首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.

Purpose

To clinically assess a previously described method (Rieke et.al., Magn Reson Med 2004) to produce more motion‐robust MRI‐based temperature images using data acquired during MRI‐guided focused ultrasound surgery (MRgFUS) of uterine fibroids.

Materials and Methods

The method (“referenceless thermometry”) uses surface fitting in nonheated regions of individual phase images to extrapolate and then remove background phase variations that are unrelated to temperature changes. We tested this method using images from 100 sonications selected from 33 patient MRgFUS treatments. Temperature measurements and thermal dose contours estimated with the referenceless method were compared with those produced with the standard phase‐difference technique. Fitting accuracy and noise level were also measured.

Results

In 92/100 sonications, the difference between the two measurements was less than 3°C. The average difference in the measurements was 1.5 ± 1.4°C. Small motion artifacts were observed in the phase‐difference imaging when the difference was greater than 3°C. The method failed in two cases. The mean absolute error in the surface fit in baseline images corresponded to a temperature error of 0.8 ± 1.4°C. The noise level was approximately 40% lower than the phase‐difference method. Thermal dose contours calculated from the two methods agreed well on average.

Conclusion

Based on the small error when compared with the standard technique, this method appears to be adequate for temperature monitoring of MRgFUS in uterine fibroids and may prove useful for monitoring temperature changes in moving organs. J. Magn. Reson. Imaging 2008;28:1026–1032. © 2008 Wiley‐Liss, Inc.  相似文献   

2.
Magnetic resonance imaging‐guided high intensity focused ultrasound is a promising method for the noninvasive ablation of pathological tissue in abdominal organs such as liver and kidney. Due to the high perfusion rates of these organs, sustained sonications are required to achieve a sufficiently high temperature elevation to induce necrosis. However, the constant displacement of the target due to the respiratory cycle render continuous ablations challenging, since dynamic repositioning of the focal point is required. This study demonstrates subsecond 3D high intensity focused ultrasound‐beam steering under magnetic resonance‐guidance for the real‐time compensation of respiratory motion. The target is observed in 3D space by coupling rapid 2D magnetic resonance‐imaging with prospective slice tracking based on pencil‐beam navigator echoes. The magnetic resonance‐data is processed in real‐time by a computationally efficient reconstruction pipeline, which provides the position, the temperature and the thermal dose on‐the‐fly, and which feeds corrections into the high intensity focused ultrasound‐ablator. The effect of the residual update latency is reduced by using a 3D Kalman‐predictor for trajectory anticipation. The suggested method is characterized with phantom experiments and verified in vivo on porcine kidney. The results show that for update frequencies of more than 10 Hz and latencies of less then 114 msec, temperature elevations can be achieved, which are comparable to static experiments. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
Many areas of MR‐guided thermal therapy research would benefit from temperature maps with high spatial and temporal resolution that cover a large three‐dimensional volume. This article describes an approach to achieve these goals, which is suitable for research applications where retrospective reconstruction of the temperature maps is acceptable. The method acquires undersampled data from a modified three‐dimensional segmented echo‐planar imaging sequence and creates images using a temporally constrained reconstruction algorithm. The three‐dimensional images can be zero‐filled to arbitrarily small voxel spacing in all directions and then converted into temperature maps using the standard proton resonance frequency shift technique. During high intensity focused ultrasound heating experiments, the proposed method was used to obtain temperature maps with 1.5 mm × 1.5 mm × 3.0 mm resolution, 288 mm × 162 mm × 78 mm field of view, and 1.7 s temporal resolution. The approach is validated to demonstrate that it can accurately capture the spatial characteristics and time dynamics of rapidly changing high intensity focused ultrasound‐induced temperature distributions. Example applications from MR‐guided high intensity focused ultrasound research are shown to demonstrate the benefits of the large coverage fully three‐dimensional temperature maps, including characterization of volumetric heating trajectories and near‐ and far‐field heating. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

4.
MR thermometry can be a very challenging application, as good resolution may be needed along spatial, temporal, and temperature axes. Given that the heated foci produced during thermal therapies are typically much smaller than the anatomy being imaged, much of the imaged field‐of‐view is not actually being heated and may not require temperature monitoring. In this work, many‐fold improvements were obtained in terms of temporal resolution and/or 3D spatial coverage by sacrificing some of the in‐plane spatial coverage. To do so, three fast‐imaging approaches were jointly implemented with a spoiled gradient echo sequence: (1) two‐dimensional spatially selective RF excitation, (2) unaliasing by Fourier encoding the overlaps using the temporal dimension (UNFOLD), and (3) parallel imaging. The sequence was tested during experiments with focused ultrasound heating in ex vivo tissue and a tissue‐mimicking phantom. Temperature maps were estimated from phase‐difference images based on the water proton resonance frequency shift. Results were compared to those obtained from a spoiled gradient echo sequence sequence, using a t‐test. Temporal resolution was increased by 24‐fold, with temperature uncertainty less than 1°C, while maintaining accurate temperature measurements (mean difference between measurements, as observed in gel = 0.1°C ± 0.6; R = 0.98; P > 0.05). Magn Reson Med 66:112–122, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

5.

Purpose:

To estimate the local thermal conductivity of porcine thigh muscle at temperatures required for magnetic resonance imaging (MRI)‐guided high‐intensity focused ultrasound (MRgHIFU) surgery (60–90°C).

Materials and Methods:

Using MRgHIFU, we performed 40 volumetric ablations in the thigh muscles of four pigs. Thirty‐five of the sonications were successful. We used MRI to monitor the resulting temperature increase. We then determined local thermal conductivity by analyzing the spatiotemporal spread of temperature during the cooling period.

Results:

The thermal conductivity of MRgHIFU‐treated porcine thigh muscle fell within a narrow range (0.52 ± 0.05 W/[m*K]), which is within the range reported for porcine thigh muscle at temperatures of <40°C (0.52 to 0.62 W/[m*K]). Thus, there was little change in the thermal conductivity of porcine thigh muscle at temperatures required for MRgHIFU surgery compared to lower temperatures.

Conclusion:

Our MRgHIFU‐based approach allowed us to estimate, with good reproducibility, the local thermal conductivity of in vivo deep tissue in real time at temperatures of 60°C to 90°C. Therefore, our method provides a valuable tool for quantifying the influence of thermal conductivity on temperature distribution in tissues and for optimizing thermal dose delivery during thermal ablation with clinical MRgHIFU. J. Magn. Reson. Imaging 2013;37:950–957. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
The conventional phase difference method for MR thermometry suffers from disturbances caused by the presence of lipid protons, motion‐induced error, and field drift. A signal model is presented with multi‐echo gradient echo (GRE) sequence using a fat signal as an internal reference to overcome these problems. The internal reference signal model is fit to the water and fat signals by the extended Prony algorithm and the Levenberg‐Marquardt algorithm to estimate the chemical shifts between water and fat which contain temperature information. A noise analysis of the signal model was conducted using the Cramer‐Rao lower bound to evaluate the noise performance of various algorithms, the effects of imaging parameters, and the influence of the water:fat signal ratio in a sample on the temperature estimate. Comparison of the calculated temperature map and thermocouple temperature measurements shows that the maximum temperature estimation error is 0.614°C, with a standard deviation of 0.06°C, confirming the feasibility of this model‐based temperature mapping method. The influence of sample water:fat signal ratio on the accuracy of the temperature estimate is evaluated in a water‐fat mixed phantom experiment with an optimal ratio of approximately 0.66:1. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
To evaluate the feasibility and accuracy of MR thermometry based on the thermal dose (TD) concept for monitoring radiofrequency (RF) ablations, 13 RF ablations in pig livers were performed under continuous MR thermometry at 1.5 T with a filtered clinical RF device. Respiratory gated fast gradient echo images were acquired simultaneously to RF deposition for providing MR temperature maps with the proton resonant frequency technique. Residual motion, signal to noise ratio (SNR) and standard deviation (SD) of MR temperature images were quantitatively analyzed to detect and reject artifacted images in the time series. SD of temperature measurement remained under 2°C. Macroscopic analysis of liver ablations showed a white zone (Wz) surrounded by a red zone (Rz). A detailed histological analysis confirmed the ongoing nature of the coagulation necrosis in both Wz and Rz. Average differences (±SD) between macroscopic size measurements of Wz and Rz and TD predictions of ablation zones were 4.1 (±1.93) mm and −0.71 (±2.47) mm, respectively. Correlation values between TD and Wz and TD and Rz were 0.97 and 0.99, respectively. MR thermometry monitoring based on TD is an accurate method to delineate the size of the ablation zone during the RF procedure and provides a clinical endpoint.  相似文献   

8.
MR acoustic radiation force imaging (ARFI) is an elegant adjunct to MR-guided high intensity focused ultrasound for treatment planning and optimization, permitting in situ assessment of the focusing and targeting quality. The thermal effect of high intensity focused ultrasound pulses associated with ARFI measurements is recommended to be monitored on line, in particular when the beam crosses highly absorbent structures or interfaces (e.g., bones or air-filled cavities). A dedicated MR sequence is proposed here, derived from a segmented gradient echo-echo planar imaging kernel by adding a bipolar motion encoding gradient with interleaved alternating polarities. Temporal resolution was reduced to 2.1 s, with in-plane spatial resolution of 1 mm. MR-ARFI measurements were executed during controlled animal breathing, with trans-costal successively steered foci, to investigate the spatial modulation of the focus intensity and the targeting offset. ARFI-induced tissue displacement measurements enabled the accurate localization, in vivo, of the high intensity focused ultrasound focal point in sheep liver, with simultaneous monitoring of the temperature elevation. ARFI-based precalibration of the focal point position was immediately followed by trans-costal MR-guided high intensity focused ultrasound ablation, monitored with a conventional proton resonance frequency shift MR thermometry sequence. The latter MR thermometry sequence had spatial resolution and geometrical distortion identical with the ARFI maps, hence no coregistration was required.  相似文献   

9.

Purpose

To assess the feasibility of magnetic resonance (MR) thermometry after thermoablative therapy and to quantitatively evaluate the ability of two sequence types to predict cell necrosis.

Methods

Twenty patients with hepatic tumors were treated by MR‐guided radiofrequency ablation. For each 10 patients, postinterventionally performed gradient echo and segmented echo planar imaging sequences were used to calculate temperature maps based on the proton resonance frequency shift method. Contrast‐enhanced images acquired 1 month after therapy were registered on the temperature maps and the necrotic, nonenhanced area was segmented and compared to the area with a displayed temperature above 60°C. Sensitivity and positive predictive value of the temperature map was calculated, using the follow‐up imaging as the gold standard.

Results

Temperature mapping reached acceptable image quality in 45/47 cases. Sensitivity, ie, the rate of correctly detected coagulated tissue was 0.82 ± 0.08 for the gradient echo imaging (GRE) sequence and 0.81 ± 0.14 for the echo planar imaging (EPI) sequence. Positive predictive value, ie, the rate of voxel in the temperature map over 60°C that actually developed necrosis, was 0.90 ± 0.07 for the GRE sequence and 0.84 ± 0.11 for the EPI sequence.

Conclusion

Sequential MR temperature mapping allows for the prediction of the coagulation zone with an acceptable sensitivity and positive predictive value using EPI and GRE sequences. J. Magn. Reson. Imaging 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.

Purpose:

To combine temperature‐related information of phase images and magnitude images acquired from an MR spoiled gradient echo sequence using a postprocessing method referred to as PRF‐shift‐weighted imaging (PRFSWI).

Materials and Methods:

Phase images are capable of detecting shifts in proton resonance frequency (PRF) caused by local changes in temperature. Magnitude images provide anatomical information for treatment planning and positioning as well as temperature‐related contrast. We used PRFSWI to produce a phase‐mask and performed multiplication on the magnitude image to increase temperature‐related contrast.

Results:

Through MRI‐guided focused ultrasound (MRIgFUS) experiments (both ex vivo and in vivo), we determined that PRFSWI is capable of enhancing the contrast of a heated area even in the initial stages of transmitting high‐intensity focused ultrasound energy.

Conclusion:

The PRFSWI images are sensitive to changes in temperature and display the heated spot directly in the magnitude images. Although the images do not provide quantitative data related to temperature, this method could be used as a complement to the phase temperature mapping method in the real‐time monitoring of MRIgFUS experiments. J. Magn. Reson. Imaging 2011;33:1474–1481. © 2011 Wiley‐Liss, Inc.  相似文献   

11.
A novel method for reconstructing MRI temperature maps from undersampled data is presented. The method, model predictive filtering, combines temperature predictions from a preidentified thermal model with undersampled k‐space data to create temperature maps in near real time. The model predictive filtering algorithm was implemented in three ways: using retrospectively undersampled k‐space data from a fully sampled two‐dimensional gradient echo (GRE) sequence (reduction factors R = 2.7 to R = 7.1), using actually undersampled data from a two‐dimensional GRE sequence (R = 4.8), and using actually undersampled data from a three‐dimensional GRE sequence (R = 12.1). Thirty‐nine high‐intensity focused ultrasound heating experiments were performed under MRI monitoring to test the model predictive filtering technique against the current gold standard for MR temperature mapping, the proton resonance frequency shift method. For both of the two‐dimensional implementations, the average error over the five hottest voxels from the hottest time frame remained between ±0.8°C and the temperature root mean square error over a 24 × 7 × 3 × 25‐voxel region of interest remained below 0.35°C. The largest errors for the three‐dimensional implementation were slightly worse: ?1.4°C for the mean error of the five hottest voxels and 0.61°C for the temperature root mean square error. Magn Reson Med 63:1269–1279, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
PURPOSE: To use magnetic resonance (MR) imaging to monitor thermal buildup and its effects in treated tissues during sequentially delivered sonications in vivo to optimize the intersonication delay for any set of ultrasound and tissue parameters. MATERIALS AND METHODS: Sequential sonications were delivered next to each other in both thighs in 10 male New Zealand white rabbits. The time between sonications was 11-60 seconds. Phase-difference MR imaging was used to monitor temperature rise, which was used to estimate the thermal dose delivered to the tissue. T2-weighted and contrast agent-enhanced T1-weighted imaging were used to gauge the extent of tissue coagulation. RESULTS: With a short intersonication delay (11-40 seconds), the estimated temperature rise and the extent of tissue coagulation increased dramatically in subsequent sonications. However, when the delay was long (50-60 seconds), the size and shape of the destroyed tissue with subsequent sonications was uniform, and the temperature buildup was substantially lower. CONCLUSION: MR imaging can be used to monitor thermal buildup and its effects due to sequential, neighboring sonications in vivo to produce evenly shaped regions of tissue coagulation. The temperature information obtained from the monitoring can be used to optimize the intersonication delay for any set of ultrasound and tissue parameters.  相似文献   

13.
PURPOSE: To determine if focused ultrasound beams can be used to locally open the blood-brain barrier without damage to surrounding brain tissue and if magnetic resonance (MR) imaging can be used to monitor this procedure. MATERIALS AND METHODS: The brains of 18 rabbits were sonicated (pulsed sonication) in four to six locations, with temporal peak acoustic power ranging from 0.2 to 11.5 W. Prior to each sonication, a bolus of ultrasonographic (US) contrast agent was injected into the ear vein of the rabbit. A series of fast or spoiled gradient-echo MR images were obtained during the sonications to monitor the temperature elevation and potential tissue changes. Contrast material-enhanced MR images obtained minutes after sonications and repeated 1-48 hours later were used to depict blood-brain barrier opening. Whole brain histologic evaluation was performed. RESULTS: Opening of the blood-brain barrier was confirmed with detection of MR imaging contrast agent at the targeted locations. The lowest power levels used produced blood-brain barrier opening without damage to the surrounding neurons. Contrast enhancement correlated with the focal signal intensity changes in the magnitude fast spoiled gradient-echo MR images. CONCLUSION: The blood-brain barrier can be consistently opened with focused ultrasound exposures in the presence of a US contrast agent. MR imaging signal intensity changes may be useful in the detection of blood-brain barrier opening during sonication.  相似文献   

14.
The feasibility and safety of magnetic resonance (MR) imaging-guided focused ultrasound surgery for uterine leiomyomas is reported. Sequential sonications were delivered to nine targets. Temperature-sensitive phase-difference MR imaging monitored the location of the focus and measured tissue temperature elevations, ensuring therapeutic dose. MR images and hysterectomy specimens were evaluated. Six leiomyomas received full therapeutic doses, and 98.5% of the sonications were visualized. MR thermometry was successful in all sonications and cases. Focal necrotic lesions were seen in all cases at MR, and five were pathologically confirmed. MR imaging-guided focused ultrasound causes thermocoagulation and necrosis in uterine leiomyomas and is feasible and safe, without serious consequences.  相似文献   

15.
Tissues containing both water and lipids, e.g., breast, confound standard MR proton reference frequency‐shift methods for mapping temperatures due to the lack of temperature‐induced frequency shift in lipid protons. Generalized Dixon chemical shift–based water‐fat separation methods, such as GE's iterative decomposition of water and fat with echo asymmetry and least‐squares estimation method, can result in complex water and fat images. Once separated, the phase change over time of the water signal can be used to map temperature. Phase change of the lipid signal can be used to correct for non‐temperature‐dependent phase changes, such as amplitude of static field drift. In this work, an image acquisition and postprocessing method, called water and fat thermal MRI, is demonstrated in phantoms containing 30:70, 50:50, and 70:30 water‐to‐fat by volume. Noninvasive heating was applied in an Off1‐On‐Off2 pattern over 50 min, using a miniannular phased radiofrequency array. Temperature changes were referenced to the first image acquisition. Four fiber optic temperature probes were placed inside the phantoms for temperature comparison. Region of interest (ROI) temperature values colocated with the probes showed excellent agreement (global mean ± standard deviation: ?0.09 ± 0.34°C) despite significant amplitude of static field drift during the experiments. Magn Reson Med 63:1238–1246, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
The use of proton resonance frequency shift–based magnetic resonance (MR) thermometry for interventional guidance on abdominal organs is hampered by the constant displacement of the target due to the respiratory cycle and the associated thermometry artifacts. Ideally, a suitable MR thermometry method should for this role achieve a subsecond temporal resolution while maintaining a precision comparable to those achieved on static organs while not introducing significant processing latencies. Here, a computationally effective processing pipeline for two‐dimensional image registration coupled with a multibaseline phase correction is proposed in conjunction with high‐frame‐rate MRI as a possible solution. The proposed MR thermometry method was evaluated for 5 min at a frame rate of 10 images/sec in the liver and the kidney of 11 healthy volunteers and achieved a precision of less than 2°C in 70% of the pixels while delivering temperature and thermal dose maps on the fly. The ability to perform MR thermometry and dosimetry in vivo during a real intervention was demonstrated on a porcine kidney during a high‐intensity focused ultrasound heating experiment. Magn Reson Med 63:1080–1087, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
MR‐guided focused ultrasound (FUS) is a noninvasive therapy for treating various pathologies. MR‐based acoustic radiation force imaging (MR‐ARFI) measures tissue displacement in the focal spot due to acoustic radiation force. MR‐ARFI also provides feedback for adaptive focusing algorithms that could correct for phase aberrations caused by the skull during brain treatments. This work developed a single‐shot echo‐planar imaging–based MR‐ARFI method that reduces scan time and ultrasound energy deposition. The new method was implemented and tested in a phantom and ex vivo brain tissue. The effect of the phase aberrations on the ultrasound focusing was studied using displacement maps obtained with echo‐planar imaging and two‐dimensional spin‐warp MR‐ARFI. The results show that displacement in the focal spot can be rapidly imaged using echo‐planar imaging–based MR‐ARFI with high signal‐to‐noise ratio efficiency and without any measurable tissue heating. Echo‐planar imaging–based displacement images also demonstrate sufficient sensitivity to phase aberrations and can serve as rapid feedback for adaptive focusing in brain treatments and other applications. Magn Reson Med, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
The purpose of this studyTo evaluate the safety and efficacy of an enhanced magnetic resonance-guided focused ultrasound (MRgFUS) emission protocol that results in more extensive treatment by increasing the volume of each focal ablation using the same energy.Materials and methodsSix pigs were treated with an MRgFUS system combined with real-time MR, for imaging and temperature mapping, with 102 “enhanced” and 97 “regular” focal ablations performed on both buttock muscles. Real-time imaging, temperature mapping, and acoustic reflected spectrum data enabled immediate evaluation of the results. MR contrast-enhanced images and pathology examinations were used for confirmation.ResultsThe location of the ablated volume by “enhanced” sonication is predictable, with a maximum possible shift of 6 mm toward, and 3 mm away, from the transducer. The ablated volume after enhanced sonication was, on average, 1.8 times larger than after a regular sonication of the same energy. Pathology results showed the same thermally induced damage patterns in the enhanced sonications and the regular sonications.ConclusionAccelerated MRgFUS with enhanced sonication is a safe, controllable, and more effective tissue ablative modality than standard sonication. This new technology may significantly reduce the length of tumor ablation procedures. (Isn’t the new technology you’re talking about MRgFUS? If so, you don’t need to repeat it at the end of this sentence.)  相似文献   

19.

Purpose:

To investigate magnetic resonance image‐guided high intensity focused ultrasound (MR‐HIFU) as a surgical guide for nonpalpable breast tumors by assessing the palpability of MR‐HIFU‐created lesions in ex vivo cadaveric breast tissue.

Materials and Methods:

MR‐HIFU ablations spaced 5 mm apart were made in 18 locations using the ExAblate2000 system. Ablations formed a square perimeter in mixed adipose and fibroglandular tissue. Ablation was monitored using T1‐weighted fast spin echo images. MR‐acoustic radiation force impulse (MR‐ARFI) was used to remotely palpate each ablation location, measuring tissue displacement before and after thermal sonications. Displacement profiles centered at each ablation spot were plotted for comparison. The cadaveric breast was manually palpated to assess stiffness of ablated lesions and dissected for gross examination. This study was repeated on three cadaveric breasts.

Results:

MR‐ARFI showed a collective postablation reduction in peak displacement of 54.8% ([4.41 ± 1.48] μm pre, [1.99 ± 0.82] μm post), and shear wave velocity increase of 65.5% ([10.69 ± 1.60] mm pre, [16.33 ± 3.10] mm post), suggesting tissue became stiffer after the ablation. Manual palpation and dissection of the breast showed increased palpability, a darkening of ablation perimeter, and individual ablations were visible in mixed adipose/fibroglandular tissue.

Conclusion:

The results of this preliminary study show MR‐HIFU has the ability to create palpable lesions in ex vivo cadaveric breast tissue, and may potentially be used to preoperatively localize nonpalpable breast tumors. J. Magn. Reson. Imaging 2012;35:1089‐1097. © 2011 Wiley Periodicals, Inc.  相似文献   

20.
The noninvasive thermometry method is based on the temperature dependence of the proton resonance frequency (PRF). High-quality temperature images can be obtained from phase information of standard gradient-echo sequences with an accuracy of 0.2°C in phantoms. This work was focused on the in vivo capabilities of this method. An experimental setup was designed that allows a qualitative in vivo verification. The lower-leg muscles of a volunteer were cooled and afterwards reheated with an external water bolus. The temperature of the bolus water varied between 17°C and 37°C. The in vivo temperature images can be used to extract the temperature in muscle tissue. The data in the fat tissue are difficult to interpret because of the predominance of susceptibility effects. The results confirm the method's potential for hyperthermia control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号