首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
目的:优选氟尿苷二乙酸酯固体脂质纳米粒(FUDRA-SLN)的工艺条件。方法:以大豆磷脂为载体,采用薄膜超声分散法制备FUDRA-SLN,以包封率、形态为考察指标,设计正交试验优选工艺条件。结果:按最优工艺条件制得的FUDRA-SLN均匀圆整,粒径为(215±83)nm,包封率为98·27%,载药量为8·20%。结论:选择优化的薄膜超声分散工艺制备FUDRA-SLN,包封率及载药量高,适合于实验室制备。  相似文献   

2.
采用薄膜-超声分散法制备氟尿苷二丁酸酯(FUDRB)固体脂质纳米粒(FUDRB-SLN)和半乳糖苷(G2)修饰的FUDRB-SLN(FUDRB-G2SLN)。透射电镜研究其形态及粒径分布;凝胶色谱法测定载药量、包封率。结果表明,FUDRB-SLN和FUDRB-G2SLN的粒径分别为(137.5±11.1)nm和(95.0±10.7)nm,载药量分别为9.64%和8.56%,包封率分别为99.81%和96.23%。为比较其肝靶向作用,小鼠尾静脉给药后,HPLC法测定氟尿苷(FUDR)在血清及肝、 肾、 肺匀浆中的浓度,计算出FUDR-sol、 FUDRB-SLN和FUDRB-G2SLN的肝靶向效率分别为2.56、 5.90和8.28。FUDRB-G2SLN组480 min时在肝脏中仍可检测到FUDR。这些结果说明FUDRB-SLN和FUDRB-G2SLN在小鼠体内具有良好的肝靶向性,G2修饰的SLN是一种良好的药物载体,可使药物选择性地导向肝细胞,且具有缓释作用。  相似文献   

3.
前列地尔固体脂质纳米粒的制备及质量评价   总被引:1,自引:0,他引:1  
采用薄膜分散法结合高压匀质技术和冷冻干燥工艺制备前列地尔固体脂质纳米粒.测得其平均粒径为(137.2±7.7)nm,包封率大于90%.在磷酸盐缓冲液(pH 7.4)中24 h累积释放率为43.6%.产品于(4±2)℃和(25±2)℃下保存6个月稳定性良好.  相似文献   

4.
目的采用超声分散法制备吡喹酮固体脂质纳米粒,并考察制备过程中的主要影响因素。方法首先通过试验确定制备工艺参数,然后考察各处方因素对粒径大小和稳定性的影响,最后以包封率为评价指标,采用正交实验设计法确定最优处方。结果透射电镜测得纳米粒为类圆球状,粒径分布较均匀。动态光散射法测得样品的粒径为(100±21)nm,包封率为(79.3±0.69)%,平均zeta电位值为-66.3 mV。结论以山嵛酸甘油酯和乙酸丁酯为脂质材料,豆磷脂、泊洛沙姆188和硬脂酸钠为复配乳化剂,采用超声分散法可以简便、快速制得吡喹酮固体脂质纳米粒。  相似文献   

5.
目的:建立槲皮素固体脂质纳米粒(SLN)的包封率和载药量测定方法。方法:采用高速离心-高效液相色谱法。色谱柱为DiamonsiL-C18(250mm×4.6mm,5μm),流动相为甲醇-4.3%乙酸溶液(55∶45),流速为1.0mL·min-1,检测波长为254nm,柱温为30℃。结果:槲皮素检测浓度在2.0~200.0μg·mL-1范围内与峰面积积分值呈良好线性关系(r=0.9996);平均回收率为97.83%,RSD=1.03%(n=6)。该条件下,槲皮素SLN的包封率为80.2%,载药量为1.7%。结论:所建方法便捷、可靠,可用于SLN包封率与载药量的测定。  相似文献   

6.
目的 制备黄豆苷元固体脂质纳米粒并考察其性质。方法 采用正交实验法优化黄豆苷元固体脂质纳米粒的最佳处方,并测定黄豆苷元固体脂质纳米粒的粒径、ζ电位、包封率、稳定性和累积释放百分率。结果 黄豆苷元固体脂质纳米粒的最佳处方组合为:单硬脂酸甘油酯用量为2.0%,黄豆苷元用量为2.0 mg·mL-1,豆磷脂的用量为0.4%, Pluronic F68的用量为1.2 %。所制得的纳米粒包封率为84.7%、平均粒径为170 nm、ζ电位为-35.8 mV、72 h累积释放百分率为90.3%。结论 新制黄豆苷元固体脂质纳米粒的粒度分布范围窄,包封率较高,稳定性良好。  相似文献   

7.
黄芩苷固体脂质纳米粒体外释放研究   总被引:4,自引:1,他引:4  
目的:研究黄芩苷固体脂质纳米粒的体外释药规律。方法:采用动态透析技术研究黄芩苷固体脂质纳米粒的体外释药性能,并用高效液相色谱法测定黄芩苷含量,以累积释药百分率进行不同模型的拟合。结果:黄芩苷固体脂质纳米粒的释放曲线符合Hixon-crowell方程,t≈3h。结论:黄芩苷固体脂质纳米粒具有良好的缓释作用。  相似文献   

8.
目的制备黄豆苷元固体脂质纳米粒并考察其性质。方法采用正交实验法优化黄豆苷元固体脂质纳米粒的最佳处方,并测定黄豆苷元固体脂质纳米粒的粒径、ζ电位、包封率、稳定性和累积释放百分率。结果黄豆苷元固体脂质纳米粒的最佳处方组合为:单硬脂酸甘油酯用量为2.0%,黄豆苷元用量为2.0 mg.mL-1,豆磷脂的用量为0.4%,Pluronic F68的用量为1.2%。所制得的纳米粒包封率为84.7%、平均粒径为170 nm、ζ电位为-35.8 mV、72 h累积释放百分率为90.3%。结论新制黄豆苷元固体脂质纳米粒的粒度分布范围窄,包封率较高,稳定性良好。  相似文献   

9.
马钱子碱固体脂质纳米粒制备及质量评价   总被引:4,自引:1,他引:4  
目的:以乳化蒸发-低温固化法制备马钱子碱固体脂质纳米粒并评价其质量。方法:在单因素考察的基础上以正交试验设计优化、筛选最佳处方。用透射电镜观察固体脂质纳米粒的形态,HPLC法测定马钱子碱固体脂质纳米粒的包封率,激光散射测定Zeta电位和粒度分布,并考察其稳定性。结果:所制固体脂质纳米粒外观形态圆整,平均粒径为116nm,Zeta电位为-29.98mv,包封率为50.7%,载药量为2.25%。4℃放置1个月,粒径、包封率无明显变化。结论:本研究制备的马钱子碱固体脂质纳米粒粒径分布窄,稳定性好,为开发马钱子碱低毒长效的制剂奠定了实验基础。  相似文献   

10.
咪喹莫特固体脂质纳米粒包封率的测定   总被引:1,自引:1,他引:1  
倪倩  吴海燕  凌飒  刘洁  丁虹 《中国药师》2006,9(7):599-602
目的:建立咪喹莫特固体脂质纳米粒包封率的测定方法。方法:采用热乳匀法制备咪喹莫特固体脂质纳米粒。用葡聚糖凝胶柱色谱法分离含药固体脂质纳米粒与游离药物,以蒸馏水和1.0×10-3mol·L-1盐酸溶液为洗脱液,用HPLC法测定游离药物量。结果:凝胶柱色谱法能够将包封药物和游离药物分开。游离咪喹莫特在0.335-2.69μg·ml-1浓度范围内,线性关系良好(r=0.999 9)。游离药物柱回收率为98.6%,柱的加样回收率为97.7%。样品的平均包封率为(51.43±0.88)%。结论:该方法操作简便,结果准确,可用于咪喹莫特固体脂质纳米粒包封率测定。  相似文献   

11.
目的 制备香叶木素固体脂质纳米粒并对其进行质量评价。方法 采用溶剂注入法制备香叶木素固体脂质纳米粒,用 Box-Benhnken效应面法优化处方,并通过包封率、微观形态、粒径分布和Zeta电位对香叶木素固体脂质纳米粒的质量进行评价。 结果 香叶木素固体脂质纳米粒最优处方组成:表面活性剂浓度3.39%,棕榈酸浓度0.116%,脂药质比为21:100,制备的香叶木素 固体脂质纳米粒外观澄清透明,带淡蓝色乳光;平均粒径为(91.73±3.18)nm(n=3),PDI为0.228,电位为(-11.46±0.74)mV(n=3);包 封率为95.13%,载药量为9.04%;透射电镜照片显示纳米粒大小均一,呈球形或类球形。 结论 该处方可用于香叶木素固体脂 质纳米粒的制备,工艺简单,稳定可行。  相似文献   

12.
目的:制备柠檬苦素固体脂质纳米粒(LM-SLN)及冻干粉,并考察其体外释药性能。方法:采用薄膜超声法制备LM-SLN,以载药量及包封率为指标,借助均匀设计联合Box-Behnken法优化处方;采用Nano ZSE+MPT2粒度检测仪观测形态与粒径;透析法研究冻干粉体外释药行为。结果:处方工艺为柠檬苦素-硬脂酸-卵磷脂-4.5%泊洛沙姆188(10∶30∶35∶10),超声功率300 W,超声时间4 min;以5%甘露醇为冻干保护剂,于-20 ℃预冻12 h,转至-40 ℃以下冷冻干燥22 h。LM-SLN冻干粉呈类球形,结构均匀,包封率为79.38%、载药量为10.88%,平均粒径(182.4±0.2)nm,多分散系数(PDI)为0.290±0.013,Zeta电位为(-14.5±0.1)mV;原药12 h累积释放率为89.31%,LM-SLN冻干粉48 h为85.21%,48 h后释放趋于平缓。结论:LM-SLN处方工艺简单且重复性好,体外释放结果表明,LM-SLN冻干粉具有一定缓释作用。  相似文献   

13.
目的 制备D-α-维生素E聚乙二醇1000琥珀酸酯(TPGs)修饰的雷公藤甲素固体脂质纳米粒(TPGs-Tri-SLNs),并评价其质量。方法 采用热熔乳化-超声法制备TPGs-Tri-SLNs,并以山嵛酸甘油酯浓度(X1),大豆磷脂与TPGs比例(X2)和山嵛酸甘油酯与药物比例(X3)作为考察因素,以TPGs-Tri-SLNs的粒径分布(Y1)和药物包封率(Y2)作为评价指标,通过中心复合设计-效应面法优化TPGs-Tri-SLNs的处方,粒度分析仪测定其粒径分布,透射电镜观察其微观形态,并考察了TPGs-Tri-SLNs的体外药物释放特性。结果 TPGs-Tri-SLNs的最佳处方组成为:山嵛酸甘油酯浓度为10%,大豆磷脂与TPGs比例4:1,山嵛酸甘油酯与药物比例为60:1,按照最优处方制备3批TPGs-Tri-SLNs的平均粒径为(107.8±16.9)nm,包封率为91.4%±1.1%;在透射电镜下可以观察到TPGs-Tri-SLNs呈球型分布,表面光滑;TPGs-Tri-SLNs在前4 h内药物释放较快,后期释药速率较为平稳,24 h药物释放可以达到85%。结论 通过中心复合设计-效应面法优化并得到TPGs-Tri-SLNs的最优处方,处方设计合理,制备工艺简单。  相似文献   

14.
《中南药学》2017,(6):772-776
目的制备并评价卡马西平固体脂质纳米粒(CBZ-SLN),考察其单次给药后在小鼠体内的药动学过程。方法采用高温乳化-低温固化法制备CBZ-SLN,并对其进行评价;小鼠随机分为CBZ-SLN组、卡马西平(CBZ)+维拉帕米(Ver)组、CBZ-SLN+Ver、CBZ+SLN组和CBZ组,每组50只,分别腹腔注射后,收集10、15、30、45、60、120、240、360、480和600 min血浆与脑组织,并采用HPLC测定卡马西平的浓度。结果 CBZ-SLN多为球形,平均粒径为(310.20±10.04)nm,Zeta电位为(-30.50±0.98)m V,包封率为(70.9±3.0)%;与CBZ组相比,CBZ-SLN组和CBZ+Ver组CBZ的AUC分别增加88%和64%,t1/2显著增加,而CL显著降低。此外,与CBZ组和CBZ+SLN组相比,CBZ-SLN组和CBZ+Ver组CBZ脑药浓度显著增加。结论 CBZ-SLN具有一定的缓释性,且可有效提高CBZ的脑药浓度,这可能与CBZ-SLN抑制P-糖蛋白(P-gp)对CBZ的外排,增加其在脑内的驻留有关。  相似文献   

15.
目的制备川芎嗪固体脂质纳米粒并对其制剂性质进行评价。方法采用热熔乳化-高压均质技术制备川芎嗪固体脂质纳米粒,同时利用Box-Behnken效应面法优化其制剂处方,并通过微观形态、粒径分布、多聚分散系数(polydispersity index,Pd I)和Zeta电位、体外释药行为对川芎嗪固体脂质纳米粒的性质进行了评价。结果川芎嗪固体脂质纳米粒的最优处方构成:单硬脂酸甘油酯质量浓度为55 g·L~(-1)、大豆卵磷脂质量浓度为45 g·L~(-1)、脂药质量比为35∶1,制备的川芎嗪固体脂质纳米粒外观澄清透明、略带乳光状;透射电镜照片显示纳米粒大小均一,呈球形或类球形分布,测得平均粒径为(127.4±31.6)nm,Pd I为0.238,Zeta电位为(-11.5±0.9)m V;川芎嗪固体脂质纳米粒在12 h内累积释放度为95.3%。结论该处方可用于川芎嗪固体脂质纳米粒的制备,工艺简单易行,稳定可行。  相似文献   

16.
目的:制备吡喹酮-固体脂质纳米粒,考察其理化性质和体外释放度。方法:以硬脂酸为脂质材料,聚乙烯吡咯烷酮为乳化剂,利用热熔乳化超声法制备吡喹酮-固体脂质纳米粒,扫描电镜观察纳米粒形态和均匀度,纳米粒度仪测定其粒径、分散指数、Zeta电位、包封率和载药量,并进行体外释放试验。结果:制备的固体脂质纳米粒为类圆球状,粒径分布较均匀、表面光滑。纳米的平均粒径、分散指数、电位、包封率和载药量分别为(316.5±22.8)nm、0.23±0.05、(-25.3±0.7)mV,(92.64±5.12)%和(18.45±1.34)%。药物在制剂的过程中稳定性良好。体外释放表明吡喹酮-硬脂酸固体脂质纳米粒在生理盐水中具有一定程度的突释和显著的缓释效果。结论:本试验制备的吡喹酮-硬脂酸固体脂质纳米粒具有较好的均匀度和高载药量,并具有良好的缓释性能。  相似文献   

17.
目的:微乳法制备固体脂质纳米粒,以酮洛芬作为模型药物,考查其载药性能。方法:通过对空白微乳粒径和稳定性考查,确定优化处方,将其保温分散于冷水中制备固体脂质纳米粒。对影响其质量的工艺因素和处方因素进行考查和优化设计,筛选最优处方。结果:制备固体脂质纳米粒的直接影响因素包括脂质用量、药物的用量、冷水相温度和微乳保温温度等,所得固体脂质纳米粒的平均粒径(143.9±1.2)nm,多分散系数为0.443。载药固体脂质纳米粒包封率为81.47%,载药量为8.16%。结论:该法稳定可靠,可用于酮洛芬固体脂质纳米粒的制备。  相似文献   

18.
目的为芹菜素新型制剂的研究和开发提供实验基础。方法采用热熔超声法制备芹菜素固体脂质纳米粒;以包封率为指标,通过正交试验对处方进行优化。结果制备的纳米粒为类球形,包封率为63.11%,平均粒径为(135±18)nm,zeta电位为-18.90 mV,36 h体外累积释放95.74%。结论热熔超声法可用于制备芹菜素固体脂质纳米粒。  相似文献   

19.
目的: 制备槲皮素固体脂质纳米粒并对其理化性质进行考察。方法: 采用乳化蒸发-低温固化法制备槲皮素固体脂质纳米粒,以正交设计优化处方和制备工艺,超滤法测定包封率,透射电子显微镜对其粒子形态进行观察,并使用激光粒度分析仪测定其粒径和Zeta电位。结果: 经处方优化制备的固体脂质纳米粒平均粒径为(124.2±0.371) nm,Zeta电位为(-22.3±0.315) mV,粒子形态均匀,无粘连,平均包封率为(89.3±1.209)%。结论: 制备槲皮素固体脂质纳米粒的工艺简便可行,包封率较高且纳米粒质量优良。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号