首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Introduction: α1‐syntrophin, a member of the dystrophin complex, recruits membrane molecules, including aquaporin‐4, at the sarcolemma. The physiological functions of α1‐syntrophin are poorly understood. Methods: We examined the physiological characteristics of α1‐syntrophin–deficient muscles under osmotic stress conditions to test the possibility that mutant muscles are less tolerant of osmotic shock. Results: Isolated muscle bundles from mutant mice showed markedly reduced force production after hypo‐osmotic shock. In addition, the mutant muscle bundles showed delayed recovery of specific gravity after being exposed to hypo‐osmotic conditions. Two consecutive exercise tests on the treadmill revealed their performance in the second test was significantly lower than for wild‐type mice. Furthermore, mutant mice had higher serum lactate concentrations after treadmill exercise. Conclusions: Although the lack of α1‐syntrophin from the sarcolemma does not lead to muscle degeneration, our results suggest that it may be partly involved in the pathophysiology of dystrophin‐deficient Duchenne muscular dystrophy. Muscle Nerve 49 : 728–735, 2014  相似文献   

2.
In vitro, D2 dopamine receptors (DAR) can exist in low‐ and high‐affinity states for agonists and increases of D2 receptors in high‐affinity state have been proposed to underlie DA receptor supersensitivity in vivo. Deletion of the gene for dopamine β‐hydroxylase (DBH) causes mice to become hypersensitive to the effects of psychostimulants, and in vitro radioligand binding results suggest an increased percentage of D2 receptors in a high‐affinity state. To determine whether DBH knockout mice display an increase of high‐affinity state D2 receptors in vivo, we scanned DBH knockout and control mice with the agonist PET radioligand [11C]MNPA, which is thought to bind preferentially to the high‐affinity state of the D2 receptor. In addition, we performed in vitro binding experiments on striatal homogenates with [3H]methylspiperone to measure Bmax values and the percentages of high‐ and low‐affinity states of the D2 receptor. We found that the in vivo striatal binding of [11C]MNPA was similar in DBH knockout mice and heterozygous controls and the in vitro Bmax values and percentages of D2 receptors in the high‐affinity state, were not significantly different between these two groups. In summary, our results suggest that DBH knockout mice have normal levels of D2 receptors in the high‐affinity state and that additional mechanisms contribute to their behavioral sensitivity to psychostimulants. Synapse 64:699–703, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
4.
Through a multiprotein complex, glycogen synthase kinase‐3β (GSK‐3β) phosphorylates and destabilizes β‐catenin, an important signaling event for neuronal growth and proper synaptic function. δ‐Catenin, or NPRAP (CTNND2), is a neural enriched member of the β‐catenin superfamily and is also known to modulate neurite outgrowth and synaptic activity. In this study, we investigated the possibility that δ‐catenin expression is also affected by GSK‐3β signaling and participates in the molecular complex regulating β‐catenin turnover in neurons. Immunofluorescent light microscopy revealed colocalization of δ‐catenin with members of the molecular destruction complex: GSK‐3β, β‐catenin, and adenomatous polyposis coli proteins in rat primary neurons. GSK‐3β formed a complex with δ‐catenin, and its inhibition resulted in increased δ‐catenin and β‐catenin expression levels. LY294002 and amyloid peptide, known activators of GSK‐3β signaling, reduced δ‐catenin expression levels. Furthermore, δ‐catenin immunoreactivity increased and protein turnover decreased when neurons were treated with proteasome inhibitors, suggesting that the stability of δ‐catenin, like that of β‐catenin, is regulated by proteasome‐mediated degradation. Coimmunoprecipitation experiments showed that δ‐catenin overexpression promoted GSK‐3β and β‐catenin interactions. Primary cortical neurons and PC12 cells expressing δ‐catenin treated with proteasome inhibitors showed increased ubiquitinated β‐catenin forms. Consistent with the hypothesis that δ‐catenin promotes the interaction of the destruction complex molecules, cycloheximide treatment of cells overexpressing δ‐catenin showed enhanced β‐catenin turnover. These studies identify δ‐catenin as a new member of the GSK‐3β signaling pathway and further suggest that δ‐catenin is potentially involved in facilitating the interaction, ubiquitination, and subsequent turnover of β‐catenin in neuronal cells. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
6.
Human AChE-enzyme (hAChE) enhances the over-expression of beta-amyloid (Abeta) containing plaques in the brain of transgenic mice (APP(SWE)/hAChE-Tg) carrying mutated genes for human amyloid precursor protein (APP(SWE)) and hAChE. In this study, we showed that interaction of hAChE with Abeta affects the plasticity of the alpha7 nicotinic acetylcholine receptors (nAChRs) both in the brain and adrenal medulla. An age-related increase in the (125)I-alphabungarotoxin ((125)I-alphaBTX) binding (specific to alpha7 nAChRs) was observed in the adrenal medulla of 3, 7 and 10 months old control mice. In contrast, a significant decrease in (125)I-alphaBTX binding was detected in the adrenal medulla of 10 months old APP(SWE)/hAChE-Tg. A significantly higher alpha7 nAChR mRNA level was observed in the brain of APP(SWE)/hAChE-Tg at 3 and 7 months of age and in the adrenal medulla at 3 and 10 months of age compared to those of the control mice. The alpha3 nAChR mRNA level was significantly higher in the brain of APP(SWE)/hAChE-Tg at 3 months of age and in the adrenal medulla at 10 months of age. The alpha4 nAChR mRNA level remained unchanged in the brain and adrenal medulla of APP(SWE)/hAChE-Tg for all age groups. Based on these observations, we conclude that a high load of Abeta and an over-expression of hAChE induce differences in the expression of the nAChR subtypes at various ages in the brain and in the adrenal medulla of hAChE/APP(SWE)Tg mice. The findings may have implications for a better understanding the underlying mechanism for AD-related pathogenesis.  相似文献   

7.
8.
9.
Neurotrophin‐3 (NT‐3) is a trophic factor that is essential for the normal development and maintenance of proprioceptive sensory neurons and is widely implicated as an important modulator of synaptic function and development. We have previously found that animals lacking NT‐3 have a number of structural abnormalities in peripheral nerves and skeletal muscles. Here we investigated whether haploinsufficiency‐induced reduction in NT‐3 resulted in impaired neuromuscular performance and synaptic function. Motor nerve terminal function was tested by monitoring the uptake/release of the fluorescent membrane dye FM1‐43 by the electrophysiological examination of synaptic transmission and electron microscopic determination of synaptic vesicle density at the presynaptic active zone. We investigated skeletal muscle form and function by measuring force in response to both nerve‐mediated and direct muscle stimulation and by quantification of fiber number and area from transverse sections. Synaptic transmission was not markedly different between the two groups, although the uptake and release of FM1‐43 were impaired in mature NT‐3‐deficient mice but not in immature mice. The electron microscopic examination of mature nerve terminals showed no genotype‐dependent variation in the number of synaptic vesicles near the active zone. NT‐3+/? mice had normal soleus muscle fiber numbers but their fibers had smaller cross‐sectional areas and were more densely‐packed than wild‐type littermates. Moreover, the muscles of adult NT‐3‐deficient animals were weaker than those of wild‐type animals to both nerve and direct muscle stimulation. The results indicate that a reduction in NT‐3 availability during development impairs motor nerve terminal maturation and synaptic vesicle recycling and leads to a reduction in muscle fiber diameter.  相似文献   

10.
11.
The aggregation of β‐amyloid protein (Aβ) and α‐synuclein (αS) are hypothesized to be the key pathogenic event in Alzheimer's disease (AD) and Lewy body diseases (LBD), with oligomeric assemblies thought to be the most neurotoxic. Inhibitors of oligomer formation, therefore, could be valuable therapeutics for patients with AD and LBD. Here, we examined the effects of antiparkinsonian agents (dopamine, levodopa, trihexyphenidyl, selegiline, zonisamide, bromocriptine, peroxide, ropinirole, pramipexole, and entacapone) on the in vitro oligomer formation of Aβ40, Aβ42, and αS using a method of photo‐induced cross‐linking of unmodified proteins (PICUP), electron microscopy, and atomic force microscopy. The antiparkinsonian agents except for trihexyphenidyl inhibited both Aβ and αS oligomer formations, and, among them, dopamine, levodopa, pramipexole, and entacapone had the stronger in vitro activity. Circular dichroism and thioflavin T(S) assays showed that secondary structures of Aβ and αS assemblies inhibited by antiparkinsonian agents were statistical coil state and that their seeding activities had disappeared. The antiparkinsonian agents could be potential therapeutic agents to prevent or delay AD and LBD progression. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
13.
α‐Synuclein is known to be a major component of Lewy bodies and glial cytoplasmic inclusions in the brains of patients with α‐synucleinopathies. Synphilin‐1, an α‐synuclein‐associated protein, is also present in these inclusions. However, little is known about the post‐translational modifications of synphilin‐1. In the present study, it is reported that synphilin‐1 is phosphorylated by glycogen synthase kinase‐3βin vitro. It is well known that protein phosphorylation is involved in various physiological phenomena, including signal transduction and protein degradation. Therefore, phosphorylation of synphilin‐1 may play an important role in the function of this protein in the brain.  相似文献   

14.
PRP19α and CDC5L are major components of the active spliceosome. However, their association process is still unknown. Here, we demonstrated that PRP19α/14‐3‐3β/CDC5L complex formation is regulated by Akt during nerve growth factor (NGF)‐induced neuronal differentiation of PC12 cells. Analysis of PRP19α mutants revealed that the phosphorylation of PRP19α at Thr 193 by Akt was critical for its binding with 14‐3‐3β to translocate into the nuclei and for PRP19α/14‐3‐3β/CDC5L complex formation in neuronal differentiation. Forced expression of either sense PRP19α or sense 14‐3‐3β RNAs promoted NGF‐induced neuronal differentiation, whereas down‐regulation of these mRNAs showed a suppressive effect. The nonphosphorylation mutant PRP19αT193A lost its binding ability with 14‐3‐3β and acted as a dominant‐negative mutant in neuronal differentiation. These results imply that Akt‐dependent phosphorylation of PRP19α at Thr193 triggers PRP19α/14‐3‐3β/CDC5L complex formation in the nuclei, likely to assemble the active spliceosome against neurogenic pre‐mRNAs. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
16.
17.
β‐Amyloid (Aβ) deposits and hyperphosphorylated tau aggregates are the chief hallmarks in the Alzheimer's disease (AD) brains, but the strategies for controlling these pathological events remain elusive. We hypothesized that CK2‐coupled SIRT1 activation stimulated by cilostazol suppresses tau acetylation (Ac‐tau) and tau phosphorylation (P‐tau) by inhibiting activation of P300 and GSK3β. Aβ was endogenously overproduced in N2a cells expressing human APP Swedish mutation (N2aSwe) by exposure to medium containing 1% fetal bovine serum for 24 hr. Increased Aβ accumulation was accompanied by increased Ac‐tau and P‐tau levels. Concomitantly, these cells showed increased P300 and GSK3β P‐Tyr216 expression; their expressions were significantly reduced by treatment with cilostazol (3–30 μM) and resveratrol (20 μM). Moreover, decreased expression of SIRT1 and its activity by Aβ were significantly reversed by cilostazol as by resveratrol. In addition, cilostazol strongly stimulated CK2α phosphorylation and its activity, and then stimulated SIRT1 phosphorylation. These effects were confirmed by using the pharmacological inhibitors KT5720 (1 μM, PKA inhibitor), TBCA (20 μM, inhibitor of CK2), and sirtinol (20 μM, SIRT1 inhibitor) as well as by SIRT1 gene silencing and overexpression techniques. In conclusion, increased cAMP‐dependent protein kinase‐linked CK2/SIRT1 expression by cilostazol can be a therapeutic strategy to suppress the tau‐related neurodegeneration in the AD brain. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
The aim of this study was to examine the suitability of [18 F]nifene, a novel α4β2* nicotinic acetylcholine receptor (nAChR) radiotracer, for in vivo brain imaging in a first‐in‐human study. Methods : Eight healthy subjects (4 M,4 F;21–69,44 ± 21 yrs) underwent a [18F]nifene positron emission tomography scan (200 ± 3.7 MBq), and seven underwent a second scan within 58 ± 31 days. Regional estimates of DVR were measured using the multilinear reference tissue model (MRTM2) with the corpus callosum as reference region. DVR reproducibility was evaluated with test–retest variability (TRV) and intraclass correlation coefficient (ICC). Results : The DVR ranged from 1.3 to 2.5 across brain regions with a TRV of 0–7%, and did not demonstrate a systematic difference between test and retest. The ICCs ranged from 0.2 to 0.9. DVR estimates were stable after 40 min. Conclusion : The binding profile and tracer kinetics of [18F]nifene make it a promising α4β2* nAChR radiotracer for scientific research in humans, with reliable DVR test–retest reproducibility.  相似文献   

19.
11β‐Hydroxysteroid dehydrogenase type 1 (11β‐HSD1) locally regenerates active glucocorticoids from their inert forms thereby amplifying intracellular levels within target tissues including the brain. We previously showed greater increases in intra‐hippocampal corticosterone (CORT) levels upon Y‐maze testing in aged wild‐type than in 11β‐HSD1?/? mice coinciding with impaired and intact spatial memory, respectively. Here we examined whether ageing influences 11β‐HSD1 regulation of CORT in the dorsal hippocampus under basal conditions during the diurnal cycle and following stress. Intra‐hippocampal CORT levels measured by in vivo microdialysis in freely behaving wild‐type mice displayed a diurnal variation with peak levels in the evening that were significantly elevated with ageing. In contrast, the diurnal rise in intra‐hippocampal CORT levels was greatly diminished in 11β‐HSD1?/? mice and there was no rise with ageing; basal intra‐hippocampal CORT levels were similar to wild‐type controls. Furthermore, a short (3 min) swim stress induced a longer lasting increase in intra‐hippocampal CORT levels in wild‐type mice than in 11β‐HSD1?/? mice despite no genotypic differences in elevation of plasma CORT. These data indicate that 11β‐HSD1 activity contributes substantially to diurnal and stress‐induced increases in hippocampal CORT levels. This contribution is even greater with ageing. Thus, 11β‐HSD1 inhibition may be an attractive target for treating cognitive impairments associated with stress or ageing.  相似文献   

20.
Introduction: Metformin (MET) stimulates skeletal muscle AMP‐activated protein kinase (AMPK), a key phenotype remodeling protein with emerging therapeutic relevance for Duchenne muscular dystrophy (DMD). Our aim was to identify the mechanism of impact of MET on dystrophic muscle. Methods: We investigated the effects of MET in cultured C2C12 muscle cells and mdx mouse skeletal muscle. Expression of potent phenotypic modifiers was assessed, including peroxisome proliferator–activated receptor (PPAR)γ coactivator‐1α (PGC‐1α), PPARδ, and receptor‐interacting protein 140 (RIP140), as well as that of the dystrophin‐homolog, utrophin A. Results: In C2C12 cells, MET augmented expression of PGC‐1α, PPARδ, and utrophin A, whereas RIP140 content was reciprocally downregulated. MET treatment of mdx mice increased PGC‐1α and utrophin A and normalized RIP140 levels. Conclusions: In this study we identify the impact of MET on skeletal muscle and underscore the timeliness and importance of investigating MET and other AMPK activators as relevant therapeutics for DMD. Muscle Nerve 52 : 139–142, 2015  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号