为(708.9±306.8)、(704.7±383.3) ng·ml-1,t1/2分别为 (5.86±1.81),(6.20±1.73)h,tmax分别为(1.81±1.58),(1.81±1.58) h,AUC0-24分别为(2 500.0±577.3),(2 355.4±607.4) ng·h·ml-1;多剂量口服受试和参比制剂的主要药动学参数如下:Cssmax分别为 (594.4±228.4),(622.9±326.7) ng·ml-1,Cssmin分别为(30.1±14.9),(35.7±19.4) ng·ml-1,Cav分别为 (96.3±18.2),(92.8±19.9) ng·ml-1,t1/2分别为(6.32±1.40),(6.62±1.50) h,tmax分别为(1.67±1.24),(1.66±1.54)h,AUCss分别为(2 310.3±436.3)、(2 227.5±476.4) ng·h·ml-1,DF值分别为(623.7±325.4)%、(666.2±377.0)%。受试对参比制剂的单剂量和多剂量相对生物利用度F分别为为(108.4±21.3)%和(105.2±15.1)%。结论:LC-MS/MS法测定人血浆中双氯芬酸钠浓度快速、灵敏、专属性高,受试与参比制剂生物等效。  相似文献   

9.
目的:建立快速灵敏高效液相色谱-串联质谱(HPLC-MS/MS)法测定健康女性使用塞克硝唑栓后体内塞克硝唑栓的浓度,并研究其在体内的药代动力学特征。方法:色谱柱Welch Ultimate C18(2.1 mm×50 mm,5 μm);流动相:乙腈-0.1%乙酸+5 mmol·L-1乙酸铵水溶液(12:88,V/V);流速:0.5 mL·min-1,进样量5 μL。采用ESI+源,多重反应监测(MRM)模式,对离子反应m/z 186.3→128.3(塞克硝唑)和m/z 192.4→128.3(Secnidazole-d6)进行监测。20名健康女性受试者,单次与多次给药试验各10名,分别给予塞克硝唑栓。根据检测的血浆中塞克硝唑浓度,用DAS 3.2.7进行数据处理以及SPSS 19.0对结果进行统计分析。结果:塞克硝唑在0.05~8.0 mg·L-1范围内线性良好(r>0.99),定量下限0.05 mg·L-1,批间、批内RSD皆小于15%。健康女性血浆中塞克硝唑栓单剂量Cmax (3.00±0.96)mg·L-1,tmax(8.90±2.68)h,t1/2(18.07±2.96)h,AUC0-96(97.78±35.81)mg·L-1·h-1,AUC0-∞(101.11±36.96)mg·L-1·h-1;多剂量Cmax,ss(6.01±2.01)mg·L-1,tmax(7.20±2.86)h,t1/2(21.87±7.60)h,AUCss(107.15±33.62)mg·L-1·h-1,AUC0-96 (202.11±82.07)mg·L-1·h-1,AUC0-∞(217.47±103.50)mg·L-1·h-1。结论:该方法灵敏、准确、可靠,专属性强,适用于塞克硝唑栓在人体内的药代动力学研究。  相似文献   

10.
目的:建立一种同时测定人血浆中伊马替尼及其活性代谢产物N-去甲基伊马替尼的高效液相色谱串联质谱(HPLC-MS/MS)法,并应用于检测胃肠间质瘤患者伊马替尼及代谢物的浓度。方法:血浆样品经甲醇沉淀蛋白后,以含0.1%甲酸的水溶液和甲醇溶液为流动相;采用梯度洗脱,Waters ACQUITY UPLC BEH C18(2.1 mm×50 mm,1.7 μm)色谱柱进行分离,流速为0.3 mL·min-1;柱温为35℃。ESI离子源,正离子模式,多反应监测,用于定量分析的离子对为m/z494.2→m/z394.3(伊马替尼)、m/z480.3→m/z394.3(N-去甲基伊马替尼)、m/z502.5→m/z394.4(内标,伊马替尼-D8)。结果:伊马替尼和N-去甲伊马替尼的线性范围均为50~10 000 ng·mL-1,定量下限为50 ng·mL-1,伊马替尼及代谢物的准确度分别为97.9%~109.0%,95.5%~103.5%,日内和日间变异系数<10%。结论:本方法简便、准确、灵敏、专属性强,适用于人血浆中伊马替尼及其代谢物浓度的检测。  相似文献   

11.
目的:建立快速、灵敏的测定人血浆中头孢克洛的含量分析方法并进行健康人体内的药动学研究。方法:选择头孢拉定为内标,血浆样品经5%三氯乙酸沉淀蛋白处理后,以乙腈-1‰甲酸水溶液为流动相,采用超高效液相色谱-串联质谱(UPLC-MS/MS),电喷雾离子源,正离子多反应监测(MRM)模式进行定量分析。结果:头孢克洛质量浓度在0.2~25.6μg·mL-1范围内线性关系良好,定量下限为0.2μg·mL-1,日内、日间精密度分别小于6.28%和7.44%,基质效应影响较小,相对回收率为93.76%~104.29%。口服头孢克洛胶囊后达峰浓度(Cmax)和达峰时间(tmax)分别为(18.05±3.46)μg·mL-1和(0.89±0.15)h。结论:所建方法专属、灵敏、快速、准确,适用于头孢克洛药代动力学的研究。  相似文献   

12.
目的:评价利培酮分散片与参比制剂维思通片的生物等效性。方法:采用开放、随机、双交叉试验,选择22名健康男性分别服用2 mg的受试制剂和参比制剂液质联用(LC-MS/MS)法检测受试者血浆中利培酮和9-羟基利培酮的浓度。结果:21名健康受试者口服受试制剂和参比制剂后,利培酮的主要药动学参数:AUC0-τ为(79.94±57.64)h·ng·ml-1和(79.13±58.15)h·ng·ml-1,AUC0-τ 为(82.74±60.63 )h·ng·ml-1和(81.69±60.65)h·ng·ml-1,Cmax为(14.74±7.64) ng·ml-1和(15.51±7.39)ng·ml-1,tmax为(1.2±0.8)h和(1.1±0.4)h,t1/2为(3.73±1.51)h和(3.68±1.33) h;相对生物利用度为(106.8±26.0)%。9-羟基利培酮的主要药动学参数:AUC0-τ为(327.29±87.98)h·ng·ml-1和(307.41±77.35)h·ng·ml-1,AUC0-τ为(348.02±96.58)h·ng·ml-1和(321.88±82.74)h·ng·mL-1,Cmax为(12.80±3.55)ng·ml-1和(11.89±3.54)ng·ml-1,tmax为(5.1±3.7)h和(4.6±3.1)h,t1/2为(23.58±6.04)h和(20.92±4.51)h;相对生物利用度为(107.6±18.1)%。结论:利培酮分散片与利培酮普通片生物等效。  相似文献   

13.
目的:比较Beagle犬口服芍苓消银片或其缓释片后血清芍药苷、落新妇苷的药动学差异,评价缓释制剂效果。方法:采用单剂量、两周期交叉试验,给定时间采血,HPLC法测定血清中芍药苷、落新妇苷药物浓度,DAS 2.0软件处理数据。结果:口服普通片或缓释片,芍药苷AUC(0-t分别为(1 029.35±26.97)μg·h·L-1和(2 305.85±28.85)μg·h·L-1;MRT(0-t分别为(2.43±0.02)h和(5.99±0.04)h;t1/2分别为(0.98±0.01)h和(6.85±1.38)h;落新妇苷:AUC(0-t分别为(2 938.92±19.03)μg·h·L-1和(4 195.67±30.65)μg·h·L-1;MRT(0-t分别为(2.31±0.05)h和(6.04±0.24)h;t1/2分别为(0.73±0.14)h和(9.08±3.06)h。结论:芍苓消银缓释片可显著提高芍药苷、落新妇苷的生物利用度,有效降低血药波动,提高患者顺应性。  相似文献   

14.
目的:建立超高效液相色谱-串联质谱(UPLC-MS/MS)快速并同时测定大鼠血浆中抗丙肝药索非布韦及其代谢物GS-331007的含量,探讨索非布韦代谢产物作为标记物测定药时曲线的可能性,研究不同厂家抗丙肝药索非布韦在大鼠体内的生物等效性。方法:通过液质联用检测原研药A和仿制药B以36 mg·kg-1灌胃大鼠各时间点索非布韦和GS-331007的血药浓度。用DAS 2.1.1和SPSS 17.0软件计算药动学参数并比较原研药A和仿制药B的一致性。结果:原研药A和仿制药B中索非布韦药动学参数Cmax分别为(1 376.08±174.95)ng·mL-1和(1 297.58±164.93)ng·mL-1,tmax分别为(0.75±0.08)h和(0.72±0.16)h,t1/2分别为(1.57±0.20)h和(1.73±0.45)h,AUC(0→t)分别为(2 691.67±280.85)ng·mL-1·h和(2 851.20±199.54)ng·mL-1·h,AUC(0→∞)分别为(2 748.51±258.91)ng·mL-1·h和(3 007.75±364.02)ng·mL-1·h,原研药A和仿制药B代谢物GS-331007 Cmax分别为(1 302.52±163.73)ng·mL-1和(1 430.88±107.52)ng·mL-1,tmax分别为(3.97±0.74)h和(3.95±1.38)h,t1/2分别为(5.56±2.55)h和(5.44±1.38)h,AUC(0→t)分别为(9 723.24±1170.38)ng·mL-1·h和(9 032.31±1 037.76)ng·mL-1·h,AUC(0→∞)分别为(9 893.26±1 251.89)和(9 316.90±1 293.44)ng·mL-1·h。结论:本实验建立的UPLC-MS/MS方法可在3.5 min内准确测定大鼠血浆中索非布韦及其代谢物GS-331007含量。根据索非布韦和其代谢物GS-331007药时曲线得出原研药A和仿制药B的药动学参数一致性较好(P>0.05)。本工作发现用代谢物GS-331007作为索非布韦生物等效性研究的可能性。  相似文献   

15.
目的:研究阿苯达唑纳米脂质体冻干粉在大鼠体内的药动学过程及肝脏靶向性。方法:大鼠以灌胃给予阿苯达唑片、阿苯达唑脂质体及阿苯达唑纳米脂质体冻干粉,分别于给药后不同时间点取血及肝脏,样品预处理后利用高效液相色谱(HPLC)法测定血浆及肝组织中药物浓度,考察3种制剂的药动学参数及肝靶向性差异。结果:阿苯达唑纳米脂质体冻干粉主要药动学参数如下:Cmax为(7.05±0.70)μg·mL-1,tmax为(6.15±0.66) h,AUC0-∞为(150.9±12.1)μg·mL-1·h,以阿苯达唑片、阿苯达唑脂质体为参比制剂,阿苯达唑纳米脂质体冻干粉相对生物利用度分别为236.04%和178.45%;肝靶向试验结果显示:阿苯达唑纳米脂质体冻干粉在肝组织中的分布显著高于阿苯达唑片和阿苯达唑脂质体。结论:将阿苯达唑脂质体制成纳米级脂质体冻干粉后,可显著提高药物的相对生物利用度和肝靶向性。  相似文献   

16.
目的:研究健康受试者空腹及高脂高热量饮食情况下口服硫酸氢氯吡格雷片的药动学特征。方法:60名男性健康志愿者单剂量、自身交叉口服硫酸氢氯吡格雷片75 mg。采用液相色谱-质谱联用(HPLC-MS/MS)法测定人血浆中氯吡格雷的浓度。用DAS3.2.3药动学软件计算药动学参数,并用SPSS17.0软件对主要参数进行统计分析。结果:空腹与进食后的主要药动学参数如下:Cmax分别为(1 440±2 397)ng·L-1和(4 155±2 117)ng·L-1,AUC0-36分别为(2 268±3 887)ng·L-1·h和(8 691±3 628)ng·L-1·h,AUC0-∞分别为(2 324±3 899)ng·L-1·h和(8 816±3 668)ng·L-1·h,t1/2分别为(5.7±4.7)h和(8.8±3.8)h,tmax分别为(0.7±0.5)h和(1.7±0.7)h, Vd分别为(520 115±471 187)L和(118 826±59 077)L,CL分别为(82 365±70 072)L·h-1和(9 949±4 017)L·h-1,MRT0-36分别为(3.0±1.8)h和(3.6±0.9)h。结论:高脂高热量饮食对硫酸氢氯吡格雷片的药动学特征有显著影响,氯吡格雷的达峰时间延长,生物利用度提高,半衰期延长。  相似文献   

17.
目的:制备盐酸川芎嗪眼用温敏凝胶并探讨其在家兔眼房水内的药动学特征。方法:以泊洛沙姆为温敏材料,制备盐酸川芎嗪眼用温敏原位凝胶。分别于兔眼中滴入眼用凝胶50 μl,采用高效液相色谱法测定给药后不同时间兔眼房水中的盐酸川芎嗪的浓度,绘制药-时曲线,利用DAS 2.0药动学软件计算相关药动学参数。结果:盐酸川芎嗪眼用温敏原位凝胶在兔眼内的吸收和消除过程呈线性二室模型动力学特征,其动力学方程为C=5.47×e-0.599t+4.98×e-0.173t-9.91×e-1.670t,tmax为1.4 h,Cmax为4.732 mg·L-1,吸收相半衰期t1/2a为0.420 h,分布相半衰期t1/2α为1.157 h,消除相半衰期t1/2β为4.006 h,药时曲线下的面积AUC为31.984 mg·h·L-1。结论:此方法可用于测定房水中盐酸川芎嗪的浓度,为盐酸川芎嗪眼用温敏凝胶的药动学研究提供评价方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号