首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The release of [3H]GABA from horizontal cells of goldfish retina was studied by biochemical analysis of perfused isolated retina. Retinas were incubated for 15 min in 0.72 μM[3H]GABA, rinsed for 30 min and then perfused with 1 min pulses of increasing concentrations of K+ and acidic amino acid agonists under a variety of conditions. Radioactivity in the perfusate was determined by liquid scintillation spectroscopy. The main findings are: (1) virtually all of the [3H]GABA released byl-glutamate (l-Glu) andl-aspartate (l-Asp) and 50% of the K+-evoked release, is calcium independent; (2) K+-evoked [3H]GABA release is only 10% of that released byl-Glu; (3) threshold [3H]GABA release occurs with 320 μMl-Glu, 1175 μMl-Asp, 4μM quisqualic acid (QA), 4μM kainic acid (KA) and 53 μM N-methyl-dl-aspartate (NMDLA); (4) the quisqualate antagonist glutamic acid diethyl ester (GDEE), has no specific inhibitory action on any of the agonists, whereasd-α-aminoadipic acid (DαAA), an NMDA antagonist, potently inhibits the action of NMDLA andl-Asp; (5) the presence of Mg2+, even at 1 mM, totally inhibits NMDLA and also inhibits the action ofl-Glu andl-Asp below 1 mM; (6)d-Asp potentiates the action ofl-Glu by 0.6–0.8 log units and completely inhibits the action ofl-Asp; (7)l-Asp at a ratio of 3:1 potentiates the effect ofl-Glu. From these and other results one concludes that: (a) [3H]GABA release from H1 cells is calcium independent and depends on factors other than passive depolarization, probably sodium; (2) the likely transmitter of red cones isl-Glu acting on quisqualate or kainate receptors, and (3)l-Asp acts predominantly on NMDA receptors and may provide a modulatory role in the outer retina by potentiating the action ofl-Glu.  相似文献   

2.
The rate of release of [3H]GABA from isolated intact goldfish retinas was studied. Release of [3H]GABA is markedly stimulated by the inclusion in the incubation medium of the photoreceptor neurotransmitter candidates L-glutamate (L-Glu) and L-aspartate (L-Asp), and the glutamate analogs, kainate and quisqualate. At micromolar concentrations, kainate and quisqualate are effective releasers of [3H]GABA, whereas millimolar concentrations of L-Glu and L-Asp are required to release comparable amounts of [3H]GABA. The D-isomers of aspartate (D-Asp) and glutamate (D-Glu) are able to release [3H]GABA, but only when applied at high concentrations (3-30 mM). In the presence of 5 mM D-Asp, the effect of L-Glu in releasing [3H]GABA was markedly potentiated. This dose-response curve of L-Glu was shifted to the left in the presence of D-Asp, although the maximal amount of release was unchanged. D-Asp at 5 mM only slightly increased the GABA release induced by quisqualate, and it did not increase the GABA release induced by kainate. Finally, low concentrations of L-Asp were potentiated by D-Asp, but higher concentrations of L-Asp (3-10 mM) were clearly inhibited by this agent. This biphasic effect of D-Asp on L-Asp-induced release of [3H]GABA is a possible explanation for previously conflicting reports of D-Asp's effect on L-Asp action. Our data suggest that D-Asp has both pre- and postsynaptic sites of action.  相似文献   

3.
We have investigated the effects of bilateral electrical stimulation of the vagus nerves in anesthetized, paralyzed rats on the release of exogenously administered [3H]l-glutamic acid ([3H]l-Glu) or [3H]d-aspartic acid ([3H]d-Asp) from the intermediate portion of the nucleus tractus solitarius (NTS). Electrical stimulation of afferent fibers with the frequency, pulse, duration, and intensity required to activate C-fibers, elicted hypotension and bradycardia. Such stimuli induced the release of [3H]l-Glu, or its stable analogue [3H]d-Asp, from the NTS into perfusate collected through push-pull cannulae. The release of radioactive materials, calculated as a percent of increase in radioactivity above the prestimulation level, was for [3H]l-Glu 114.4 ± 25.1% (n= 20) during bilateral vagal stimulation, and45.6 ± 11.3% (n= 9) (P < 0.001) during unilateral stimulation. The release of [3H]d-Asp induced by bilateral vagal stimulation was100.4 ± 31.9%. The release, which was anatomically specific and restricted to the NTS, was directly related to stimulus (and hence reflex) intensity. Overflow of the inert substances [14C]urea or [14C]sucrose, co-administered with the [3H]amino acids, did not increase at the same time. Local depolarization of the cells in the NTS by K+ (53 mM) increased the overflow of [3H]l-Glu, as well as [14C]urea, and was able to induce the release of [3H]l-Glu when electrical stimulation failed to have an effect. The results are consistent with the hypothesis thatl-Glu is a neurotransmitter of neurons in the NTS mediating vasodepressor response from vagal afferents, including those from systemic baroreceptors.  相似文献   

4.
The effect of glutamate of [Ca2+]i and on [3H]γ-aminobutyric acid (GABA) release was studied on cultured chick embryonic retina cells. It was observed that glutamate (100 μM) increases the [Ca2+]i by Ca2+ influx through Ca2+ channels sensitive to nitrendipine, but not to ω-conotoxin GVIA (ω-Cg Tx) (50%), and by other channels insensitive to either Ca2+ channel blocker. Mobilization of Ca2+ by glutamate required the presence of external Na+, suggesting that Na+ mobilization through the ionotropic glutamate receptors is necessary for the Ca2+ channels to open. The increase in [Ca2+]i was not related to the release of [3H]GABA induced by glutamate, suggesting that the pathway for the entry of Ca2+ triggered by glutamate does not lead to exocytosis. In fact, the glutamate-induced release of [3H]GABA was significantly depressed by Cao2+, but it was dependent on Nao+, just as was observed for the [3H]GABA release induced by veratridine (50 μM). The veratridine-induced release could be fully inhibited by TTX, but this toxin had no effect on the glutamate-induced [3H]GABA release. Both veratridine- and glutamate-induced [3H]GABA release were inhibited by 1-(2-(((diphenylmethylene)amino)oxy)ethyl)-1,2,5,6-tetrahydro-3-pyridine-carboxylic acid (NNC-711), a blocker of the GABA carrier. Blockade of the NMDA and non-NMDA glutamate receptors with MK-801 and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), respectively, almost completely blocked the release of [3H]GABA evoked by glutamate. Continuous depolarization with 50 mM K+ induced maximal release of [3H]GABA of about 1.5%, which is much smaller than the release evoked by glutamate under the same conditions (6.0–6.5%). Glycine (3 μM) stimulated [3H]GABA release induced by 50 mM K+, and this effect was blocked by MK-801, suggesting that the effect of K+ on [3H]GABA release was partially mediated through the NMDA receptor which probably was stimulated by glutamate released by K+ depolarization. We conclude that glutamate induces Ca2+-independent release of [3H]GABA through reversal of the GABA carrier due to Na+ entry through the NMDA and non-NMDA, TTX-insensitive, channels. Furthermore the GABA carrier seems to be inhibited by Ca2+ entering by the pathways open by glutamate. This Ca2+ does not lead to exocytosis, probably because the Ca2+ channels used are located at sites far from the active zones.  相似文献   

5.
The novel glutamate antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) inhibited glutamate stimulated [3H]GABA release from cortical neurons in vitro. Kainate-induced release was blocked in a competitive fashion butN-methyl-d-aspartate (NMDA)-induced release was blocked non-competitively by CNQX. 7-Chlorokynurenate (7-CK) also inhibited NMDA evoked [3H]GABA release non-competitively, but had no effect on kainate induced release. The effects of both CNQX and 7-CK on NMDA-induced release were reversed by addition of exogenous glycine but the effects of CNQX on kainate-induced release were not altered by glycine. This suggests that both CNQX and 7-CK may interact with the glycine regulatory site of the NMDA receptor.  相似文献   

6.
We investigated the release of gamma-[2,3-3H(N)]aminobutyric acid ([3H]GABA) from hippocampal neurons in primary cell culture. [3H]GABA release was stimulated by the excitatory amino acid neurotransmitter glutamate as well as by N-methyl-D-aspartate (NMDA) and kainate. Cell depolarization induced by raising [K+]o or by veratridine also stimulated [3H]GABA release. NMDA-induced release was completely blocked by 3-((+/-)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP+), Mg2+ and Zn2+ whereas the release induced by glutamate and kainate was much less susceptible to inhibition by these substances. Furthermore, removal of external Ca2+ inhibited NMDA-induced release, but not that induced by glutamate, kainate, veratridine or 50 mM K+. Removal of external Na+ reduced [3H]GABA release evoked by all stimuli, but to different extents. All of the excitatory amino acids tested increased [Ca2+]i within hippocampal neurons as assessed by fura-2 based microspectrofluorimetry. This increase in [Ca2+]i was completely dependent on the presence of external Ca2+. These results suggest that Ca2+-dependent and -independent forms of GABA release from hippocampal interneurons may occur. [3H]GABA release evoked by glutamate, kainate, veratridine or 50 mM K+, appeared to be mediated by the reversal of electrogenic, Na+-coupled GABA uptake. Release was inhibited by nipecotic acid, an inhibitor of the Na+-coupled GABA uptake system. However, release induced by NMDA may also include a Ca2+-dependent component.  相似文献   

7.
S Weiss 《Brain research》1989,491(1):189-193
At concentrations at which it did not alter spontaneous release, quisqualate (QUIS) induced a dose-dependent (EC50, 0.5 microM) potentiation of KCl- or veratrine-evoked release of [3H]GABA from striatal neurons in primary culture. QUIS potentiation of KCl-evoked [3H]GABA release was mimicked by the selective agonist alpha-amino-3-hydroxy-5-methylisoxazole-propionic acid (AMPA), glutamate and kainate, and was blocked by kynurenic acid and gamma-D-glutamylglycine. QUIS also induced a dose-dependent (EC50, 0.2 microM) augmentation of [3H]inositol monophosphate production in striatal neurons. This action of QUIS was mimicked by glutamate, but not by AMPA nor by kainate. Furthermore, none of the antagonists tested (kynurenic acid, gamma-D-glutamylglycine, glutamic acid diethyl ester, and 4-aminophosphonobutanoic acid) could block QUIS-induced elevations in [3H]inositol monophosphate production. The results of the present study suggest that two QUIS receptor systems, distinguished on the basis of their pharmacological properties, may subserve specific roles in the regulation of striatal neuron function by excitatory amino acids.  相似文献   

8.
The effect of ascorbate (1.5 mM)/Fe2+ (7.5 μM)-induced oxidative stress on the release of pre-accumulated [3H]γ-aminobutyric acid ([3H]GABA) from cultured chick retina cells was studied. Depolarization of control cells with 50 mM K+ increased the release of [3H]GABA by 1.01 ± 0.16% and 2.5 ± 0.3% of the total, in the absence and in the presence of Ca2+, respectively. Lipid peroxidation increased the release of [3H]GABA to 2.07 ± 0.31% and 3.6 ± 0.39% of the total, in Ca2+-free or in Ca2+-containing media, respectively. The inhibitor of the GABA carrier, 1-(2-(((diphenylmethylene)amino)oxy)ethyl)-1,2,5,6-tetrahydro-3-pyridine-carboxylic acid hydrochloride (NNC-711) blocked almost completely the release of [3H]GABA due to K+-depolarization in the absence of Ca2+, but only 65% of the release occurring in the presence of Ca2+ in control and peroxidized cells. Under oxidative stress retina cells release more [3H]GABA than control cells, being the Ca2+-independent mechanism, mediated by the reversal of the Na+/GABA carrier, the most affected. MK-801 (1 μM), a non-competitive antagonist of the NMDA receptor-channel complex, blocked by 80% the release of [3H]GABA in peroxidized cells, whereas in control cells the inhibitory effect was of 40%. The non-selective blocker of the non-NMDA glutamate receptors, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), inhibited the release of [3H]GABA by 30% and 70% in control and peroxidized cells, respectively. Glycine (5 μM) stimulated [3H]GABA release evoked by 50 mM K+-depolarization in control but not in peroxidized cells. The release of -[3H]aspartate (a non-metabolized analog of -glutamate) evoked by 50 mM K+, in the absence of Ca2+, was significantly higher in peroxidized cells (6.76 ± 0.64% of the total) than in control cells (3.79 ± 0.27% of the total). The results suggest that oxidative stress induced by ascorbate/Fe2+ causes an excessive release of endogenous excitatory amino acids upon K+-depolarization. The glutamate released may activate NMDA and non-NMDA receptors, raising the intracellular Na+ concentration and consequently stimulating the release of [3H]GABA by reversal of the Na+/GABA carrier.  相似文献   

9.
Striatal function is heavily influenced by glutamatergic and dopaminergic afferent input. To ultimately better understand how the N-methyl- -aspartate (NMDA) antagonist, phencyclidine (PCP), alters striatal function, we sought to determine how NMDA receptor function is influenced by activation of other glutamatergic receptors and by dopaminergic receptors. To this end, we used NMDA-stimulated efflux of [14C]GABA and [3H]acetylcholine (ACh) from striatal slices to assess the influence of these receptors on NMDA function. NMDA-stimulated [14C]GABA release was more sensitive to NMDA and glycine antagonists than was [3H]ACh release, suggesting that different NMDA receptors regulate the release of these neurotransmitters. Furthermore, NMDA-stimulated [3H]ACh release was inhibited by a D2 receptor mechanism whereas NMDA-stimulated [14C]GABA release was enhanced by D1 receptor activation. NMDA and (±)-α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid hydrobromide (AMPA) interact additively to evoke [3H]ACh release, and synergistically to evoke [14C]GABA release. An additive effect of NMDA and kainate (KA) was found on [14C]GABA release, but NMDA and KA acted in a less than additive manner in evoking [3H]ACh release. KA-stimulated [3H]ACh release was largely blocked by NMDA antagonists, suggesting mediation through activation of NMDA receptors, probably secondary to KA-induced glutamate release. A selective group II metabotropic receptor agonist inhibited NMDA-stimulated [14C]GABA and [3H]ACh release. On the other hand, NMDA-stimulated [14C]GABA release was potentiated by activation of group I metabotropic receptors. Thus, in addition to the differential modulation by D1- and D2-like receptors, the release of striatal neurotransmitters by NMDA receptor activation depends on the extent to which the other glutamate receptors, both ionotropic and metabotropic, are activated.  相似文献   

10.
We studied the effect of ionotropic glutamate receptor agonists on the release of endogenous glutamate or of [3H]D -aspartate from reaggregate cultures (retinospheroids) or from monolayer cultures of chick retinal cells, respectively. Kainate increased the fluorescence ratio of the Na+ indicator SBFI and stimulated a dose-dependent release of glutamate in low (0.1 mM) Ca2+ medium, as measured using a fluorometric assay. Under the same experimental conditions, the release evoked by N-methyl-D -aspartate (NMDA; 400 μM) was about half of that evoked by the same kainate concentration; α-amino-3-hydroxy-5-methyl-4-isoxasolepropionic acid (AMPA; 400 μM) did not trigger a significant response. In the presence of 1 mM CaCl2, all of the agonists increased the [Ca2+]i, as determined with the fluorescence dye Indo-1, but the glutamate release evoked by NMDA and kainate was significantly lower than that measured in 0.1 mM CaCl2 medium. Inhibition by Ca2+ of the kainate-stimulated release of glutamate was partially reversed by the phospholipase A2 inhibitor oleiloxyethyl phosphorylcholine (OPC), suggesting that the effect was mediated by the release of arachidonic acid, which inhibits the glutamate carrier. Accordingly, kainate, NMDA, and AMPA stimulated a Ca2+-dependent release of [3H]arachidonic acid, and the direct addition of the exogenous fatty acid to the medium decreased the release of glutamate evoked by kainate in low (0.1 mM) CaCl2 medium. In monolayer cultures, we showed that NMDA, kainate, and AMPA also stimulated the release of [3H]D -aspartate, but in this case release in the presence of 1 mM CaCl2 was significantly higher than that evoked in media with no added Ca2+. The ranking order of efficacy for stimulation of Ca2+-dependent release of [3H]D -aspartate was NMDA ≪ kainate < AMPA. © 1996 Wiley-Liss, Inc.  相似文献   

11.
Neurotransmitters in vertebrate taste buds have not yet been identified with confidence. Serotonin, glutamate, and γ-aminobutyric acid (GABA) have been postulated, but the evidence is incomplete. We undertook an autoradiographic study of [3H]serotonin, [3H]glutamate, and [3H]GABA uptake in lingual epithelium from the amphibian, Necturus maculosus, to determine whether taste bud cells would accumulate and release these substances. Lingual epithelium containing taste buds was incubated in low concentrations (0.4–6 μM) of these tritiated transmitter candidates and the tissue was processed for light microscopic autoradiography. Merkel-like basal taste cells accumulated [3H]serotonin. When the tissue was treated with 40 mM K+ after incubating the tissue in [3H]serotonin, cells released the radiolabelled transmitter. Furthermore, depolarization (KCl)-induced release of [3H]serotonin was Ca-dependent: if Ca2+ was reduced to 0.4 mM and 20 mM Mg2+ added to the high K+ bathing solution, Merkel-like basal cells did not release [3H]serotonin. In contrast, [3H]glutamate was taken up by several cell types, including non-sensory epithelial cells, Schwann cells, and some taste bud cells. [3H]glutamate was not released by depolarizing the tissue with 40 mM K+. [3H]GABA uptake was also widespread, but did not occur in taste bud cells. [3H]GABA accumulated in non-sensory epithelial cells and Schwann cells. These data support the hypothesis that serotonin is a neurotransmitter or neuromodulator released by Merkel-like basal cells in Necturus taste buds. The data do not support (nor rule out) a neurotransmitter role for glutamate or GABA in taste buds. J. Comp. Neurol. 392:199–208, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
The release of [3H]GABA from hippocampul slices from adult (3-month-old) and developing (7-day-old) mice was studied in cell-damaging conditions in vitro using a superfusion system. Cell damage was induced by modified superfusion media, including hypoxia, hypoglycemia, ischemia, the presence of free radicals and oxidative stress. The basal release of GABA from the immature and mature hippocampus was generally markedly increased in all cell-damaging conditions. In 7-day-old mice the release was enhanced most in the presence of free radicals, 1.0 mM NaCN and ischemia, whereas in the adults 1.0 mM NaCN provoked the largest release of GABA, followed by ischemia and free radical-containing media. Potassium stimulation (50mM K+) was still able to potentiate the release in all cell-damaging conditions in both age groups. It was shown by superfusing the slices in Ca- and Na-free media that ischemia-induced GABA release was Ca-independent, occurring by a reversed operation of Na-dependent cell membrane carriers in both adult and developing hippocampus. Glutamate and its receptor agonists, N-methyl-d-aspartate (NMDA), kainate and 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), potentiated GABA release only in the immature hippocampus by a receptor-mediated mechanism. The enhancement by kainate and AMPA receptors also operated under ischemic conditions. The massive amount of GABA released simultaneously with excitatory amino acids in the mature and immature hippocampus may be an important protective mechanism against excitotoxicity, counteracting harmful effects that lead to neuronal death. The GABA release induced by activation of presynaptic glutamate receptors may contribute particularly to the maintenance of homeostasis in the hippocampus upon impending hyper-excitation.  相似文献   

13.
Cultured neocortical neurons, which predominantly consist of GABAergic neurons exhibit a pronounced stimulus-coupled GABA release. Since the cultures may contain a small population of glutamatergic neurons and the GABAergic neurons have a high content of glutamate it was of interest to examine if glutamate in addition to γ-aminobutyric acid (GABA) could be released from these cultures. The neurons were preloaded with [3H] -aspartate and subsequently its release was followed during depolarization induced by a high potassium concentration or the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor agonists, AMPA and kainate. Depolarization of the neurons with 55 mM potassium increased the release of [3H] -aspartate by more than 10-fold. When the non-specific calcium-channel blockers cobalt or lanthanum were included in the stimulation buffer with potassium, the release of [3H] -aspartate was decreased by about 40%. These results indicated that some of the released [3H] -aspartate might originate from a vesicular pool. When AMPA was applied to the neurons, the release of [3H] -aspartate was increased 2-fold and could not be prevented or decreased by addition of cobalt. Since AMPA has a rapid desensitizing effect on AMPA receptors, it was examined whether AMPA under non-desensitizing conditions was able to induce an increased release of [3H] -aspartate as compared to the conditions of applying AMPA alone. The desensitization of AMPA receptors was blocked by 6-chloro-3,4-dihydro-3-(2-norbornen-5-yl)-2H-1,2,4-benzothiadiazine-7-sulphonamide-1,1-dioxide (cyclothiazide). Under the non-desensitizing conditions, the AMPA-induced release of [3H] -aspartate was highly enhanced showing about a 10-fold increase over basal release. Addition of cobalt or lanthanum did not decrease the amount of [3H] -aspartate released, indicating that the release originated from a cytoplasmic pool. Kainate, which induces an almost non-desensitizing effect on AMPA receptors, showed similar results as observed for AMPA under non-desensitizing conditions. The NMDA receptor antagonist (5R,10 S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801) had only minor effects on the [3H] -aspartate release induced by AMPA and kainate. Thus, the depolarization-induced release of [3H] -aspartate from cultured GABAergic neurons appears to be caused mainly by reversal of the glutamate transporters.  相似文献   

14.
The anatomical distribution ofl-[3H]glutamate binding sites was determined in the presence of various glutamate analogues using quantitative autoradiography. The binding ofl-[3H]glutamate is accounted for the presence of 3 distinct binding sites when measured in the absence of Ca2+, Cl and Na+ ions. The anatomical distribution and pharmacological specificity of these binding sites correspond to that reported for the 3 excitatory amino acid binding sites selectively labeled byd-[3H]2-amino-5-phosphonopentanoate (d-[3H]AP5), [3H]kainate ([3H]KA) and [3H]α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid ([3H]AMPA) which are thought to be selective ligands for the N-methyl-d-aspartate (NMDA), KA and quisqualate (QA) receptors, respectively.  相似文献   

15.
To study the effect of depolarization on the synthesis, storage and release of GABA, hippocampal slices were incubated in 0.25 mM [3H]glutamine and 2.5 mM [14C]glucose in the presence of 3 or 50 mM K+. Total and labelled glutamine, glutamate and GABA contents were measured by high-performance liquid chromatography. Depolarization in the presence of Ca2+ led to a two-fold increase of labelled glutamate and a 3-fold increase of labelled GABA content originating from both labelled precursors. In the absence of Ca2+ and in the presence of 10 mM Mg2+, depolarization failed to increase labelled glutamate content and labelled GABA formation was increased by only 30%. Following superfusion with unlabelled 0.25 mM glutamine and 2.5 mM glucose a second depolarization with 50 mM K+ released twice as much labelled GABA from slices that had been incubated in the presence of 50 mM K+, than from those incubated in 3 mM K+. This difference remained unchanged in slices that were superfused with 1 mM aminooxyacetic acid, an inhibitor of GABA synthesis. The contribution of labelled GABA, especially of GABA derived from [3H]glutamine, to released GABA was significantly higher than to GABA stored in the slices. Results suggest that depolarization in the presence of Ca2+ results in increased glutamate and GABA synthesis from both glutamine and glucose and that part of GABA released by high K+ originates from preformed GABA stores.  相似文献   

16.
The pharmacological nature of the interaction of excitatory amino acids with striatal cholinergic neurons was investigated in vitro. Agonists of excitatory amino acid receptors evoked the release of [3H]acetylcholine from slices of rat striatum, in the presence of magnesium (1.2 mM). Removal of magnesium from the medium markedly increased the release of [3H]acetylcholine evoked by all excitatory amino acid receptor agonists tested, with the exception of kainate. In the absence but not the presence of magnesium, a clear rank order of potency was found: N-methyl-dl-aspartate = ibotenate >l-glutamate >l-aspartate cysteate > kainate = quisqualate.The excitatory amino acid receptor mediating [3H]acetylcholine release resembles the N-methyl-d-aspartate preferring (N-type) receptor, as previously characterized electrophysiologically, according to 3 criteria: (1) rank order of potency of agonists; (2) magnesium-sensitivity; and (3) antagonism by 2-amino-5-phosphonovalerate.The release of [3H]acetylcholine evoked by N-methyl-dl-aspartate was blocked by tetrodotoxin (0.5 μM). Moreover, N-methyl-dl-aspartate failed to evoke [3H]acetylcholine release from slices of hippocampus, where cholinergic afferents, rather than interneurons, are found. These results suggest that excitatory amino acids act at receptors on the dendrites of striatal cholinergic interneurons, giving rise to action potentials and release of acetylcholine from cholinergic nerve terminals.  相似文献   

17.
Summary The neuroactive sulphur-containing amino acids L-cysteate (CA), L-cysteine sulphinate (CSA), L-homocysteine sulphinate (HSA), S-sulpho-L-cysteine (SC) and L-homocysteate (HCA) evoked the release of previously accumulated D-[3H]aspartate from rat brain cerebrocortical and cerebellar synaptosome fractions in a manner that was wholly Ca2+-independent. However, analysis of endogenous release by hplc revealed the presence of both Ca2+-dependent and -independent components of L-glutamate release but only a Ca2+-independent component of L-aspartate release. CA, CSA, HSA and SC but not HCA evoked the release of previously accumulated [3H]GABA from synaptosome fractions by a mechanism shown to comprise both a Ca2+-dependent and -independent component. The specific antagonists of the N-methyl-D-aspartate (NMDA) receptor, 3-[(±)-2-carboxypiperazin-4-yl]propyl-1-phosphonic acid (CPP) and the relatively selective competitive quisqualate (QUIS)/kainate (KA) receptor antagonist, 6-cyano-7-dinitroquinoxalinedione (CNQX), were ineffective in blocking the excitatory sulphur amino acid-evoked release of either D-[3H]aspartate, [3H]GABA or of endogenous established transmitter amino acids.  相似文献   

18.
In the present study the [3H]GABA release in the rat cerebral cortex primary cultures, kept at rest or electrically stimulated, was measured. In addition, the development of excitotoxic cell damage caused by pretreating the cells for 10 min with increasing glutamate concentrations (10–300 μM) was examined 2 and 24 h after the insult. Cellular injury was quantitatively assessed by measuring the electrically-evoked [3H]GABA release, the [3H]GABA uptake, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide staining. Trains of electrical pulses at different frequencies (2, 5, 10, and 20 Hz) applied to the cultures elicited a [3H]GABA release which was frequency related, Ca++-dependent, and tetrodotoxin sensitive. Either 2 or 24 h after glutamate exposure, the electrically evoked [3H]GABA release was reduced by glutamate in a concentration dependent manner, while [3H]GABA uptake and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide staining appeared less sensitive. The N-methyl-D-aspartate, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and metabotropic receptor antagonists were tested on 100 μM glutamate-exposed cells and a prominent N-methyl-D-aspartate receptor-mediated component was observed. The present findings indicate that the electrically-evoked [3H]GABA release from cerebral cortical cells could represent a useful approach not only to study the spike-triggered neurosecretion but also to the neuronal damage caused by glutamate, as well as to test potential neuroprotective compounds. Synapse 30:247–254, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
A new compound, 3-((±)-2-car☐ypiperazin-4-yl)-propyl-1-phosphonic acid (CPP), has been evaluated as an excitatory amino acid receptor antagonist using electrophysiological assays and radioligand binding. In autoradiographic preparations, CPP reduces l-[3H]glutama binding in regions of the hippocampus rich in N-methyl-d-aspartate (NMDA) receptors, but not in regions richin kainate sites. In isolated membrane fraction preparations, CPP displaces l-[3H]glutamate binding to NMDA sites, but does not compete with the binding of selective kainate or quisqualate site ligands. CPP potently reduces depolarizations produced by application of NMDA but not depolarizations produced by quisqualate or kainate. Its order of potency against excitatory amino acid-induced responses in the hippocampus is NMDA > homocysteate > aspartate > glutamate > quisqualate. CPP has no efect on lateral perforant path responses or on inhibition of these responses by 2-amino-4-phosphonobutyrate. Finally, at doses that do not affect Schaffer collateral synpatic transmission, CPP reversibly blocks the induction of long-term potentiation of Schaffer synaptic responses. This new compounds is, therefore, a higly selective brain NMDA receptor blocker, and the most potent such by nearly an order of magnitude.  相似文献   

20.
We used quantitative autoradiography to determine whether the development of glutamate receptors correlates with the plastic period for monocular deprivation in rat visual cortex. To study glutamate receptors, we incubated sections of rat visual cortex with tritiated (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohepten-5,10imine maleate (MK-801), tritiated kainate, and tritiated amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA). [3H]MK-801 is a noncompetitive ligand for the N-methyl-D-aspartate (NMDA) receptor. [3H]kainate and [3H]AMPA are competitive ligands for non-NMDA receptors. To compare glutamate binding sites with a nonglutamate binding site, we studied [3H]muscimol, which binds to γ-aminobutyric acid (GABA)A receptors. [3H]MK-801 binding was maximal at postnatal day 26 (P26) and decreased in adulthood. [3H]AMPA binding was maximal at P18. [3H]kainate binding and [3H]muscimol binding were not age dependent. Dark rearing partially prevented the age-dependent decrease in [3H]MK-801 binding but had no effect on [3H]kainate or [3H]AMPA binding. Dark rearing decreased muscimol binding in adult animals. These results suggest that NMDA receptors, but not other glutamate receptors or GABAA receptors, are likely to be critical for developmental plasticity in rat visual cortex. J. Comp. Neurol. 383:73–81, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号