首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
BACKGROUND AND PURPOSE: The T1-weighted fast spin-echo (T1-FSE) MR imaging sequence is not used routinely, since the speed advantage is not as dramatic as it is in T2-weighted imaging. We evaluated the T1-FSE sequence to determine whether this technique can replace the conventional T1-weighted spin-echo (T1-SE) sequence for routine contrast-enhanced imaging. METHODS: Sixty-nine patients with intracranial enhancing lesions underwent both T1-SE and T1-FSE sequences in a random order after administration of contrast agent. Acquisition time was 55 seconds for the T1-FSE sequence and 2 minutes 38 seconds for the SE sequence. The conspicuity of enhancing lesions, peritumoral edema, and gray-to-white matter contrast as well as motion and flow artifacts were analyzed. Signal-to-noise ratios of enhancing lesions, gray matter, and white matter as well as contrast-to-noise ratios (CNRs) of enhancing lesions, with gray matter with white matter as the standard, were calculated. RESULTS: The conspicuity of enhancing lesions was better on T1-FSE sequences than on T1-SE sequences, although the difference in the CNRs of enhancing lesions did not reach significance. Images obtained with the T1-FSE sequence showed less flow and motion artifacts than did those obtained with the T1-SE sequence. The conspicuity of peritumoral edema and gray-to-white matter contrast was lower on the T1-FSE images than on the T1-SE images. CONCLUSION: The T1-FSE sequence reduces imaging time and has the potential to replace the conventional T1-SE sequence for the evaluation of enhancing lesions in the brain when time is a consideration.  相似文献   

2.
Purpose: Contrast-enhanced T1-weighted black-blood fast spin-echo MR imaging (BB-FSE) was performed to suppress enhancing venous signal and flow artifacts in the brain without sacrificing the T1-weighted imaging contrast.Material and Methods: Twenty-five MR imaging sections (17 transverse and 8 coronal images) in 15 patients with various brain diseases were obtained by contrast-enhanced T1-weighted SE and BB-FSE images.Results: In contrast-enhanced T1-weighted BB-FSE images, venous signal was significantly less and T1-weighted contrast of the brain was more evident. No differences in flow artifacts were found between the two imaging techniques. The interobserver agreements were good for the venous signal and flow artifacts using both techniques.Conclusion: Contrast-enhanced T1-weighted BB-FSE imaging reduced the venous signal in the brain with maintaining T1-weighted contrast. This novel MR technique can be used when the suppression of enhancing venous signal is expected to improve the depiction of enhancing lesions in the brain.  相似文献   

3.
4.
5.
Multi-shot echo-planar fluid-attenuated inversion-recovery (EPI-Flair) was compared with spin-echo T1-weighted (SE-T1W), fast SE T2-weighted (FSE-T2W), and fast Flair (F-Flair) in imaging brain tumors. In 32 patients with various different brain tumors, three reviewers independently evaluated image quality. Two reviewers evaluated the image quality of precontrast EPI-Flair to be significantly better than that of precontrast SE-T1W. Two reviewers evaluated the image quality of postcontrast EPI-Flair as superior to that of postcontrast SE-T1W. Artifacts on postcontrast EPI-Flair were significantly more prominent than those on postcontrast F-Flair. Multi-shot EPI-Flair appeared to be superior to SE-T1W, and almost equivalent to FSE-T2W in terms of image quality.  相似文献   

6.
The pelvis: T2-weighted fast spin-echo MR imaging.   总被引:4,自引:0,他引:4  
Fast spin-echo (SE) T2-weighted magnetic resonance (MR) imaging provides images with highly T2-weighted contrast in substantially reduced imaging times. In a prospective evaluation, fast SE T2-weighted imaging of the pelvis was compared with conventional SE T2-weighted imaging in 30 consecutive patients in whom pelvic pathologic conditions were suspected. Three reviewers independently analyzed the images for (a) overall image quality, (b) pelvic organ definition, (c) conspicuity of pelvic fluid, and (d) conspicuity of pelvic pathologic conditions. Fast SE images were rated superior to conventional SE T2-weighted images in 60% (54 of 90) of the case reviews for overall image quality, in 69% (62 of 90) for pelvic organ definition, in 63% (57 of 90) for conspicuity of pelvic fluid, and in 68% (43 of 63) for conspicuity of pelvic pathologic conditions. The fast SE examinations were typically three to four times faster than conventional SE T2-weighted examinations. No pathologic findings seen on conventional SE T2-weighted images were undetected on fast SE images. Fast SE images may replace conventional SE T2-weighted images in MR imaging of the pelvis.  相似文献   

7.
8.
9.
PURPOSE: To investigate the role of ferucarbotran-enhanced dynamic MR imaging using multishot spin-echo echo-planar sequence in the evaluation of hemodynamics of focal hepatic lesions. MATERIALS AND METHODS: Sixty-three focal hepatic lesions (24 benign and 39 malignant) from 53 consecutive patients who underwent both ferucarbotran-enhanced MR imaging and dynamic computed tomography (CT) were included in this study. MR imaging was performed with a 1.5-T scanner with a phased-array coil. T2-weighted multishot spin-echo echo-planar sequences (TR/TE = 1714-2813/80 msec) were obtained during a single breathhold before and 15, 60, 120, 180, and 600 seconds after intravenous injection of ferucarbotran. The enhancement patterns of lesions were classified into three categories by a study coordinator on the basis of dynamic CT images as hypervascular, hypovascular, and hemangioma type. The study coordinator created mean contrast-to-noise ratio of lesions vs. time curves for each enhancement pattern for quantitative analyses. Moreover, three radiologists separately and blindly reviewed MR images, and then assigned three confidence scores for the three enhancement patterns to each lesion. Sensitivity, specificity, and receiver operating characteristic analyses were performed. RESULTS: Quantitative analyses showed characteristic enhancement curves for each enhancement pattern. Mean sensitivities/specificities were 0.816/0.882, 0.897/0.863, and 0.800/0.989 for hypervascular, hypovascular, and hemangioma types, respectively. Mean areas under the receiver operating characteristic curve were 0.886 for hypervascular type and 0.913 for hypovascular type. CONCLUSION: Ferucarbotran-enhanced dynamic MR imaging can be used to successfully characterize the hemodynamics of focal hepatic lesions.  相似文献   

10.
11.
PURPOSE: To evaluate the diagnostic value of an imaging protocol that combines dynamic contrast-enhanced T1-weighted magnetic resonance (MR) imaging and T2*-weighted first-pass perfusion imaging in patients with breast tumors and to determine if T2*-weighted imaging can provide additional diagnostic information to that obtained with T1-weighted imaging. MATERIALS AND METHODS: One hundred thirty patients with breast tumors underwent MR imaging with dynamic contrast-enhanced T1-weighted imaging of the entire breast, which was followed immediately with single-section, T2*-weighted imaging of the tumor. RESULTS: With T2*-weighted perfusion imaging, 57 of 72 carcinomas but only four of 58 benign lesions had a signal intensity loss of 20% or more during the first pass, for a sensitivity of 79% and a specificity of 93%. With dynamic contrast-enhanced T1-weighted imaging, 64 carcinomas and 19 benign lesions showed a signal intensity increase of 90% or more in the first image obtained after the administration of contrast material, for a sensitivity of 89% and a specificity of 67%. CONCLUSION: T2*-weighted first-pass perfusion imaging can help differentiate between benign and malignant breast lesions with a high level of specificity. The combination of T1-weighted and T2*-weighted imaging is feasible in a single patient examination and may improve breast MR imaging.  相似文献   

12.
The BLADE and PROPELLER (periodically rotated overlapping parallel lines with enhanced reconstruction) techniques have been proposed to reduce the effect of head motion. Preliminary results have shown that BLADE also reduces pulsation artifacts from venous sinuses. The purpose of this study was to compare T1-weighted FLAIR acquired with BLADE (T1W-FLAIR BLADE) and T1-weighted spin-echo (T1W-SE) for the detection of contrast enhancement in a phantom and in patients with suspected brain lesions and to compare the degree of flow-related artifacts in the patients. A phantom filled with diluted Gd-DTPA was scanned in addition to 27 patients. In the phantom study, the peak contrast-to-noise ratio of T1W-FLAIR BLADE was larger than that of T1W-SE, and the position of the peak was shifted to a lower concentration. In patients, the degree of flow-related artifacts was significantly higher in T1W-SE. Among the 27 patients, 9 had metastatic tumor, and 18 did not. On a patient-by-patient basis, the sensitivity and specificity for the detection of metastatic lesions on axial T1W-SE were 100% and 55.6% respectively, while on axial T1W-FLAIR BLADE they were 100% and 100%. T1W-FLAIR BLADE seems to be capable of replacing T1W-SE, at least for axial post-contrast imaging to detect brain metastases.  相似文献   

13.
Mitchell  DG; Vinitski  S; Burk  DL  Jr; Levy  D; Rifkin  MD 《Radiology》1989,171(2):525-529
Dependence on T1 contrast can be reduced by changing the excitation flip angle. The authors compared T2-weighted spin-echo images (with 30 degrees and 90 degrees flip angles) of the male and female pelvis in 22 individuals. In six women imaged with a 1,000/80 sequence (repetition time msec/echo time msec), signal difference-to-noise ratios (SD/Ns) were higher with a 30 degree flip angle than with a 90 degree angle for urine/fat (mean, 15.2 vs -6.2; P less than .05) and endometrium/myometrium (13.8 vs 9.0, P less than .05). In eight additional examinations, a 1,000/80 sequence with a 30 degree flip angle and two signal averages had less motion artifact (1.2 vs 2.7, P less than .01) than a 2,000/80 sequence with a 90 degree angle and one signal average (4.5 minutes each); SD/Ns were similar. In a third series of experiments, contiguous sections without cross talk, obtained by interleaving two 1,000/100, 30 degrees-flip-angle acquisitions, had better contrast than contiguous sections obtained at 2,400/100 with a 90 degree flip angle (10 minutes each), with SD/Ns of urine/fat of 28.5 versus 16.1 (P less than .01) and SD/Ns of endometrium/myometrium of 15.5 versus 7.8 (P less than .05). Reducing the flip angle can improve examination time, contrast, or motion artifact suppression or eliminate cross talk in T2-weighted spin-echo MR imaging of the pelvis.  相似文献   

14.
The authors prospectively compared four T2-weighted magnetic resonance (MR) sequences, including high-resolution 512 × 512 (matrix size) RARE (rapid acquisition with relaxation enhancement), 256 × 256 RARE, 128 × 256 breath-hold RARE, and 192 × 256 fat-suppressed spin-echo (T2FS) sequences, in the evaluation of 16 patients with focal hepatic masses. MR images were evaluated by quantitative lesion-liver signal difference-to-noise ratios (SDNRs) and subjective evaluation of image artifact and image quality. No significant differences were observed between RARE sequences in SDNR values. The T2FS sequence had a significantly higher SDNR than the 512 × 512 RARE sequence (24.6 ± 15.0 vs 14.5 ± 9.7) (P =.008). Image quality was rated highest for the 512 × 512 RARE and T2FS sequences (P =.006). The inherent advantage of high spatial resolution suggests that the 512 × 512 RARE sequence may be of value in detecting hepatic lesions.  相似文献   

15.
16.
The aim of the present study was to assess the performance of pre-biopsy T2-weighted MR imaging using multishot echo-planar imaging (EPI) sequence for visualization of prostate cancer and to compare image quality with that of fast spin-echo (FSE) sequence. Thirty-nine patients with suspected prostate cancer and one healthy male volunteer were examined on a 1.5-T MR scanner equipped with a pelvic phased-array coil. Axial MR images were obtained using multishot EPI sequence with a multishot number of 16 and FSE sequence without fat suppression. Paired EPI and FSE images were independently evaluated by three radiologists. Furthermore, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were compared between EPI and FSE images of 12 pathologically proven lesions of prostate cancer. Delineation of the periprostatic venous plexus, prostate zonal anatomy, and seminal vesicle on EPI was graded to be superior/inferior to FSE in 15.8/0, 14.6/0, and 21.5/4.3% of cases, respectively. On the other hand, delineation of the neurovascular bundle was superior/inferior to FSE in 2.6/13.2% of cases. The SNR and CNR of prostate cancer on EPI were significantly higher than those on FSE (7.99±2.51 vs 3.36±0.58, p<0.0001, and 5.51±2.02 vs 2.21±0.79, p<0.0001, respectively). In conclusion, multishot EPI has higher quality of contrast resolution for imaging of prostate cancer compared with FSE and would have the potential usefulness in the detection of prostate cancer, although these results obtained with a phased-array coil cannot be extrapolated to examinations performed with an endorectal coil.  相似文献   

17.

Objective

To qualitatively and quantitatively compare T2-weighted MR imaging of the liver using volumetric spin-echo with sampling perfection with application-optimized contrast using different flip angle evolutions (SPACE) with conventional turbo spin-echo (TSE) sequence for fat-suppressed T2-weighted MR imaging of the liver.

Materials and methods

Thirty-three patients with suspected focal liver lesions had SPACE MR imaging and conventional fat-suppressed TSE MR imaging. Images were analyzed quantitatively by measuring the lesion-to-liver contrast-to-noise ratio (CNR), and the signal-to-noise ratio (SNR) of main focal hepatic lesions, hepatic and splenic parenchyma and qualitatively by evaluating the presence of vascular, respiratory motion and cardiac artifacts. Wilcoxon signed rank test was used to search for differences between the two sequences.

Results

SPACE MR imaging showed significantly greater CNR for focal liver lesions (median = 22.82) than TSE MR imaging (median = 14.15) (P < .001). No differences were found for SNR of hepatic parenchyma (P = .097), main focal hepatic lesions (P = .35), and splenic parenchyma (P = .25). SPACE sequence showed less artifacts than TSE sequence (vascular, P < .001; respiratory motion, P < .001; cardiac, P < .001) but needed a longer acquisition time (228.4 vs. 162.1 s; P < .001).

Conclusion

SPACE MR imaging provides a significantly increased CNR for focal liver lesions and less artifacts by comparison with the conventional TSE sequence. These results should stimulate further clinical studies with a surgical standard of reference to compare the two techniques in terms of sensitivity for malignant lesions.  相似文献   

18.
19.
PURPOSE: Dynamic contrast-enhanced T2*-weighted MR imaging has been helpful in characterizing intracranial mass lesions by providing information on vascularity. Tumefactive demyelinating lesions (TDLs) can mimic intracranial neoplasms on conventional MR images, can be difficult to diagnose, and often result in surgical biopsy for suspected tumor. The purpose of this study was to determine whether dynamic contrast-enhanced T2*-weighted MR imaging can be used to distinguish between TDLs and intracranial neoplasms that share common features on conventional MR images. METHODS: We retrospectively reviewed the conventional and dynamic contrast-enhanced T2*-weighted MR images and medical records of 10 patients with tumefactive demyelinating disease that was diagnosed by either biopsy or strong clinical suspicion supported by laboratory evaluation that included CSF analysis and evoked potential tests. Twelve TDLs in 10 patients and 11 brain tumors that appeared similar on conventional MR images were studied. Relative cerebral blood volume (rCBV) was calculated from dynamic MR data and was expressed as a ratio to contralateral normal white matter. rCBV values from 11 patients with intracranial neoplasms with very similar conventional MR imaging features were used for comparison. RESULTS: The rCBV values of TDLs ranged from 0.22 to 1.79 (n = 12), with a mean of 0.88 +/- 0.46 (SD). The rCBV values of intracranial neoplasms ranged from 1.55 to 19.20 (n = 11), with a mean of 6.47 +/- 6.52. The difference in rCBV values between the two groups was statistically significant (P =.009). The difference in rCBV values between TDLs and primary cerebral lymphomas (n = 4) was less pronounced but was statistically significant (P =.005). CONCLUSION: Dynamic contrast-enhanced T2*-weighted MR imaging is a useful diagnostic tool in differentiating TDLs from intracranial neoplasms and may therefore obviate unnecessary surgical biopsy.  相似文献   

20.
OBJECTIVE: The objective of our study was to evaluate the efficacy of single breath-hold T2-weighted MR imaging for detection of focal hepatic lesions. MATERIALS AND METHODS: T2-weighted MR images were retrospectively reviewed from 51 patients with 85 solid and 59 nonsolid lesions using the following four sequences: conventional spin-echo, respiratory-triggered fast spin-echo, single-shot fast spin-echo, and multishot spin-echo echoplanar imaging. Images were reviewed on a hepatic segment-by-segment basis; T2-weighted images of a total of 408 hepatic segments were reviewed separately and independently for solid and nonsolid lesions by four radiologists. Quantitative, qualitative, and receiver operating characteristic analyses were performed. RESULTS: For solid lesions, no significant differences were seen among the lesion-to-liver contrast-to-noise ratios with the four sequences. In terms of solid lesion detection, no significant difference was seen between the diagnostic accuracy of multishot spin-echo echoplanar (Az = 0.90) and respiratory-triggered fast spin-echo (Az = 0.91) imaging, which showed the best performance of the four sequences. For nonsolid lesion detection, respiratory-triggered fast spin-echo and single-shot fast spin-echo imaging were judged the best (Az = 0.94). CONCLUSION: Breath-hold single-shot fast spin-echo and multishot spin-echo echoplanar sequences can be substituted for conventional spin-echo and respiratory-triggered fast spin-echo T2-weighted sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号