首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lung ventilation was mapped in five healthy Brown Norway rats (210–377 g) using both hyperpolarized 3He MRI and Xe‐enhanced computed tomography (Xe‐CT) under similar ventilator conditions. Whole‐lung measurements of ventilation r obtained with 3He MRI were not significantly different from those obtained from Xe‐CT (p = 0.1875 by Wilcoxon matched pairs test). The ventilation parameter r is defined as the fraction of refreshed gas per unit volume per breath. Regional ventilation was also measured in four regions of the lung using both methods. A two‐tailed paired t‐test was performed for each region, yielding p > 0.05 for all but the upper portion of the right lung. The distribution of regional ventilation was evaluated by calculating ventilation gradients in the superior/inferior (S/I) direction. The average S/I gradient obtained using the 3He MRI method was found to be 0.17 ± 0.04 cm?1, whereas the average S/I gradient obtained using the Xe‐CT method was found to be 0.016 ± 0.005 cm?1. In general, S/I ventilation gradients obtained from both methods were significantly different from each other (p = 0.0019 by two‐tailed paired t‐test). These regional differences in ventilation measurements may be caused by the manner in which the gas contrast agents distribute physiologically and/or by the imaging modality. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
The apparent diffusion coefficient (ADC) of hyperpolarized (HP) gases is a parameter that reflects changes in lung microstructure. However, ADC is dependent on many physiological and experimental variables that need to be controlled or specified in order to ensure the reliability and reproducibility of this parameter. A single breath-hold experiment is desirable in order to reduce the amount of consumed HP gas. The application of a positive end-expiratory pressure (PEEP) causes an increase in the residual gas volume. Depending on the applied PEEP, the ratio between the incoming and residual gas volumes will change and the ADC will vary, as long as both gases do not have the same diffusion coefficient. The most standard method for human applications uses air for breathing and a bolus of pure HP (3)He for MRI data acquisition. By applying this method in rats, we have demonstrated that ADC values are strongly dependent on the applied PEEP, and therefore on the residual gas volume in the lung. This outcome will play an important role in studies concerning certain diseases, such as emphysema, which is characterized by an increase in the residual volume. Ventilation with an oxygen-helium mixture (VOHeM) is a proposed single breath-hold method that uses two different gas mixtures (O(2)-(4)He for ventilation and HP (3)He-N(2) for imaging). The concentration of each gas in its respective mixture was calculated in order to obtain the same diffusion coefficient in both mixtures. ADCs obtained from VOHeM are independent of PEEP, thus minimizing the effect of the different residual volumes.  相似文献   

3.
A non-invasive and free-breathing hyperpolarized (HP) (3)He imaging protocol for small animals was implemented and validated on rats for lung function imaging. Animals were allowed to breathe a mixture of air and (3)He from a mask and a gas reservoir fitted to their heads. Radial imaging sequences were used, and MRI signal intensity changes were monitored for retrospective cine image reconstruction. The ventilation cycle of the animals was imaged with a 100 ms temporal resolution. The sliding window imaging technique was applied to reconstruct 5 ms time-shifted image series covering the complete breathing cycle. Image series were processed to extract quantitative ventilation parameters such as the gas arrival time. The reproducibility and the non-invasiveness of this ventilation imaging protocol were evaluated by multiple acquisitions on the same animals.  相似文献   

4.
The current standard for noninvasive imaging of acute rejection consists of X‐ray/CT, which derive their contrast from changes in ventilation, inflammation and edema, as well as remodeling during rejection. We propose the use of hyperpolarized [1‐13C] pyruvate MRI—which provides real‐time metabolic assessment of tissue—as an early biomarker for tissue rejection. In this preliminary study, we used μCT‐derived parameters and HP 13C MR‐derived biomarkers to predict rejection in an orthotopic left lung transplant model in both allogeneic and syngeneic rats. On day 3, the normalized lung density—a parameter that accounts for both lung volume (mL) and density (HU)—was ?0.335 (CI: ‐0.598, ?0.073) and ? 0.473 (CI: ‐0.726, ?0.220) for the allograft and isograft, respectively (not significant, 0.40). The lactate‐to‐pyruvate ratios—derived from the HP 13C MRI—for the allograft and isograft were 0.200 (CI: 0.161, 0.240) and 0.114 (CI: 0.074, 0.153), respectively (significant, 0.020). Both techniques showed tissue rejection on day 7. A separate sub‐study revealed CD8+ cells as the primary source of the lactate‐to‐pyruvate signal. Our study suggests that hyperpolarized (HP) [1‐13C] pyruvate MRI is a promising early biomarker for tissue rejection that provides metabolic assessment in real time based on changes in cellularity and metabolism of lung tissue and the infiltrating inflammatory cells, and may be able to predict tissue rejection earlier than X‐ray/CT.  相似文献   

5.
Intracortical bone porosity is a key microstructural parameter that determines bone mechanical properties. While clinical MRI visualizes the cortical bone with a signal void, ultrashort echo time (UTE) MRI can acquire high signal from cortical bone, thus enabling quantitative assessments. Magnetization transfer (MT) imaging combined with UTE‐MRI can indirectly assess protons in the bone collagenous matrix, which are inversely related to porosity. This study aimed to examine UTE‐MT MRI techniques to evaluate intracortical bone porosity. Eighteen human cortical bone specimens from the tibial and fibular midshafts were scanned using UTE‐MT sequences on a clinical 3 T MRI scanner and on a high‐resolution micro‐computed tomography (μCT) scanner. A series of MT pulse saturation powers (500°, 1000°, 1500°) and frequency offsets (2, 5, 10, 20, 50 kHz) were used to measure the macromolecular fraction (MMF) and macromolecular T2 (T2MM) using a two‐pool MT model. The measurements were made on 136 different regions of interest (ROIs). ROIs were selected at three cortical bone layers (from endosteum to periosteum) and four anatomical sites (anterior, mid‐medial, mid‐lateral, and posterior) to provide a wide range of porosity. MMF showed moderate to strong correlations with intracortical bone porosity (R = ?0.67 to ?0.73, p < 0.01) and bone mineral density (BMD) (R = +0.46 to +0.70, p < 0.01). Comparing the average MMF between cortical bone layers revealed a significant increase from the endosteum towards the periosteum. Such a pattern was in agreement with porosity reduction and BMD increase towards the periosteum. These results suggest that the two‐pool UTE‐MT technique can potentially serve as a novel and accurate tool to assess intracortical bone porosity.  相似文献   

6.
Hyperpolarized (HP) 3He magnetic resonance imaging has been recently used to produce high‐resolution images of pulmonary ventilation after methacholine (MCh) challenge in mouse models of allergic inflammation. This capability presents an opportunity to gain new insights about these models and to more sensitively evaluate new drug treatments in the pre‐clinical setting. In the current study, we present our initial experience using two‐dimensional (2D), time‐resolved 3He MRI of MCh challenge‐induced airways hyperreactivity (AHR) to compare ovalbumin‐sensitized and challenged (N = 8) mice to controls (N = 8). Imaging demonstrated that ovalbumin‐sensitized and challenged animals exhibited many large ventilation defects even prior to MCh challenge (four out of eight) compared to no defects in the control animals. Additionally, the ovalbumin‐sensitized and challenged animals experienced a greater number of ventilation defects (4.5 ± 0.4) following MCh infusion than did controls (3.3 ± 0.6). However, due to variability in MCh delivery that was specific to the small animal MRI environment, the difference in mean defect number was not statistically significant. These findings are reviewed in detail and a comprehensive solution to the variability problem is presented that has greatly enhanced the magnitude and reproducibility of the MCh response. This has permitted us to develop a new imaging protocol consisting of a baseline 3D image, a time‐resolved 2D series during MCh challenge, and a post‐MCh 3D image that reveals persistent ventilation defects. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
To date, there have been no prospective, objective studies comparing the accuracy of the MRI, myelo-CT and myelography. The purpose of this study is to compare the diagnostic and predictive values of MRIs, myelo-CTs, and myelographies. Myelographies with dynamic motion views, myelo-CTs, MRIs and exercise treadmill tests were performed in 35 cases. The narrowest AP diameter of the dural sac was measured by myelography. At the pathologic level, dural cross-sectional area (D-CSA) was calculated in the MRI and Myelo-CT. The time to the first symptoms (TAF) and the total ambulation time (TAT) were measured during the exercise treadmill test and used as the standard in the comparison of correlation between radiographic parameters and walking capacity. The mean D-CSA by CT was 58.3 mm(2) and 47.6 mm(2) by MRI. All radiographic parameters such as AP diameters and D-CSA have no correlation to TAF or TAT (p > 0.05). Our data showed no statistically significant differences in the correlation of the patients' walking capacity to the severity of stenosis as assessed by myelography, myelo-CT and MRI.  相似文献   

8.
During the measurement of hyperpolarized 129Xe magnetic resonance imaging (MRI), the diffusion‐weighted imaging (DWI) technique provides valuable information for the assessment of lung morphometry at the alveolar level, whereas the chemical shift saturation recovery (CSSR) technique can evaluate the gas exchange function of the lungs. To date, the two techniques have only been performed during separate breaths. However, the request for multiple breaths increases the cost and scanning time, limiting clinical application. Moreover, acquisition during separate breath‐holds will increase the measurement error, because of the inconsistent physiological status of the lungs. Here, we present a new method, referred to as diffusion‐weighted chemical shift saturation recovery (DWCSSR), in order to perform both DWI and CSSR within a single breath‐hold. Compared with sequential single‐breath schemes (namely the ‘CSSR + DWI’ scheme and the ‘DWI + CSSR’ scheme), the DWCSSR scheme is able to significantly shorten the breath‐hold time, as well as to obtain high signal‐to‐noise ratio (SNR) signals in both DWI and CSSR data. This scheme enables comprehensive information on lung morphometry and function to be obtained within a single breath‐hold. In vivo experimental results demonstrate that DWCSSR has great potential for the evaluation and diagnosis of pulmonary diseases.  相似文献   

9.
With the use of a commonly utilized animal model of rheumatoid arthritis, the central goal of this work was to determine how well the small-animal imaging tools, small-animal MRI (microMRI) and small-animal X-ray computed tomography (microCT), can detect very early histological changes that occur immediately after induction of the disease. Arthritis was induced in rats by injecting complete Freund's adjuvant into the tail. Right hind paws of living rats were evaluated with 4.7 T microMRI with T1-weighted spin echo and inversion recovery sequences. Paw specimens were also evaluated with microCT and by histological examination (n = 29). MicroMR images were scored for the presence of joint effusion, soft tissue swelling, bone marrow changes, and bone erosions. MicroCT measured bone mineral density (BMD). Histology scores were obtained from representative slides from the same rats. The correlation between BMD, MRI and histology was analyzed using linear regression analysis and analysis of covariance. MRI abnormalities were detected on day 5 after induction as joint effusion and soft tissue swelling, followed by bone marrow changes on day 6 and bone erosion on day 8. BMD measured by microCT decreased, the decrease becoming significant on day 7 (P < 0.019). Soft tissue swelling, joint effusion, and bone erosion scores on microMRI correlated with histology (r2 approximately 0.7). Bone marrow changes were seen more clearly with microMRI than by histological examination. Bone loss could be detected earlier by microCT than on histological sections. In conclusion, microMRI and microCT can be used to evaluate early disease changes within 1 week of induction in the adjuvant-induced arthritis model, and have the ability to detect certain manifestations of disease earlier than histological analysis. The use of small-animal imaging techniques potentially allows earlier diagnosis, improved subject stratification, earlier drug implementation, and therefore improved drug trials in animal models of rheumatoid arthritis.  相似文献   

10.
In hyperpolarised (3)He lung MRI with constant flip angles, the transverse magnetisation decays with each RF excitation imposing a k-space filter on the acquired data. For radial data acquired in an angularly-sequential order, this filter causes streaking, angular shading and loss of spatial resolution in the images. The main aim of this work was to reduce the effects of the RF depletion k-space filter in radial acquisitions. Two approaches are presented; (i) retrospective deconvolution of the k-space filter for sequentially-acquired data and (ii) golden angle acquisition order. Radial trajectories sample the centre of k-space with every projection, thereby self-tracking signal decay. The inverse of the signal decay function was used to retrospectively deconvolve RF depolarisation k-space filter effects and the method was demonstrated in 2D radial imaging in phantoms and human lungs. A golden angle radial acquisition was shown to effectively suppress artefacts caused by the RF depletion k-space filter. In addition, the average flip angle per slice was calculated from the signal decay and the values were found to correspond with conventional flip angle maps, providing a means of flip angle self-calibration.  相似文献   

11.
Although seen frequently during dissections and autopsies, Hyperostosis frontalis interna (HFI) – a morphological pattern of the frontal bone thickening – is often ignored and its nature and development are not yet understood sufficiently. Current macroscopic classification defines four grades/stages of HFI based on the morphological appearance and size of the affected area; however, it is unclear if these stages also depict the successive phases in the HFI development. Here we assessed 3D‐microarchitecture of the frontal bone in women with various degrees of HFI expression and in an age‐ and sex‐matched control group, hypothesizing that the bone microarchitecture bears imprints of the pathogenesis of HFI and may clarify the phases of its development. Frontal bone samples were collected during routine autopsies from 20 women with HFI (age: 69.9 ± 11.1 years) and 14 women without HFI (age: 74.1 ± 9.7 years). We classified the HFI samples into four groups, each group demonstrating different macroscopic type or stage of HFI. All samples were scanned by micro‐computed tomography to evaluate 3D bone microarchitecture in the following regions of interest: total sample, outer table, diploe and inner table. Our results revealed that, compared to the control group, the women with HFI showed a significantly increased bone volume fraction in the region of diploe, along with significantly thicker and more plate‐like shaped trabeculae and reduced trabecular separation and connectivity density. Moreover, the inner table of the frontal bone in women with HFI displayed significantly increased total porosity and mean pore diameter compared to controls. Microstructural reorganization of the frontal bone in women with HFI was also reflected in significantly higher porosity and lower bone volume fraction in the inner vs. outer table due to an increased number of pores larger than 100 μm. The individual comparisons between the control group and different macroscopic stages of HFI revealed significant differences only between the control group and the morphologically most pronounced type of HFI. Our microarchitectural findings demonstrated clear differences between the HFI and the control group in the region of diploe and the inner table. Macroscopic grades of HFI could not be distinguished at the level of bone microarchitecture and their consecutive nature cannot be supported. Rather, our study suggests that only two different types of HFI (moderate and severe HFI) have microstructural justification and should be considered further. It is essential to record HFI systematically in human postmortem subjects to provide more data on the mechanisms of its development.  相似文献   

12.
Rapid three‐dimensional imaging of embryos to better understand the complex process of morphogenesis has been challenging. Recently introduced iodine staining protocols (I2KI and alcoholic iodine stains) combined with microscopic X‐ray computed tomography allows visualization of soft tissues in diverse small organisms and tissue specimens. I2KI protocols have been developed specifically for small animals, with a limited number of quantitative studies of soft tissue contrasts. To take full advantage of the low X‐ray attenuation of ethanol and retain bound iodine while dehydrating the specimen in ethanol, we developed an ethanol I2KI protocol. We present comparative microscopic X‐ray computed tomography analyses of ethanol I2KI and I2KI staining protocols to assess the performance of this new protocol to visualize soft tissue anatomy in late stage Japanese quail embryos using quantitative measurements of soft tissue contrasts and sample shrinkage. Both protocols had only 5% shrinkage compared with the original harvested specimen, supporting the use of whole mounts to minimize tissue shrinkage effects. Discrimination within and among the selected organs with each staining protocol and microscopic X‐ray computed tomography imaging were comparable to those of a gray scale histological section. Tissue discrimination was assessed using calibrated computed tomography values and a new discrimination index to quantify the degree of computed tomography value overlaps between selected soft tissue regions. Tissue contrasts were dependent on the depth of the tissue within the embryos before the embryos were saturated with each stain solution, and optimal stain saturations for the entire embryo were achieved at 14 and 28 days staining for I2KI and ethanol I2KI, respectively. Ethanol I2KI provided superior soft tissue contrasts by reducing overstaining of fluid‐filled spaces and differentially modulating staining of some tissues, such as bronchial and esophageal walls and spinal cord. Delineating the selected soft tissues using optimal threshold ranges derived from the quantitative analyses of the contrast enhancement in optimally stained embryos is possible. The protocols presented here are expected to be applicable to other organisms with modifications to staining time and contribute toward rapid and more efficient segmentation of soft tissues for three‐dimensional visualization.  相似文献   

13.
Public distaste for the traditional autopsy combined with disquiet about the variable quality of the coroner’s post-mortem have led to increasing pressure to find a less invasive alternative. There have been previous studies using computed tomography (CT) and magnetic resonance imaging (MRI) to determine cause of death but there is very little evidence of the accuracy or reproducibility of these techniques in non-forensic cases. In 2006 the Department of Health funded a validation study of post-mortem imaging in adults which is due to report this year. Preliminary results suggest that, if a confident imaging (MR and CT) diagnosis of the cause of death is made, the major error rate is close to that of clinical death certificates. There are major weaknesses in diagnosis of coronary heart disease and pulmonary thromboemboli on imaging. These weaknesses will need to be overcome if imaging is to replace the invasive post-mortem or systematic errors in mortality statistics will result.  相似文献   

14.
15.
鼻咽癌靶区及关键组织确定CT与MRI比较可行性研究   总被引:1,自引:0,他引:1  
目的比较CT与MRI对鼻咽癌靶区及关键组织的确定.优化MRI序列以改善对鼻咽癌靶区及关键组织确定。方法8例未经治疗的鼻咽癌患者采用相同的放射治疗体位,面罩阎定,经CT、MRI扫描后,全部CT/MRI图像经网络传输至Ac—QSIM4.9.2配准,按照解剖边界、信号、密度等采用六点评分方法对CT与各序列MRI图像上的各个病变结构(咽旁间隙、颅底、颅内、椎前组织、脊髓、眼球、脑干)显示按级评分。结果各个解剖结构评分如下,咽旁间隙:CT2.750±0.370,T2WI4.250±0.250,T2W14.500±0.380,化学饱和脂肪抑制(FSPGR)增强T1WI5.625±0.180;椎前组织:CT2.000,T1WI4.125±0.230,T2WI5.000±0.190,化学饱和脂肪抑制(FSPGR)增强T1WI5.375±0.375;颅底:CT2.375±0.625,T1WI3.125±0.515,T2WI2.750±0.590,化学饱和脂肪抑制(FSPGR)增强T1WI4.250±0.725;颅内:CT1.000,T1WI1.375±0.375,T2WI1.875±0.580,化学饱和脂肪抑制(FSPGR)增强T1WI2.125±0.740;脊髓:CT4.125±0.230,T1WI6.000,T2W16.000,化学饱和脂肪抑制(FSPGR)增强TIW16.000;脑干:CT3.500±0.190,T1WI6.000、T2WI6.000,化学饱和脂肪抑制(FSPGR)增强T1WI6.000;眼球:CT5.375±0.180,T1WI6.000,T2WI6.000,化学饱和脂肪抑制(FSPGR)增强T1WI6.000。各结构的MRI图像都比CT有更高评分的趋势。结论与CT相比MRI在鼻咽癌靶区、重要器官的确定上有更大的优势,在MRI各序列中化学饱和脂肪抑制(FSPGR)增强T1WI较其他两种序列有更好的判断能力的趋势。在MRI模拟常规用于鼻咽癌放射治疗前,需要进一步研究来证实该研究结果及探讨其几何畸变、扫描时间等问题。  相似文献   

16.
Micro-computed tomography (MCT) is a noninvasive technique for visualizing morphological characteristics of teeth in a detailed and accurate manner, without causing any tooth destruction. A large amount of information can be obtained from such scans. The slices can be recreated in any plane, and the data can be represented as either two-dimensional (2D) or three-dimensional (3D) images. In addition, the internal and external anatomy can be demonstrated simultaneously or separately, and the images can be assessed qualitatively and quantitatively. However, only the qualitative accuracy of MCT had been evaluated previously. The aim of the present study was to evaluate the accuracy of MCT quantitatively by comparing the values obtained by MCT with those of other imaging methods. Twelve teeth were scanned using a desktop X-ray micro-CT scanner, and the images were reconstructed and measured. Values obtained by direct measurement served as the primary reference for linear measurements. Measurements made by a 3D scanner and by photography were additional references. MCT was found to be a reliable method of making linear measurements and may be a useful device for measuring distance and for observing both internal and external tooth structure using the reconstructed 3D form.  相似文献   

17.
Lung cancer is a primary cause of cancer deaths worldwide. Timely detection of this pathology is necessary to delay or interrupt lung cancer progression, ultimately resulting in a possible better prognosis for the patient. In this context, magnetic resonance imaging (MRI) is especially promising. Ultra‐short echo time (UTE) MRI sequences, in combination with gadolinium‐based contrast agents, have indeed shown to be especially adapted to the detection of lung neoplastic lesions at submillimeter precision. Manganese‐enhanced MRI (MEMRI) increasingly appears to be a possible effective alternative to gadolinium‐enhanced MRI. In this work, we investigated whether low‐dose MEMRI can effectively target non‐small‐cell lung cancer in rodents, whilst minimizing the potential toxic effect of manganese. Both systemic and orotracheal administration modalities allowed the identification of tumors of submillimeter size, as confirmed by bioluminescence imaging and histology. Equivalent tumor signal enhancements and contrast‐to‐noise ratios were observed with orotracheal administration using 20 times lower doses compared with the more conventional systemic route. This finding is of crucial importance as it supports the observation that higher performances of contrast agents can be obtained using an orotracheal administration route when targeting lung diseases. As a consequence, lower concentrations of contrast media can be employed, reducing the dose and potential safety issues. The non‐detectable accumulation of ionic manganese in the brain and liver following orotracheal administration observed in vivo is extremely encouraging with regard to the safety of the orotracheal protocol with low‐dose Mn2+ administration. To our knowledge, this is the first time that a study has clearly allowed the high‐precision detection of lung tumor and its contours via the synergic employment of a strongly T1‐weighted MRI UTE sequence and ionic manganese, an inexpensive contrast agent. Overall, these results support the growing interest in drug and contrast agent delivery via the airways to target and diagnose several diseases of the lungs.  相似文献   

18.
Understanding of normal fetal organ development is crucial for the evaluation of the pathogenesis of congenital anomalies. Various techniques have been used to generate imaging of fetal rat organogenesis, such as histological dissection with 3-dimensional reconstruction and scanning electron microscopy. However, these techniques did not imply quantitative measurements of developing organs (volumes, surface areas of organs). Furthermore, a partial or total destruction of the embryos prior to analysis was inevitable. Recently, micro-computed tomography (micro-CT) has been established as a novel tool to investigate embryonic development in non-dissected embryos of rodents. In this study, we used the micro-CT technique to generate 4D datasets of rat embryos aged between embryonic day 15–22 and newborns. Lungs, hearts, diaphragms, and livers were digitally segmented in order to measure organ volumes and analyze organ development as well as generate high-resolution 3D images. These data provide objective values compiling a 4D atlas of pulmonary, cardiac, diaphragmatic, and hepatic development in the fetal rat.  相似文献   

19.
PET/MRI仪器研发是过去15年多模态分子影像仪器研发的热点。本文首先介绍PET和MRI成像的特点及PET/MRI多模态成像的优势;其次介绍PET/MRI仪器的早期研发历史;随后着重介绍几个重要的磁兼容小动物原型系统和商用临床PET/MRI系统;最后介绍PET/MRI仪器研发近期进展,对今后PET/MRI仪器研发和应用研究进行展望。  相似文献   

20.
Dissolution dynamic nuclear polarization (DNP) enables the metabolism of hyperpolarized 13C‐labelled molecules, such as the conversion of [1‐13C]pyruvate to [1‐13C]lactate, to be dynamically and non‐invasively imaged in tissue. Imaging of this exchange reaction in animal models has been shown to detect early treatment response and correlate with tumour grade. The first human DNP study has recently been completed, and, for widespread clinical translation, simple and reliable methods are necessary to accurately probe the reaction in patients. However, there is currently no consensus on the most appropriate method to quantify this exchange reaction. In this study, an in vitro system was used to compare several kinetic models, as well as simple model‐free methods. Experiments were performed using a clinical hyperpolarizer, a human 3 T MR system, and spectroscopic imaging sequences. The quantitative methods were compared in vivo by using subcutaneous breast tumours in rats to examine the effect of pyruvate inflow. The two‐way kinetic model was the most accurate method for characterizing the exchange reaction in vitro, and the incorporation of a Heaviside step inflow profile was best able to describe the in vivo data. The lactate time‐to‐peak and the lactate‐to‐pyruvate area under the curve ratio were simple model‐free approaches that accurately represented the full reaction, with the time‐to‐peak method performing indistinguishably from the best kinetic model. Finally, extracting data from a single pixel was a robust and reliable surrogate of the whole region of interest. This work has identified appropriate quantitative methods for future work in the analysis of human hyperpolarized 13C data. © 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号