首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution and origin of peptide-containing intrinsic nerve fibers within the larynx were examined by immunohistochemistry and denervation experiments in the dog. In the normal larynx, a dense network of vasoactive intestinal polypeptide (VIP)-immunoreactive (IR) fibers was seen around the acini of submucosal glands. VIP-, substance P (SP)-, or calcitonin gene-related peptide (CGRP)-IR fibers were seen in the walls of submucosal arteries, and VIP-, neuropeptide Y (NPY)-, or enkephalin (ENK)-IR fibers were seen around the arteries in the muscle tissue. Most of these peptide-IR fibers remained after bilateral denervation of the superior and inferior laryngeal nerves. Several small intrinsic ganglia were found along the peripheral branches of the laryngeal nerves. About 97% of the ganglionic neurons were VIP-IR; of these, 44% were immunoreactive to VIP alone, 22% to VIP and NPY, 13% to VIP and SP, 7% to VIP and ENK, and 14% to VIP, NPY and SP. These results reveal that the exocrine glands and blood vessels are innervated by the intrinsic ganglionic neurons and that subpopulations of ganglionic neurons with different chemical codes innervate specific target organs in the canine larynx.  相似文献   

2.
Summary Somatostatin-like immunoreactive neurons are present in both the myenteric and the submucous plexuses of the small intestine of the guinea pig. Dense varicosities of immunopositive nerve fibres surround the ganglionic cells, some of which also display somatostatin-like immunoreactivity. Immunoelectron microscopy demonstrated axo-somatic synapse formation between the somatostatin immunoreactive neuronal elements. Nerve lesion experiments using argon laser irradiation showed that most of the somatostatin-like immunoreactive fibres of the myenteric plexus were directed anally, whereas those of the submucous plexus had no directional polarity.  相似文献   

3.
The ontogeny and distribution of nerve cell bodies and fibres which contain vasoactive intestinal polypeptide-, substance P-, enkephalin- and neurotensin-like immunoreactivity have been studied in the chicken gastrointestinal tract, using immunocytochemistry. All four peptides were found in nerve fibres, with characteristic distribution patterns, which, in the cases of vasoactive intestinal polypeptide, substance P and methionine enkephalin were similar to those described for the mammalian gut. In addition, many of these fibres were shown to arise from intrinsic neurons, since immunoreactive nerve cell bodies for each of the peptides studied were observed. Neurotensin-immunoreactive nerves were confined to the upper part of the tract and neurotensin immunoreactive cell bodies were only observed in embryonic and newly hatched chicken gut. All four peptides were first observed at 11 days of incubation, or Hamburger-Hamilton stage 37,20 in the upper part of the tract, particularly in the gizzard. Substance P and methionine enkephalin were subsequently seen in more caudal regions, while vasoactive intestinal polypeptide developed from each end of the tract. Adult patterns of immunoreactivity in nerve fibres were achieved during the first week after hatching. A striking observation was that immunoreactive neuronal cell bodies were much more abundant in the gut of young chickens and chicken embryos than in that of adult birds.  相似文献   

4.
Summary After neonatal treatment of rats with capsaicin, the spinal cord, the spinal trigeminal nucleus and spinal and trigeminal ganglia were analysed with immunohistochemistry using antisera to several peptides and 5-hydroxytryptamine. A marked decrease was observed in substance P-, cholecystokinin-, somatostatin- and VIP-like immunoreactivity present in the central branches of primary sensory neurons in the spinal cord and in substance P- and somatostatin-like immunoreactivity in sensory ganglion cells. No definite depleting effect of capsaicin could be established on 5-hydroxytryptamine and peptides, such as enkephalin and neurotensin, present in centrally originating fibres in the dorsal horn of the spinal cord. The results demonstrate that the effects of capsaicin are not confined to substance P immunoreactive primary sensory neurons. The possibility is discussed that capsaicin effects specifically functioning rather than chemically specific primary sensory neurons.  相似文献   

5.
Summary Substance P (SP)-, vasoactive intestinal polypeptide (VIP)-, and cholecystokinin (CCK)-like immunoreactive (LI) neurons were found in the superior colliculus (SC) of the rat, and examined to ascertain whether they sent projection fibers to the dorsal lateral geniculate nucleus (LGNd). Immunocytochemical staining with antisera against SP, VIP, and CCK showed that many immunoreactive neuronal cell bodies were located in the superficial layers of the SC, especially in the stratum griseum superficiale. The pattern of distribution of these immunoreactive neuronal cell bodies in the SC was similar to that of neuronal cell bodies which were retrogradely labeled with WGA-HRP (wheat germ agglutinin-horseradish peroxidase conjugate) injected ipsilaterally into the LGNd. On the other hand, SP-, VIP- and CCK-LI axons were seen most densely in the lateral part of the LGNd, especially in the small-celled LGNd zone adjacent to the optic tract, where anterograde labeling was also observed after injection of WGA-HRP ipsilaterally into the superficial layers of the SC. When a lesion was produced by kainic acid injection into the superficial layers of the SC, axons showing SP-, VIP-, or CCK-LI in the LGNd ipsilateral to the lesion were markedly depleted. The results indicate that SC-LGNd projection neurons contain SP, VIP, and/or CCK in the rat.  相似文献   

6.
In an earlier study we have shown that local application of capsaicin directly to one sciatic nerve induces a decrease of substance P and cholecystokinin octapeptide (CCK8)-like peptide from the dorsal spinal cord using immunocytochemical analysis.1 Here the effect of locally applied capsaicin on seven peptides known to be present in the L4 segment was assessed by radioimmunoassay and immunocytochemistry. The peptides investigated were substance P, somatostatin and CCK8-like peptide (which are present in small diameter primary afferent fibres), neurotensin, enkephalin (which are intrinsic to the spinal cord), neurophysin (of supraspinal origin) and bombesin (whose origin is unknown). Fourteen days after a single application of 49 mM solution of capsaicin a significant depletion of substance P and somatostatin was detected. These results were confirmed by parallel immunocytochemical analysis which localised the dramatic decreases of substance P and somatostatin to lamina 1 and lamina 2. In addition a depletion of CCK8-like immunoreactivity was observed by immunocytochemistry in this area, but quantitative radioimmunoassay of CCK8-like peptide did not detect this depletion. The capsaicin-induced changes were dose-dependent and reversible. Small decreases were noted with concentrations of capsaicin as low as 0.1 mM. The changes were apparent from day 9 onwards, maximal depletion seen by day 14. By 200 days post-operatively, a recovery to normal peptide levels in the ipsilateral dorsal horn was observed. In addition, a significant depletion of cutaneous substance P was noted in the area of the skin innervated by the capsaicin-treated nerve. These changes were accompanied by a significant increase in noxious thermal response (hind paw immersion test, T = 49°C, ipsilateral leg 9.11 ± 1.3 seconds, contralateral leg: 5.1 ± 1.3 seconds, P = < 0.005). The peptides neurotensin, enkephalin, neurophysin and bombesin were not affected by capsaicin treatment.These findings suggest that local application of capsaicin induces an indiscriminate depletion of peptide-containing primary sensory afferent fibres which is dose-dependent, long-lasting, but reversible.  相似文献   

7.
Immunofluorescence methods have been used to determine the detailed distribution of vasoactive intestinal polypeptide (VIP), substance-P and enkephalin nerve fibres in fixed cryostat sections from guinea-pig duodenum, jejunum, ileum, caecum at the site of the taenia coli, and proximal and distal colon. A novel method is used involving immunostaining of tissue culture preparations of both myenteric and submucous plexuses. These preparations allow each plexus to be studied in isolation from all axonal input for the first time, since they provide unequivocal extrinsic denervation together with severance of any intrinsic connections between the plexuses. In tissue sections the most prominent sites of VIP and substance-P immunoreactive fibres are the ganglia of the myenteric and submucous plexuses, the circular muscle layer and the longitudinal muscle of the taenia coli. In addition, VIP is prominent in the lamina propria of the submucosa except in the caecum. Enkephalin-immunopositive fibres are restricted to the ganglia of the myenteric plexus, the circular muscle layer and the longitudinal layer of the taenia coli. The culture preparations reveal that intrinsic ‘VIP neurons’ are common in the submucous plexus of the caecum and colon. They are also present, but in much lower numbers, in the myenteric plexus of the small intestine and colon but are not found in the myenteric plexus of the caecum. Intrinsic ‘substance-P neurons’ are present in the myenteric plexus from the small intestine, caecum and colon as well as in the submucous plexus of the colon; intrinsic ‘substance-P neurons’ are not found in the submucous plexus of the caecum. ‘Enkephalin neurons’ are numerous in the myenteric plexus of the small intestine, caecum and colon but are absent from the submucous plexus. Immunoreactivity is compared in the normal and denervated caecum by both the histochemical method and by radioimmunoassay of tissue extracts. In conjunction with the studies on tissue cultures, the results provide evidence for intrinsic reciprocal connections between the myenteric and submucous plexus of the caecum by neurons containing VIP and substance-P.An extensive comparison of these results with data from functional studies shows that the distribution of VIP, substance-P and enkephalin fibres in the gut is broadly in agreement with present knowledge of the action of these peptides on gut tissue, if it is assumed that they function as neurotransmitters or neuromodulators. In some instances, however, peptide-containing fibres and pathways are found which do not correlate with present knowledge obtained from functional studies. These observations provide new clues to the role of peptide neurons in gut function.  相似文献   

8.
The arrangement of the enteric nerve plexuses in the colon of the guinea-pig and the distributions and projections of chemically specified neurons in this organ have been studied. Immunoreactivity for neuron specific enolase was used to examine the total population of neurons and individual subpopulations were studied using antibodies raised against calbindin, calcitonin gene-related peptide (CGRP), leu-enkephalin, gastrin releasing peptide (GRP), galanin, gamma aminobutyric acid, neurokinin A, neuropeptide Y (NPY), somatostatin, substance P, tyrosine hydroxylase and vasoactive intestinal peptide (VIP). Neuronal pathways within the colon were lesioned using myotomy and myectomy operations and extrinsic pathways running between the inferior mesenteric ganglia and the colon were also severed. Each of the antibodies revealed nerve cells and nerve fibres or only nerve fibres within the wall of the colon. VIP, galanin and GRP were in anally projecting pathways in the myenteric plexus, as they are in other species. In contrast, there are differences in the projection directions of enkephalin, substance P, NPY and somatostatin nerve fibres between regions and species. Surprisingly, somatostatin and NPY fibres have opposite projections in the small intestine and colon of the guinea-pig. The majority of nerve fibres that innervate the circular muscle, including fibres with immunoreactivity for VIP, enkephalin, substance P, NPY, galanin and GRP come from the myenteric ganglia. The mucosa is innervated by fibres from both the myenteric and submucous ganglia. The present results suggest that the guinea-pig distal colon is a suitable place in which to determine relations between structure, neurochemistry and functions of enteric neural circuits.  相似文献   

9.
Coexistence of corticotropin releasing factor and neurotensin and also of substance P and somatostatin was demonstrated in the lateral bed nucleus of the stria terminalis and the central amygdaloid nucleus of the rat, by means of a light microscopic mirror method or immunofluorescent double staining. Using the former technique, a major proportion of corticotropin releasing factor-like immunoreactive cells were found to display neurotensin-like immunoreactivity in the dorsal subdivision of the lateral bed nucleus of the stria terminalis and the lateral subdivision of the central amygdaloid nucleus. On the other hand, the immunofluorescent method showed that a significant number of neurons with both substance P- and somatostatin-like immunoreactivity were located in the ventral subdivision of the lateral bed nucleus of the stria terminalis and the medial subdivision of the central amygdaloid nucleus. Distribution patterns of such co-localized peptides may indicate that there are morphological and biochemical similarities between the dorsal subdivision of the lateral bed nucleus of the stria terminalis and the lateral subdivision of the central amygdaloid nucleus, as well as between the ventral subdivision of the lateral bed nucleus of the stria terminalis and the medial subdivision of the central amygdaloid nucleus. Previous studies have demonstrated that peptide-containing neurons in the lateral bed nucleus of the stria terminalis and central amygdaloid nucleus, such as corticotropin releasing factor-, neurotensin-, substance P- and somatostatin-like immunoreactive cells, project to the lower brainstem. The results of the present study suggest that corticotropin releasing factor/neurotensin and substance P/somatostatin neurons may be part of the lateral bed nucleus of the stria terminalis/central amygdaloid nucleus-lower brainstem pathways.  相似文献   

10.
Preliminary observations have indicated the existence of characteristic spectra of gastroenteropancreatic (GEP) neurohormonal peptides in endocrine tumors arising in foregut, midgut, and hindgut derivatives. In order to further explore this feature of GEP endocrine neoplasms, islet cell tumors from 14 patients were studied, as were endocrine tumors of the stomach, duodenum, and upper jejunum from 6, 5, and 2 patients, respectively. All tumors were examined immunohistochemically with antisera raised against islet hormones [insulin, somatostatin, glucagon, pancreatic polypeptide (PP)], peptides of the gastrin family [gastrin, cholecystokinin (CCK)], peptides of the secretin family [secretin, vasoactive intestinal peptide (VIP)], and substance P, neurotensin, leu-enkephalin, beta-endorphin, motilin, calcitonin, and ACTH. In addition, an ultrastructural investigation was made. Whenever possible, the immunohistochemical observations were correlated with the clinical manifestations and with the results of radioimmunochemical determination of GEP neurohormones in the blood. The pattern of immunoreactive neurohormonal peptides and the clinical picture were those to be expected in endocrine tumors arising in foregut derivatives. Some principles are proposed for the classification of GEP endocrine tumors on the basis of their histopathologic growth pattern, their spectrum of neurohormonal peptides, and their clinical manifestations.  相似文献   

11.
C J Helke  K M Hill 《Neuroscience》1988,26(2):539-551
The presence and distribution of multiple neuropeptides in vagal and glossopharyngeal afferent ganglia of the rat were studied using immunohistochemistry. Substance P-, calcitonin-gene related peptide-, cholecystokinin-, neurokinin A-, vasoactive intestinal polypeptide-, and somatostatin-immunoreactive neurons were detected in each visceral afferent ganglion. Neurotensin-immunoreactive cells were not observed. In the nodose ganglion (inferior ganglion of the vagus nerve) occasional immunoreactive cells were scattered throughout the main (caudal) portion of the ganglion with small clusters of cells seen in the rostral portion. The pattern of distribution of the various peptides in the nodose ganglion was similar, with the exception of vasoactive intestinal polypeptide-immunoreactive neurons which exhibited a more caudal distribution. The relative numbers of immunoreactive cells varied, with the greatest numbers being immunoreactive for substance P or vasoactive intestinal polypeptide, and the lowest numbers being immunoreactive for neurokinin A and somatostatin. A build-up of immunoreactivity for each of the peptides, except somatostatin and neurotensin, was detected in vagal nerve fibers of colchicine-injected ganglia. Numerous peptide-immunoreactive cells were also found in the petrosal (inferior ganglion of the glossopharyngeal nerve) and jugular (superior ganglion of the vagus nerve) ganglia. No specific intraganglionic distribution was noted although the relative numbers of cells which were immunoreactive for the different peptides varied considerably. Substance P and calcitonin-gene related peptide were found in large numbers of cells, cholecystokinin was seen in moderate numbers of cells, and neurokinin A, vasoactive intestinal polypeptide and somatostatin were seen in fewer cells. These data provide evidence for the presence and non-uniform distribution of multiple peptide neurotransmitters in vagal and glossopharyngeal afferent neurons. In general, relatively greater numbers of immunoreactive cells were located in the rostral compared with caudal nodose ganglion, and in the petrosal and jugular ganglia compared with the nodose ganglion. Thus, multiple neuropeptides may be involved as afferent neurotransmitters in the reflexes mediated by vagal and glossopharyngeal sensory nerves.  相似文献   

12.
Summary The distribution of calcitonin gene-related peptide (CGRP), enkephalin, galanin, neuropeptide Y (NPY), somatostatin, tachykinins and vasoactive intestinal polypeptide (VIP) was compared in cervical, thoracic, lumbar and sacral segmental levels of spinal cord and dorsal root ganglia of horse and pig.In both species, immunoreactivity for the peptides under study was observed at all segmental levels of the spinal cord. Peptide-immunoreactive fibres were generally concentrated in laminae I–III, the region around the central canal, and in the autonomic nuclei. A general increase in the number of immunoreactive nerve fibres was noted in the lumbosacral segments of the spinal cord, which was particularly exaggerated in the case of VIP immunoreactivity. In the horse, some CGRP-, somatostatin- or tachykinin-immunoreactive cell bodies were present in the dorsal horn. In the pig, cells immunoreactive for somatostatin, enkephalin or NPY were noted in a similar location.In the ventral horn most motoneurones were CGRP-immunoreactive in both species. However, in pig many other cell types were CGRP-immunoreactive not only in the ventral horn, but also in laminae V–VI of the dorsal horn.With the exception of enkephalin and NPY immunoreactivity, which was not seen in pig dorsal root ganglia, all peptides studied were localised to neuronal cell bodies and/or fibres in the dorsal root ganglia. In both species, immunolabelled cell bodies were observed in ganglia from cervical, thoracic, lumbar and sacral levels, with the exception of VIP-immunoreactive cells that were detected only in the lumbosacral ganglia. Numerous CGRP- and tachykinin-immunoreactive cell bodies were visualised in both species, while the cells immunolabelled with other peptide antisera were much lower in number.In both species, immunostaining of serial sections revealed that a subset of CGRP-immunoreactive cells co-expressed tachykinin, galanin or somatostatin immunoreactivity. In the horse some enkephalin-immunoreactive cells were also CGRP positive and occasionally combinations of three peptides, e.g. CGRP, tachykinin and galanin or CGRP, tachykinin and enkephalin were identified.The results obtained suggest that the overall pattern of distribution of peptide immunoreactivities is in general agreement with that so far described in other mammals, although some species variations have been observed, particularly regarding the presence of immunoreactive cell bodies in the dorsal horn of the spinal cord.  相似文献   

13.
Somatostatin 28- and neuropeptide Y-containing innervations were mapped in the human medial forebrain (eight control brains) with immunohistochemistry, using the sensitive avidin-biotin-peroxidase method. Peptidergic perikarya and fibers had an extensive distribution: they were densest in the ventral striatum (nucleus accumbens, olfactory tubercle and bed nucleus of the stria terminalis) and infralimbic cortex, of intermediate density in the medial septal area and of lowest density in the dorsal and caudal lateral septal nucleus. Somatostatin-like immunoreactive perikarya and fibers were generally more numerous than the neuropeptide Y-like immunoreactive ones, but more faintly labeled. Their pattern of distribution was strikingly similar in some of the limbic structures studied but clearly distinct in others. Excellent overlap of neuropeptide Y and somatostatin-like immunoreactivity was detected in: (1) the medial septal area, where innervation occasionally formed perivascular clusters; (2) the nucleus accumbens and olfactory tubercle, characterized by dense patchy innervation; and (3) the laterodorsal septal nucleus, scarcely innervated. In the latter structures, most peptidergic neurons were double-labeled. On the other hand, both peptidergic innervations clearly differed in the lateroventral septal nucleus and the bed nucleus of the stria terminalis which contained distinct clusters of somatostatin-like immunoreactive neurons devoid of neuropeptide Y-like immunoreactivity. Also, the perineuronal and peridendritic axonal plexuses ('woolly fibers') present in these structures were only labeled with somatostatin. In the infralimbic cortex, the relation between the peptides varied according to the cortical laminae. Coexistence of somatostatin and neuropeptide Y frequently occurred in layer VI and in the subcortical white matter, whereas layer V and particularly layers II and III contained a contingent of neurons labeled only with somatostatin. Dense horizontal terminal networks in layers I and VI however were similar for both peptides. These findings support the existence of two different types of somatostatin-like immunoreactive perikarya as regards colocalization with neuropeptide Y. Their particular topographical segregation within the cortical and subcortical structures analysed suggest that they could have different connections and functional properties.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Neurotensin-like and somatostatin-like immunoreactivity was demonstrated in the pigeon retina, using both immunohistochemical and radioimmunoassay techniques.Immunohistochemical studies utilized both the indirect immunofluorescence and immunoperoxidase procedures with two well-characterized antisera to neurotensin and three well-characterized antisera to somatostatin. Specific immunoreactivity of each antiserum was established by absorption with either 10 μM synthetic neurotensin, somatostatin or leu5-enkephalin. Specific immunohistochemical staining for neurotensin and for somatostatin was observed within separate populations of multistratified amacrine cells. Neurotensin-like and somatostatin-like immunoreactivity were observed within somata located in the inner nuclear layer and within varicose processes ramifying in laminae 1, 3 and 4 of the inner plexiform layer. Immunoreactive somata and processes were observed throughout the retina and their density appeared to be greatest within central retinal regions. The somata-containing neurotensin-like and somatostatin-like immunoreactivity measured about 7 μm in diameter. The cell to cell spacing of neurotensin-like immunoreactive somata was approximately 30 μm and the cell to cell spacing of somatostatin-like immunoreactive somata was approximately 27 μm in central retinal regions. Within more peripheral retinal regions, immunoreactive cells were spaced farther apart.Radioimmunoassays utilizing well-characterized antisera to neurotensin and somatostatin demonstrate specific neurotensin-like and somatostatin-like immunoreactivity in acetic acid extracts of the retina. The concentration of immunoreactive neurotensin is 59 ± 7 fmoles per whole retina (mean ± S.E.M.) or 15.4 ± 2 fmoles per mg protein. The concentration of immunoreactive somatostatin is 2209 ± 440 fmoles per whole retina or 527 ± 76 fmoles per mg protein.These results demonstrate the existence of two additional neuropeptides within selected populations of retinal amacrine cells. The localization of several different neuropeptides within the retina suggests that neuropeptides play a specific role in retinal function.  相似文献   

15.
The distribution of six neuropeptides (vasoactive intestinal polypeptide, cholecystokinin octapeptide, substance P, neurotensin, methionine-enkephalin and somatostatin) has been mapped in the amygdala using immunocytochemical methods. Cell bodies containing each peptide showed a differential distribution throughout the various subnuclei. Large numbers of vasoactive intestinal polypeptide and cholecystokinin-octapeptide-containing cell bodies were located in the lateral and cortical nuclei respectively, neurotensin- and methionine enkephalin-containing cell bodies in the central nucleus, and substance P-containing cell bodies primarily in the medial nucleus. Somatostatin-containing cell bodies were found in all nuclei. Neuropeptide-containing fibres were also differentially distributed. Substance P and cholecystokinin fibres formed dense plexuses in the medial nucleus whilst the greatest concentration of vasoactive intestinal polypeptide, neurotensin and methionine enkephalin fibres were seen in the central nucleus. Close observation of serial sections showed that all the neuropeptides studied had extensive intra-amygdaloid pathways and connections with other brain areas.The central nucleus and stria terminalis have particular importance in the organisation of peptides within the amygdala. The central nucleus acts as a focus for a number of converging/diverging peptide pathways and incoming catecholaminergic afferents. The stria terminalis contains all six peptides and represents the major efferent peptidergic system. The amygdala is thought to control a number of endocrine reponses and to regulate complex behavioural functions. The abundance of neuropeptides within the amygdala and their complex pattern of pathways imply that they may act to regulate endocrine responses to external events (e.g. stress) or alter emotional tone, functions thought to be controlled by the amygdala.  相似文献   

16.
This study describes the immunocytochemical distribution of five neuropeptides (calcitonin gene-related peptide [CGRP], enkephalin, galanin, somatostatin, and substance P), three neuronal markers (neurofilament triplet proteins, neuron-specific enolase [NSE], and protein gene product 9.5), and two synaptic-vesicle-associated proteins (synapsin I and synaptophysin) in the spinal cord and dorsal root ganglia of adult and newborn dogs. CGRP and substance P were the only peptides detectable at birth in the spinal cord; they were present within a small number of immunoreactive fibers concentrated in laminae I–II. CGRP immunoreactivity was also observed in motoneurons and in dorsal root ganglion cells. In adult animals, all peptides under study were localized to varicose fibers forming rich plexuses within laminae I–III and, to a lesser extent, lamina X and the intermediolateral cell columns. Some dorsal root ganglion neurons were CGRP- and/or substance P-immunoreactive. The other antigens were present in the spinal cord and dorsal root ganglia of both adult and newborn animals, with the exception of NSE, which, at birth, was not detectable in spinal cord neurons. Moreover, synapsin I/synaptophysin immunoreactivity, at birth, was restricted to laminae I–II, while in adult dogs, immunostaining was observed in terminal-like elements throughout the spinal neuropil. These results suggest that in the dog spinal cord and dorsal root ganglia, peptide-containing pathways complete their development during postnatal life, together with the full expression of NSE and synapsin I/synaptophysin immunoreactivities. In adulthood, peptide distribution is similar to that described in other mammals, although a relative absence of immunoreactive cell bodies was observed in the spinal cord.  相似文献   

17.
Summary In 144 benign mucinous cystadenomas of the ovary, 33 mucinous cystadenomas of borderline malignancy and 64 mucinous cystadenocarcinomas, the incidence of tumours containing argyrophil (and probably endocrine) cells was 18%, 33%, and 53%, respectively. The results of a semiquantitative assessment of the number of argyrophil cells in each individual tumour indicates that the greatest numbers occurred in the cystadenocarcinomas. As, however, the tumour cell density was larger in the cystadenocarcinomas than in the cystadenomas, and as the argyrophil cells often had a patchy distribution in the tumour epithelium, the incidence figures are unreliable. In addition, visualization of the argyrophil cells depends on an adequate fixation which is difficult to achieve in the routine processing of large tumour specimens.Many argyrophil cells in the cystadenocarcinomas displayed immunoreactivity with antisera raised against gastro-entero-pancreatic (GEP) neurohormonal peptides. In ten such tumours immunohistochemical evidence was obtained for the presence of the following neurohormonal peptides in the tumour cells: somatostatin, glucagon, gastrin/CCK, neurotensin, and enkephalin. Four of these ten cystadenocarcinomas were multihormonal, in that three contained two cell populations storing GEP neurohormonal peptides, and one tumour even three such populations. In the benign cystadenomas, however, no immunoreactive tumour cells were found. In those of borderline type, only two harboured immunoreactive cells. In both cases the tumour cells stored gastrin/CCK.The general appearance of the epithelium in the mucinous tumours — a continuous single-cell layer of mucin-producing cells intermingled with argyrophil cells of open type — and the spectrum of neurohormonal peptides observed, indicate an origin from the foregut endoderm.This investigation was supported by grants from the Swedish Medical Research Council (Projects No. 4X-4499 and 12X-718), the Swedish Cancer Society (Project No. 805), the Cancer Research Fund of Malmö General Hospital, and the Medical Faculty at the University of Lund  相似文献   

18.
The occurrence and distribution of neuropeptide-containing nerve fibres in the human circumvallate papillae were examined by the peroxidase–antiperoxidase immunolocalisation method using surgical specimens that had not been subjected to radiotherapy, and the abundance of neuropeptide-containing fibres was expressed as the percentage of total nerve fibres demonstrated by protein gene product (PGP) 9.5 immunoreactivity for a quantitative representation of these peptidergic fibres. Substance P (SP) and calcitonin gene-related peptide (CGRP) immunoreactive (IR) nerve fibres were densely distributed in the connective tissue core of the circumvallate papillae, and some SP and CGRP-IR fibres were associated with the taste buds. A moderate number of vasoactive intestinal polypeptide (VIP)-IR fibres and a few galanin (GAL)-IR fibres were also seen in the connective tissue core and subepithelial layer. There were, however, no VIP-IR or GAL-IR fibres associated with the taste buds. Neuropeptide Y (NPY)-IR fibres were few and were associated with the blood vessels. Within the epithelium of the circumvallate papillae, no peptidergic fibres were found, although a number of PGP 9.5-IR fibres were detected. The abundance of SP, CGRP, VIP, and GAL-IR fibres expressed as the percentage of total PGP 9.5 IR fibres was 25.35±3.45%, 22.18±3.26%, 10.23±1.18%, and 4.12±1.05%, respectively. The percentage of NPY-IR fibres was below 3%. In a deeper layer of the papillae, a few VIP, GAL, and NPY-IR ganglion cells were found, and VIP immunoreactivity was detected in a few cells of the taste buds. There was no somatostatin, leucine enkephalin, or methionine enkephalin immunoreactivity in the circumvallate papillae. These results suggest that the dense SP and CGRP-IR fibres within the connective tissue core of the human circumvallate papillae may be involved in the deep sensation of the tongue.  相似文献   

19.
20.
The distribution patterns of vasoactive intestinal polypeptide (VIP), calcitonin gene-related peptide (CGRP), somatostatin (SOM) and neurofilament (NF) immunoreactivities (IR) were studied in the stellate ganglia of human fetuses and neonates at 24-26 weeks gestation. Sizeable populations with some quantitative variations of VIP-, CGRP- and SOM immunoreactive nerve cells were detected in all ganglia studied. In marked contrast, neurofilament expression was down-regulated. The upregulation of VIP, CGRP and SOM expression suggested their inductor effect on growth and differentiation neurons as well as on the development of their neurotransmitter properties. The main neuropeptides-inducing factor of sympathetic ganglia in human prenatal ontogenesis may be considered as a relative hypoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号