首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The steady-state free precession (SSFP) method has been shown to exhibit strong potential for distortion-free functional magnetic resonance imaging (fMRI). One major challenge of SSFP fMRI is that the frequency band corresponding to the highest functional sensitivity is extremely narrow, leading to substantial loss of functional contrast in the presence of magnetic field drifts. In this study we propose a frequency stabilization scheme whereby an RF pulse with small flip angle is applied before each image scan, and the initial phase of the free induction decay (FID) signals is extracted to reflect temporal field drifts. A simple infinite impulse response (IIR) filter is further employed to obtain a low-pass-filtered estimate of the central reference frequency for the upcoming scan. Experimental results suggest that the proposed scheme can stabilize the frequency settings in accordance with field drifts, with oscillation amplitudes of <0.5 Hz. Phantom studies showed that both slow drifts and fast fluctuations were prominently reduced, resulting in less than 5% signal variations. Visual fMRI at submillimeter in-plane resolution further demonstrated 15% activation signals that were nicely registered in the microvessels within the sulci. It is concluded that the IIR-filtered frequency stabilization is an effective technique for achieving reliable SSFP fMR images at high field strengths.  相似文献   

2.
3.
Are TrueFISP images T2/T1‐weighted?   总被引:3,自引:0,他引:3  
Images acquired using the TrueFISP technique (true fast imaging with steady-state precession) are generally believed to exhibit T(2)/T(1)-weighting. In this study, it is demonstrated that with the widely used half-flip-angle preparation scheme, approaching the steady state requires a time length comparable to the scan time such that the transient-state response may dominate the TrueFISP image contrast. Two-dimensional images of the human brain were obtained using various phase-encoding matrices to investigate the transient-state signal behavior. Contrast between gray and white matter was found to change significantly from proton-density- to T(2)/T(1)-weighted as the phase-encoding matrix size increased, which was in good agreement with theoretical predictions. It is concluded that TrueFISP images in general exhibit T(2)/T(1)-contrast, but should be more appropriately regarded as exhibiting a transient-state combination of proton-density and T(2)/T(1) contrast under particular imaging conditions. Interpretation of tissue characteristics from TrueFISP images in clinical practice thus needs to be exercised with caution.  相似文献   

4.
5.
A challenge to ultra high field functional magnetic resonance imaging is the predominance of noise associated with physiological processes unrelated to tasks of interest. This degradation in data quality may be partially reversed using a series of preprocessing algorithms designed to retrospectively estimate and remove the effects of these noise sources. However, such algorithms are routinely validated only in isolation, and thus consideration of their efficacies within realistic preprocessing pipelines and on different data sets is often overlooked. We investigate the application of eight possible combinations of three pseudo‐complementary preprocessing algorithms – phase regression, Stockwell transform filtering, and retrospective image correction – to suppress physiological noise in 2D and 3D functional data at 7 T. The performance of each preprocessing pipeline was evaluated using data‐driven metrics of reproducibility and prediction. The optimal preprocessing pipeline for both 2D and 3D functional data included phase regression, Stockwell transform filtering, and retrospective image correction. This result supports the hypothesis that a complex preprocessing pipeline is preferable to a magnitude‐only pipeline, and suggests that functional magnetic resonance imaging studies should retain complex images and externally monitor subjects' respiratory and cardiac cycles so that these supplementary data may be used to retrospectively reduce noise and enhance overall data quality. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

6.
While three‐dimensional contrast‐enhanced MR angiography (MRA) is becoming the method of choice for clinical peripheral arterial disease (PAD) examinations, safety concerns with contrast administration in patients with renal insufficiency have triggered a renaissance of noncontrast MRA. In this work, a noncontrast‐MRA technique using electrocardiography‐triggered three‐dimensional segmented balanced steady‐state free precession with flow‐sensitive dephasing (FSD) magnetization preparation was developed and tested in the distal lower extremities. FSD preparation was used to induce arterial flow voids at systolic cardiac phase while having little effect on venous blood and static tissues. High‐spatial‐resolution MRA was obtained by means of magnitude subtraction between a dark‐artery scan with FSD preparation at systole and a bright‐artery scan without FSD preparation at mid‐diastole. In nine healthy volunteers, FSD parameters, including the gradient waveform and the first‐order gradient moment, were optimized for excellent MRA image quality. Furthermore, arterial stenosis and occlusion in two peripheral arterial disease patients were identified using the noncontrast‐MRA technique, as confirmed by contrast‐enhanced MRA. In conclusion, FSD‐prepared balanced steady‐state free precession in conjunction with electrocardiography gating and image subtraction provides a promising noncontrast‐MRA strategy for the distal lower extremities. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
8.
While most diffusion‐weighted imaging (DWI) is acquired using single‐shot diffusion‐weighted spin‐echo echo‐planar imaging, steady‐state DWI is an alternative method with the potential to achieve higher‐resolution images with less distortion. Steady‐state DWI is, however, best suited to a segmented three‐dimensional acquisition and thus requires three‐dimensional navigation to fully correct for motion artifacts. In this paper, a method for three‐dimensional motion‐corrected steady‐state DWI is presented. The method uses a unique acquisition and reconstruction scheme named trajectory using radially batched internal navigator echoes (TURBINE). Steady‐state DWI with TURBINE uses slab‐selection and a short echo‐planar imaging (EPI) readout each pulse repetition time. Successive EPI readouts are rotated about the phase‐encode axis. For image reconstruction, batches of cardiac‐synchronized readouts are used to form three‐dimensional navigators from a fully sampled central k‐space cylinder. In vivo steady‐state DWI with TURBINE is demonstrated in human brain. Motion artifacts are corrected using refocusing reconstruction and TURBINE images prove less distorted compared to two‐dimensional single‐shot diffusion‐weighted‐spin‐EPI. Magn Reson Med, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

9.

Purpose:

To develop a 3D flow‐independent peripheral vessel wall imaging method using T2‐prepared phase‐sensitive inversion‐recovery (T2PSIR) steady‐state free precession (SSFP).

Materials and Methods:

A 3D T2‐prepared and nonselective inversion‐recovery SSFP sequence was designed to achieve flow‐independent blood suppression for vessel wall imaging based on T1 and T2 properties of the vessel wall and blood. To maximize image contrast and reduce its dependence on the inversion time (TI), phase‐sensitive reconstruction was used to restore the true signal difference between vessel wall and blood. The feasibility of this technique for peripheral artery wall imaging was tested in 13 healthy subjects. Image signal‐to‐noise ratio (SNR), wall/lumen contrast‐to‐noise ratio (CNR), and scan efficiency were compared between this technique and conventional 2D double inversion recovery – turbo spin echo (DIR‐TSE) in eight subjects.

Results:

3D T2PSIR SSFP provided more efficient data acquisition (32 slices and 64 mm in 4 minutes, 7.5 seconds per slice) than 2D DIR‐TSE (2–3 minutes per slice). SNR of the vessel wall and CNR between vessel wall and lumen were significantly increased as compared to those of DIR‐TSE (P < 0.001). Vessel wall and lumen areas of the two techniques are strongly correlated (intraclass correlation coefficients: 0.975 and 0.937, respectively; P < 0.001 for both). The lumen area of T2PSIR SSFP is slightly larger than that of DIR‐TSE (P = 0.008). The difference in vessel wall area between the two techniques is not statistically significant.

Conclusion:

T2PSIR SSFP is a promising technique for peripheral vessel wall imaging. It provides excellent blood signal suppression and vessel wall/lumen contrast. It can cover a 3D volume efficiently and is flow‐ and TI‐independent. J. Magn. Reson. Imaging 2010;32:399–408. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
Fat/water separation methods such as fluctuating equilibrium magnetic resonance and linear combination steady‐state free precession have not yet been successfully implemented at 3.0 T due to extreme limitations on the time available for spatial encoding with the increase in magnetic field strength. We present a method to utilize a three‐dimensional radial sequence combined with linear combination steady‐state free precession at 3.0 T to take advantage of the increased signal levels over 1.5 T and demonstrate high spatial resolution compared to Cartesian techniques. We exploit information from the two half‐echoes within each pulse repetition time to correct the accumulated phase on a point‐by‐point basis, thereby fully aligning the phase of both half‐echoes. The correction provides reduced sensitivity to static field (B0) inhomogeneity and robust fat/water separation. Resultant images in the knee joint demonstrate the necessity of such a correction, as well as the increased isotropic spatial resolution attainable at 3.0 T. Results of a clinical study comparing this sequence to conventional joint imaging sequences are included. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
12.
13.
Assessment of vascular properties is essential to diagnosis and follow‐up and basic understanding of pathogenesis in brain tumors. In this study, a procedure is presented that allows concurrent estimation of cerebral perfusion, blood volume, and blood‐brain permeability from dynamic T1‐weighted imaging of a bolus of a paramagnetic contrast agent passing through the brain. The methods are applied in patients with brain tumors and in healthy subjects. Perfusion was estimated by model‐free deconvolution using Tikhonov's method (gray matter/white matter/tumor: 72 ± 16/30 ± 8/56 ± 45 mL/100 g/min); blood volume (6 ± 2/4 ± 1/7 ± 6 mL/100 g) and permeability (0.9 ± 0.4/0.8 ± 0.3/3 ± 5 mL/100 g/min) were estimated by using Patlak's method and a two‐compartment model. A corroboration of these results was achieved by using model simulation. In addition, it was possible to generate maps on a pixel‐by‐pixel basis of cerebral perfusion, cerebral blood volume, and blood‐brain barrier permeability. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
A fast and motion-insensitive technique suitable for myocardial BOLD contrast imaging is presented. The method, termed T2-TrueFISP, combines T2 magnetization preparation with steady-state free precession (SSFP) imaging for T2 relaxation mapping of the myocardium in healthy volunteers. The T2 contrast-to-noise ratio (CNR) was optimized with the use of transient-state TrueFISP readout and half-Fourier readout with linear phase encoding. Single-slice myocardial T2-weighted image was obtained within one heartbeat, and a single slice T2 map of the myocardium was obtained in under 5-7 s. A respiratory navigator-gating method was incorporated for serial measurements and signal averaging, with the subjects breathing freely. The mean myocardial T2 relaxation time measured in 12 healthy volunteers was 54 +/- 5.7 ms. Regional variations of T2 values across the myocardium were 7%. Temporal variations across serial T2 measurements in a transmural region covering approximately 0.5 cc of the left ventricular (LV) wall were 3.6% without signal averaging (number of excitations (NEX) = 1) and 1.7% with signal averaging (NEX = 10). According to our preliminary results, the T2-TrueFISP method is expected to provide a robust and sensitive tool for clinical application of myocardial BOLD contrast imaging.  相似文献   

15.
A new technique for acquiring T2-weighted, balanced steady-state free precession (b-SSFP) images is presented. Based on the recently proposed transition into driven equilibrium (TIDE) method, T2-TIDE uses a special flip angle scheme to achieve T2-weighted signal decay during the transient phase. In combination with half-Fourier image acquisition, T2-weighted images can be obtained using T2-TIDE. Numerical simulations were performed to analyze the signal behavior of T2-TIDE in comparison with TSE and b-SSFP. The results indicate identical signal evolution of T2-TIDE and TSE during the transient phase. T2-TIDE was used in phantom experiments, and quantitative ROI analysis shows a linear relationship between TSE and T2-TIDE SNR values. T2-TIDE was also applied to abdominal and head imaging on healthy volunteers. The resulting images were analyzed quantitatively and compared with standard T2-weighted and standard b-SSFP methods. T2-TIDE images clearly revealed T2 contrast and less blurring compared to T2-HASTE images. In combination with a magnetization preparation technique, STIR-weighted images were obtained. T2-TIDE is a robust technique for acquiring T2-weighted images while exploiting the advantages of b-SSFP imaging, such as high signal-to-noise ratio (SNR) and short TRs.  相似文献   

16.
17.
A new approach to mixed T(2)- and T(2) (*)-weighted BOLD fMRI is presented, which combines T(2) magnetization preparation (T2prep) with a series of EPI readouts. This technique allows full 3D, time-efficient imaging to be performed with low RF power deposition. Steady-state calculations are performed in order to study signal formation in 3D T2prep-EPI sequences. Results obtained under the hypothesis of ideal spoiling are compared to full Bloch equation solutions. The theoretical findings are validated by means of in vitro and in vivo signal measurements. Several variants of the 3D T2prep-EPI approach are shown to be usable for visual cortex fMRI and compared to conventional 3D coherent gradient-echo EPI. The relative sensitivity of these sequences is shown to be predictable by means of a simple DeltaT(2)/DeltaT(2) (*) model.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号