首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
MRI is used for tracking of superparamagnetic iron oxide (SPIO)‐labeled neural stem cells. Studies have shown that long‐term MR tracking of rapidly dividing cells underestimates their migration distance. Time‐lapse microscopy of random cellular motility and cell division was performed to evaluate the effects of SPIO‐labeling on neural stem cell migration. Labeled cells divided symmetrically and exhibited no changes in cell viability, proliferation, or apoptosis. However, SPIO‐labeling resulted in decreased motility of neural stem cells as compared with unlabeled controls. When SPIO‐labeled neural stem cells and human induced pluripotent stem cells were transplanted into mouse brain, rapid exocytosis of SPIO by live cells was observed as early as 48 h postengraftment, with SPIO‐depleted cells showing the farthest migration distance. As label dilution is negligible at this early time point, we conclude that MRI underestimation of cell migration can also occur as a result of reduced cell motility, which appears to be mitigated following SPIO exocytosis. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
How stem cells promote myocardial repair in myocardial infarction (MI) is not well understood. The purpose of this study was to noninvasively monitor and quantify mesenchymal stem cells (MSC) from bone marrow to MI sites using magnetic resonance imaging (MRI). MSC were dual‐labeled with an enhanced green fluorescent protein and micrometer‐sized iron oxide particles prior to intra‐bone marrow transplantation into the tibial medullary space of C57Bl/6 mice. Micrometer‐sized iron oxide particles labeling caused signal attenuation in T2*‐weighted MRI and thus allowed noninvasive cell tracking. Longitudinal MRI demonstrated MSC infiltration into MI sites over time. Fluorescence from both micrometer‐sized iron oxide particles and enhanced green fluorescent protein in histology validated the presence of dual‐labeled cells at MI sites. This study demonstrated that MSC traffic to MI sites can be noninvasively monitored in MRI by labeling cells with micrometer‐sized iron oxide particles. The dual‐labeled MSC at MI sites maintained their capability of proliferation and differentiation. The dual‐labeling, intra‐bone marrow transplantation, and MRI cell tracking provided a unique approach for investigating stem cells' roles in the post‐MI healing process. This technique can potentially be applied to monitor possible effects on stem cell mobilization caused by given treatment strategies. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

3.
Recently, debate has arisen about the usefulness of cell tracking using iron oxide–labeled cells. Two important issues in determining the usefulness of cell tracking with MRI are generally overlooked; first, the effect of graft rejection in immunocompetent models, and second, the necessity for careful histological confirmation of the fate of the labeled cells in the presence of iron oxide. Therefore, both iron oxide–labeled living as well as dead epicardium‐derived cells (EPDCs) were investigated in ischemic myocardium of immunodeficient non‐obese diabetic (NOD)/acid: non‐obese diabetic severe combined immunodeficient (NOD/scid) mice with 9.4T MRI until 6 weeks after surgery, at which time immunohistochemical analysis was performed. In both groups, voids on MRI scans were observed that did not change in number, size, or localization over time. Based on MRI, no distinction could be made between living and dead injected cells. Prussian blue staining confirmed that the hypointense spots on MRI corresponded to iron‐loaded cells. However, in the dead‐EPDC recipients, all iron‐positive cells appeared to be macrophages, while the living‐EPDC recipients also contained engrafted iron‐loaded EPDCs. Iron labeling is inadequate for determining the fate of transplanted cells in the immunodeficient host, since dead cells produce an MRI signal indistinguishable from incorporated living cells. Magn Reson Med 63:817–821, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
With MRI (stem) cell tracking having entered the clinic, studies on the cellular genomic response toward labeling are warranted. Gene expression profiling was applied to C17.2 neural stem cells following superparamagnetic iron oxide/PLL (poly‐L ‐lysine) labeling over the course of 1 week. Relative to unlabeled cells, less than 1% of genes (49 total) exhibited greater than 2‐fold difference in expression in response to superparamagnetic iron oxide/PLL labeling. In particular, transferrin receptor 1 (Tfrc) and heme oxygenase 1 (Hmox1) expression was downregulated early, whereas genes involved in lysosomal function (Sulf1) and detoxification (Clu, Cp, Gstm2, Mgst1) were upregulated at later time points. Relative to cells treated with PLL only, cells labeled with superparamagnetic iron oxide/PLL complexes exhibited differential expression of 1399 genes. Though these differentially expressed genes exhibited altered expression over time, the overall extent was limited. Gene ontology analysis of differentially expressed genes showed that genes encoding zinc‐binding proteins are enriched after superparamagnetic iron oxide/PLL labeling relative to PLL only treatment, whereas members of the apoptosis/programmed cell death pathway did not display increased expression. Overexpression of the differentially expressed genes Rnf138 and Abcc4 were confirmed by quantitative real‐time polymerase chain reaction. These results demonstrate that, although early reactions responsible for iron homeostasis are induced, overall neural stem cell gene expression remains largely unaltered following superparamagnetic iron oxide/PLL labeling. Magn Reson Med 63:1031–1043, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
活体细胞MR示踪成像技术能有效在体内实时、准确评价干细胞治疗心肌梗死的效果,可分为MR对比剂标记细胞成像和MR报告基因成像。自体移植干细胞治疗心肌梗死的疗法中,能标记干细胞的MR对比剂主要有以钆剂为主的顺磁性对比剂、化学交换饱和转移成像(CEST)相关对比剂以及氧化铁类对比剂;MR 报告基因导入后能使细胞表达产生MR信号改变的蛋白质,以膜表面蛋白为主,包括铁蛋白受体、膜表面抗原、酶等。目前的MR细胞示踪技术对自体移植干细胞治疗的疗效评价、机制研究有一定的指导作用。  相似文献   

6.
Superparamagnetic iron oxide particles can be utilized to label cells for immune cell and stem cell therapy. The labeled cells cause significant field distortions induced in their vicinity, which can be detected with magnetic resonance imaging (MRI). In conventional imaging, the signal voids arising from the field distortions lead to negative contrast, which is not desirable, as detection of the cells can be masked by native low signal tissue. In this work, a new method for visualizing magnetically labeled cells with positive contrast is proposed and described. The technique presented is based on the susceptibility‐weighted imaging (SWI) post‐processing algorithm. Phase images from gradient‐echo sequences are evaluated pixel by pixel, and a mask is created with values ranging from 0 to 1, depending on the phase value of the pixel. The magnitude image is then multiplied by the mask. With an appropriate mask function, positive contrast in the vicinity of the labeled cells is created. The feasibility of this technique is proved using an agar phantom containing superparamagnetic iron oxide particles–labeled cells and an ex vivo bovine liver. The results show high potential for detecting even small labeled cell concentrations in structurally inhomogeneous tissue types. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
The purpose of this study was to label human monocytes with Gadofluorine M by simple incubation for subsequent cell depiction at 1.5 and 3 T. Gadofluorine M displays a high r(1) relaxivity and is spontaneously phagocytosed by macrophages. Human monocytes were incubated with Gadofluorine M-Cy at varying concentrations and incubation times and underwent MR imaging at 1.5 and 3 T at increasing time intervals after the labeling procedure. R1-relaxation rates and r1 relaxivities of the labeled cells and non-labeled controls were determined. Cellular contrast agent uptake was examined by fluorescence microscopy and quantified by ICP-AES. Efficient cell labeling was achieved after incubation of the cells with 25 mM Gd Gadofluorine M for 12 h, resulting in a maximal uptake of 0.3 fmol Gd/cell without impairment of cell viability. Fluorescence microscopy confirmed internalization of the fluorescent contrast agent by monocytes. The r1 relaxivity of the labeled cells was 137 mM(-1)s(-1) at 1.5 T and 80.46 mM(-1)s(-1) at 3 T. Imaging studies showed stable labeling for at least 7 days. Human monocytes can be effectively labeled for MR imaging with Gadofluorine M. Potential in vivo cell-tracking applications include targeting of inflammatory processes with Gadofluorine-labeled leukocytes or monitoring of stem cell therapies for the treatment of arthritis.  相似文献   

8.

Purpose

To investigate in vivo MRI tracking mesenchymal stem cells (MSCs) in peripheral nerve injures using a clinically available paramagnetic contrast agent (Gd‐DTPA) and commercially available rhodamine‐incorporated transfection reagents (PEI‐FluoR).

Materials and Methods

After bone marrow MSCs were labeled with Gd‐DTPA and PEI‐FluoR complex, the labeling efficacy and longevity of Gd‐DTPA maintenance were measured and cell viability, proliferation, and apoptosis were assessed. Thirty‐six rabbits with acute sciatic nerve traction injury randomly received 1 × 106 labeled (n = 12) or unlabeled MSCs (n = 12) or vehicle alone injection. The distribution and migration of implanted cells was followed by MRI and correlated with histology. The relative signal intensity (RSL) of the grafts was measured.

Results

The labeling efficiency was 76 ± 4.7% and the labeling procedure did not in?uence cell viability, proliferation, and apoptosis. A persistent higher RSL in grafts was found in the labeled group compared with the unlabeled and vehicle groups until 10 days after transplantation (P < 0.05). The distribution and migration of labeled cells could be tracked by MRI until 10 days after transplantation. Transplanted MSCs were not found to transdifferentiate into Schwann‐like cells within 14‐day follow‐up.

Conclusion

Labeling MSCs with the dual agents may enable cellular MRI of the engraftment in the experimental peripheral nerve injury. J. Magn. Reson. Imaging 2010;32:1076–1085. © 2010 Wiley‐Liss, Inc.
  相似文献   

9.
目的应用磁性氧化铁纳米粒子和多聚左旋赖氨酸(poly-L-lysine,PLL)的偶联物Fe2O3-PLL标记大鼠骨髓间充质干细胞(MSCs),MR活体示踪经肾动脉移植入肾功能衰竭(简称肾衰)大鼠肾脏的标记细胞。方法制备Fe2O3-PLL,分离、纯化并培养大鼠骨髓MSCs,Fe2O3-PLL标记细胞,普鲁士蓝染色显示细胞内铁。肌内注射甘油所致肾衰的大鼠分为2组,分别经左肾动脉移植入标记细胞(6只)和未标记细胞(5只),移植后即刻及第1、3、5、8天应用MRI对移植细胞进行活体示踪,并与肾脏组织切片普鲁士蓝染色和HE染色对照。结果MSCs的Fe2O3-PLL标记率近100%,普鲁士蓝染色显示蓝色铁颗粒位于MSCs胞质内。标记细胞移植后肾衰大鼠肾脏皮质区信号强度明显下降,T2*WI信号改变最明显,而肾髓质及肾盂信号较细胞移植前无明显变化,信号改变随着时间的延长逐渐减轻一直持续到移植后第8天。组织学分析见绝大多数标记细胞分布于肾皮质肾小球内,与MRI信号改变区域基本一致。未标记细胞移植后未见肾脏信号改变。结论Fe2O3-PLL可以有效标记大鼠骨髓MSCs,临床应用型1.5T磁共振仪可对经肾动脉移植入肾衰大鼠肾脏的标记细胞进行初步活体示踪。  相似文献   

10.
Multimodal, biocompatible contrast agents for high magnetic field applications represent a new class of nanomaterials with significant potential for tracking of fluorescence and MR in vitro and vivo. Optimized for high‐field MR applications—including biomedical imaging at 21.1 T, the highest magnetic field available for MRI—these nanoparticles capitalize on the improved performance of chelated Dy3+ with increasing magnetic field coupled to a noncytotoxic Indium Phosphide/Zinc Sulfide (InP/ZnS) quantum dot that provides fluorescence detection, MR responsiveness, and payload delivery. By surface modifying the quantum dot with a cell‐penetrating peptide sequence coupled to an MR contrast agent, the bimodal nanomaterial functions as a self‐transfecting high‐field MR/optical contrast agent for nonspecific intracellular labeling. Fluorescent images confirm sequestration in perinuclear vesicles of labeled cells, with no apparent cytotoxicity. These techniques can be extended to impart cell selectivity or act as a delivery vehicle for genetic or pharmaceutical interventions. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
目的 应用多聚胺载体,对大鼠骨髓间充质干细胞(MSCs)进行钆喷替酸葡甲胺(Gd-DTPA)及荧光双标记,探讨MSCs MR磁性标记及体外示踪的可行性.方法 以聚乙烯亚胺-罗丹明复合物(JetPEI-FluoR)为载体,制备Gd-DTPA双标记示踪剂,培养分离SD大鼠骨髓MSCs,以此示踪剂体外标记间MSCs.对标记后细胞行生物学性状检测及电镜、荧光镜观察.应用1.5 T MR仪,对标记的干细胞进行sE T1 WI及T2 WI及混合(mixed)回波序列的T1测量,标记细胞正常传代后进行MR检查,观察标记的持久性.标记细胞、未标记细胞的T1 WI信号强度、T1之间的比较使用t检验,台盼蓝拒染率采用两因素重复资料方差分析,不同浓度示踪下细胞吸光度比较采用单因素方差分析.结果双标记示踪剂标记5×105个MSCs,标记成功了4.25×105个,荧光镜下标记率为85%,电镜下钆(Gd)颗粒主要位于胞质内高尔基体周围.双标记示踪剂孵育3、6、12、24 h内标记细胞的台盼蓝拒染率分别为(96.55±2.90)%、(94.17±2.56)%、(97.16±3.12)%、(94.23±2.67)%,相应的未标记细胞的拒染率分别为(95.86±2.67)%、(92.04±2.21)%、(93.38±3.64)%、(92.12±2.53)%,24 h内标记细胞与未标记细胞拒染率差异无统学意义(F=4.523,P>0.05).细胞增殖实验中,在2.5、5.0、10.0、20.0、30.0、40.0 μl不同浓度示踪剂时,标记细胞的吸光度分别为(0.1884±0.0151)、(0.1878±0.0190)、(0.1741±0.0160)、(0.1135±0.0215)、(0.1079±0.0145)、(0.0811±0.0079),未标记细胞为(0.1940±0.0116),Gd-DTPA 30.0 μl以下标记细胞与未标记细胞吸光度差异无统计学意义(q'=0.2225~0.9458,P>0.05).标记后细胞凋亡指数为5.08%,对照组未标记细胞为3.86%.未标记细胞T1 WI平均信号强度及T1分别为240.3±24.7、(2457±56)ms,而标记细胞为336.2±20.7、(1102±64)ms,两者间差异有统计学意义(t值分别为12.656、17.889,P值均<0.01),T1 WI可监测到最低密度为5×103个标记细胞.标记细胞正常传代后,MRI体外可持续显示至第4代标记细胞.结论应用多聚胺载体对大鼠间充质干细胞进行Gd-DTPA及荧光双标记,安全有效,MRI能示踪体外双标记的干细胞.  相似文献   

12.
PURPOSE: To label mammalian and stem cells by combining commercially available transfection agents (TAs) with superparamagnetic iron oxide (SPIO) magnetic resonance (MR) imaging contrast agents. MATERIALS AND METHODS: Three TAs were incubated with ferumoxides and MION-46L in cell culture medium at various concentrations. Human mesenchymal stem cells, mouse lymphocytes, rat oligodendrocyte progenitor CG-4 cells, and human cervical carcinoma cells were incubated 2-48 hours with 25 microg of iron per milliliter of combined TAs and SPIO. Cellular labeling was evaluated with T2 relaxometry, MR imaging of labeled cell suspensions, and Prussian blue staining for iron assessment. Proliferation and viability of mesenchymal stem cells and human cervical carcinoma cells labeled with a combination of TAs and ferumoxides were evaluated. RESULTS: When ferumoxides-TA or MION-46L-TA was used, intracytoplasmic particles stained with Prussian blue stain were detected for all cell lines with a labeling efficiency of nearly 100%. Limited or no uptake was observed for cells incubated with ferumoxides or MION-46L alone. For TA-SPIO-labeled cells, MR images and relaxometry findings showed a 50%-90% decrease in signal intensity and a more than 40-fold increase in T2s. Cell viability varied from 103.7% +/- 9 to 123.0% +/- 9 compared with control cell viability at 9 days, and cell proliferation was not affected by endosomal incorporation of SPIO nanoparticles. Iron concentrations varied with ferumoxides-TA combinations and cells with a maximum of 30.1 pg +/- 3.7 of iron per cell for labeled mesenchymal stem cells. CONCLUSION: Magnetic labeling of mammalian cells with use of ferumoxides and TAs is possible and may enable cellular MR imaging and tracking in experimental and clinical settings.  相似文献   

13.
Neural stem cell (NSC)‐based therapy is actively being pursued in preclinical and clinical disease models. Magnetic resonance imaging (MRI) cell tracking promises to optimize current cell transplantation paradigms, however, it is limited by dilution of contrast agent during cellular proliferation, transfer of label from dying cells to surrounding endogenous host cells, and/or biodegradation of the label. Here, we evaluated the applicability of magnetic resonance imaging for long‐term tracking of transplanted neural stem cells labeled with superparamagnetic iron oxide and transfected with the bioluminescence reporter gene luciferase. Mouse neural stem cells were transplanted into immunodeficient, graft‐accepting Rag2 mice or immunocompetent, graft‐rejecting Balb/c mice. Hypointense voxel signals and bioluminescence were monitored over a period of 93 days. Unexpectedly, in mice that rejected the cells, the hypointense MR signal persisted throughout the entire time‐course, whereas in the nonrejecting mice, the contrast cleared at a faster rate. In immunocompetent, graft‐rejecting Balb/c mice, infiltrating leukocytes, and microglia were found surrounding dead cells and internalizing superparamagnetic iron oxide clusters. The present results indicate that live cell proliferation and associated label dilution may dominate contrast clearance as compared with cell death and subsequent transfer and retention of superparamagnetic iron oxide within phagocytes and brain interstitium. Thus, interpretation of signal changes during long‐term MR cell tracking is complex and requires caution. Magn Reson Med, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
PURPOSE: To evaluate cellular labeling of immune cells using micron-sized iron oxide particles (MPIOs) and evaluate the MR relaxivity and MRI detection of the labeled cells. MATERIALS AND METHODS: Immune cells isolated from mice and rats were labeled with three different sizes of MPIO particles (0.35, 0.90, or 1.63 microm). These labeled cells were characterized using transmission electron microscopy (TEM), fluorescence microscopy, flow cytometry, MR relaxometry, and MRI. RESULTS: Macrophage uptake of MPIOs was found to be highest for the 1.63-microm size particles. MR relaxivity measurements indicated greater spin-spin relaxation for MPIO-labeled cells relative to cells labeled with nanometer-sized ultra-small superparamagnetic iron oxide (USPIO) particles with similar iron content. TEM and fluorescence microscopy indicated cellular uptake of multiple MPIO particles per cell. Macrophages labeled with 1.63-microm MPIOs had an average cellular iron uptake of 39.1 pg/cell, corresponding to approximately 35 particles per cell. CONCLUSION: Cells labeled with one or more MPIO particles could be readily detected ex vivo at 11.7 Tesla and after infusion of the MPIO-labeled macrophages into the kidney of a rat, hypointense regions of the outer cortex are observed, in vivo, by MRI at 4.7 Tesla.  相似文献   

15.
关节软骨缺损临床十分常见, 但目前的治疗方法均存在修复不完全的缺陷。间充质干细胞移植治疗的发展为再生修复关节软骨缺损提供了新的治疗策略, 但是作为组织修复执行者的干细胞移植后的在体迁徙分布、增殖及转归过程, 目前尚无安全无创、实时动态的监测手段, 因此难以明确外源性干细胞在关节软骨缺损再生修复中所扮演的角色。而MR在体示踪细胞技术为解决上述问题提供了新思路。MRI具有无创、无电离辐射、时间空间分辨率高、对比度好等优点, 协同MRI对比剂, 既可无创提供关节软骨的详细解剖结构信息, 还可动态评估移植干细胞的归宿。笔者就MR示踪技术在干细胞移植治疗软骨缺损中的最新研究进展进行综述, 探讨其优势、局限性及未来前景。  相似文献   

16.
LacZ-transfected C17.2 neural stem cells (NSCs) were labeled with the superparamagnetic iron oxide formulation Feridex prior to ICV injection in shi/shi neonates. Feridex labeling did not alter cell differentiation in vitro and in vivo. Initially, MR images obtained at 11.7T correlated closely to NSC distribution as assessed with anti-dextran and anti-beta-galactosidase double-fluorescent immunostaining. However, at 6 days postgrafting there was already a pronounced mismatch between the hypointense MR signal and the histologically determined cell distribution, with a surprisingly sharp cutoff rather than a gradual decrease of signal. Positive in vivo BrdU labeling of NSCs showed that significant cell replication occurred post-transplantation, causing rapid dilution of Feridex particles between mother and daughter cells toward undetectable levels. Neural differentiation experiments demonstrated asymmetric cell division, explaining the observed sharp cutoff. At later time points (2 weeks), the mismatch further increased by the presence of non-cell-associated Feridex particles resulting from active excretion or cell death. These results are a first demonstration of the inability of MRI to track rapidly dividing and self-renewing, asymmetrically dividing SCs. Therefore, MR cell tracking should only be applied for nonproliferating cells or short-term monitoring of highly-proliferative cells, with mitotic symmetry or asymmetry being important for determining its applicability.  相似文献   

17.
PURPOSE: To evaluate in vivo magnetic resonance (MR) imaging with a conventional 1.5-T system for depiction and tracking of intravascularly injected superparamagnetic iron oxide (SPIO)-labeled mesenchymal stem cells (MSCs). MATERIALS AND METHODS: This study was conducted in accordance with French law governing animal research and met guidelines for animal care and use. Rat MSCs were labeled with SPIO and transfection agent. Relaxation rates at 1.5 T, cell viability, proliferation, differentiation capacity, and labeling stability were assessed in vitro as a function of SPIO concentration. MSCs were injected into renal arteries of healthy rats (labeled cells in four, unlabeled cells in two) and portal veins of rats treated with carbon tetrachloride to induce centrolobular liver necrosis (labeled cells and unlabeled cells in two each). Follow-up serial T2*-weighted gradient-echo MR imaging and R2* mapping were performed. MR imaging findings were compared histologically. RESULTS: SPIO labeling caused a strong R2* effect that increased linearly with iron dose; R2* increase for cells labeled for 48 hours with 50 microg of iron per milliliter was 50 sec(-1) per million cells per milliliter. R2* was proportional to iron load of cells. SPIO labeling did not affect cell viability (P > .27). Labeled cells were able to differentiate into adipocytes and osteocytes. Proliferation was substantially limited for MSCs labeled with 100 microg Fe/mL or greater. Label half-life was longer than 11 days. In normal kidneys, labeled MSCs caused signal intensity loss in renal cortex. After labeled MSC injection, diseased liver had diffuse granular appearance. Cells were detected for up to 7 days in kidney and 12 days in liver. Signal intensity loss and fading over time were confirmed with serial R2* mapping. At histologic analysis, signal intensity loss correlated with iron-loaded cells, primarily in renal glomeruli and hepatic sinusoids; immunohistochemical analysis results confirmed these cells were MSCs. CONCLUSION: MR imaging can aid in monitoring of intravascularly administered SPIO-labeled MSCs in vivo in kidney and liver.  相似文献   

18.
Ju S  Teng GJ  Lu H  Zhang Y  Zhang A  Chen F  Ni Y 《Radiology》2007,245(1):206-215
PURPOSE: To prospectively track in vivo in rats intrasplenically transplanted stem cells labeled with superparamagnetic particles by using magnetic resonance (MR) imaging. MATERIALS AND METHODS: The study was approved by the institutional Committee on Animal Research. Liver damage in 12 rats was induced with subcutaneous injection of carbon tetrachloride (CCl4). Intrasplenic transplantation of 6x10(6) rodent bone mesenchymal stem cells (BMSCs) with (n=6) and without (n=6) superparamagnetic particle Fe2O3-poly-L-lysine (PLL) labeling was performed via direct puncture. Cell labeling efficiency was assessed in vitro by using Prussian blue stain and an atomic absorption spectrometer. MR examinations were performed immediately before and 3 hours and 3, 7, and 14 days after transplantation. Liver-to-muscle contrast-to-noise ratios (CNRs) on T2*-weighted MR images obtained before and after injection were measured and correlated with histomorphologic studies. Statistical analyses were performed by using repeated-measures analysis of variance. RESULTS: Rat BMSCs could be effectively labeled with approximately 100% efficiency. Migration of transplanted labeled cells to the liver was successfully documented with in vivo MR imaging. CNRs on T2*-weighted images decreased significantly in the liver 3 hours after injection of BMSCs (P<.05) and returned gradually to the level achieved without labeled cell injection in 14 days. Histologic analyses confirmed the presence of BMSCs in the liver. The labeled cells primarily localized in the sinusoids of periportal areas and the foci of CCl4-induced liver damage. Quantitative analysis of Prussian blue-stained cells indicated gradual decrease of dye pigments from 3 hours to 3, 7, and 14 days after injection. No free iron particles were found in the interstitium or within hepatic microvessels. CONCLUSION: The rat BMSCs could be efficiently labeled with Fe2O3-PLL and the relocation of the labeled cells to rat livers after intrasplenic transplantation could be depicted at in vivo MR imaging.  相似文献   

19.
To optimize 19F MR tracking of stem cells, we compared cellular internalization of cationic and anionic perfluoro‐15‐crown‐5‐ether (PFCE) nanoparticles using cell culture plates with different surface coatings. The viability and proliferation of anionic and cationic PFCE‐labeled neural stem cells (NSCs) did not differ from unlabeled cells. Cationic PFCE nanoparticles (19F T1/T2 = 580/536 ms at 9.4 Tesla) were superior to anionic particles for intracellular fluorination. Best results were obtained with modified polystyrene culture dishes coated with both carboxylic and amino groups rather than conventional carboxyl‐coated dishes. After injecting PFCE‐labeled NSCs into the striatum of mouse brain, cells were readily identified in vivo by 19F MRI without changes in signal or viability over a 2‐week period after grafting. These results demonstrate that neural stem cells can be efficiently fluorinated with cationic PFCE nanoparticles without using transfection agents and visualized in vivo over prolonged periods with an MR sensitivity of approximately 140 pmol of PFCE/cell. Magn Reson Med 60:1506–1511, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

20.
目的:探讨超顺磁性氧化铁颗粒(SPIO)标记神经干细胞的方法,以及标记细胞正常大鼠脑内移植后MR成像的方法学研究。方法:多聚左旋赖氨酸介导的SPIO标记胎鼠神经干细胞,进行台盼兰染色和普鲁士兰染色分别检测标记细胞的存活率和标记率。选取SD大鼠15只,简单随机法分为3组:第1组于大鼠右侧尾状核移植未标记的NSCs,第2组于大鼠右侧尾状核移植标记的NSCs,第3组右侧尾状核移植游离的SPIO颗粒,移植后第1、4、8周进行MRI。8周后处死大鼠,行组织切片普鲁士兰染色。结果:体外标记的神经干细胞普鲁士兰染色发现铁颗粒聚集于细胞浆内,标记率为100%;标记细胞与未标记细胞的台盼兰染色结果无显著差异。移植后MRI,第1组注射点未见低信号影;第2组注射点T2WI及GRE序列均可见类圆形低信号影;第3组大鼠注射后1周注射点可见低信号影,4周后低信号影变淡且边缘变模糊,8周后低信号影T2WI已不明显。与T2WI序列比较,GRE序列显示标记细胞更清晰,但显示范围较扩散。脑组织切片的普鲁士兰染色显示,第1组大鼠脑组织切片未见异常蓝染细胞,第2组注射点可见蓝染细胞,第3组注射点可见稍许散在蓝色颗粒状物质。结论:多聚左旋赖氨酸介导下SPIO可用于标记神经干细胞,标记细胞移植后MRI可以无创性观察移植神经干细胞的位置及分布情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号