首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The experimental determination of slice profiles excited by applying radiofrequency pulses in the presence of a gradient generally results in magnitude profiles. The conditions necessary to obtain a phase-sensitive picture of the profile of a slice are discussed. A distinction is made between the “excitation profile” (distribution of the transverse magnetization immediately after the RF pulse) and the “slice profile” (distribution after refocusing by gradient reversal and/or imperfect gradient switching). Methods are presented that allow one to obtain either the excitation profile or the slice profile. It is shown that phase encoding along the direction of the slice selection gradient provides a convenient protocol for obtaining the distribution of both the real and imaginary parts of the slice profile. The phase sensitive excitation profile can be obtained by frequency encoding. These methods were used to evaluate the performance of various shaped pulses.  相似文献   

6.
Combined acquisition of gradient‐echo and spin‐echo signals in MRI time series reveals additional information for perfusion‐weighted imaging and functional MRI because of differences in the sensitivity of gradient‐echo and spin‐echo measurements to the properties of the underlying vascular architecture. The acquisition of multiple echo trains within one time frame facilitates the simultaneous estimation of the transversal relaxation parameters R2 and R. However, the simultaneous estimation of these parameters tends to be incorrect in the presence of slice profile mismatches between signal excitation and subsequent refocusing pulses. It is shown here that improvements in pulse design reduced R2 and R estimation errors. Further improvements were achieved by augmented parameter estimation through the introduction of an additional parameter δ to correct for discordances in slice profiles to facilitate more quantitative measurements. Moreover, the analysis of time‐resolved acquisitions revealed that the temporal stability of R2 estimates could be increased with improved pulse design, counteracting low contrast‐to‐noise ratios in spin‐echo‐based perfusion and functional MRI. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

7.
PURPOSE: To improve the slice profile and image quality of R2* mapping in the iceball during cryoablation with ultrashort echo time (UTE) imaging by compensating for eddy currents induced by the selective gradient when half-pulse radiofrequency (RF) excitation is employed to achieve UTEs. MATERIALS AND METHODS: A method to measure both B0 and linear eddy currents simultaneously is first presented. This is done with a least-square fitting process on calibration data collected on a phantom. Eddy currents during excitation are compensated by redesigning the RF pulse and the selective gradient accordingly, while that resultant from the readout gradient are compensated for during image reconstruction. In vivo data were obtained continuously during the cryoablation experiments to calculate the R2* values in the iceball and to correlate them with the freezing process. RESULTS: Image quality degradation due to eddy currents is significantly reduced with the proposed approaches. R2* maps of iceball throughout the cryoablation experiments were achieved with improved quality. CONCLUSION: The proposed approaches are effective for compensating eddy currents during half-pulse RF excitation as well as readout. TEs as short as 100 microsec were obtained, allowing R2* maps to be obtained from frozen tissues with improved quality.  相似文献   

8.
9.
Assessment of lung effective transverse relaxation time (T2*) may play an important role in the detection of structural and functional changes caused by lung diseases such as emphysema and chronic bronchitis. While T2* measurements have been conducted in both animals and humans at 1.5 T, studies on human lung at 3.0 T have not yet been reported. In this work, ultrashort echo time imaging technique was applied for the measurement and comparison of T2* values in normal human lungs at 1.5 T and 3.0 T. A 2D ultrashort echo time pulse sequence was implemented and evaluated in phantom experiments, in which an eraser served as a homogeneous short T2* sample. For the in vivo study, five normal human subjects were imaged at both field strengths and the results compared. The average T2* values measured during free‐breathing were 2.11(±0.27) ms at 1.5 T and 0.74(±0.1) ms at 3.0 T, respectively, resulting in a 3.0 T/1.5 T ratio of 2.9. Furthermore, comparison of the relaxation values at end‐expiration and end‐inspiration, accomplished through self‐gating, showed that during normal breathing, differences in T2* between the two phases may be negligible. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

10.
PURPOSE: To assess the values of pulse sequences with ultrashort echo times (0.08 msec) for detecting and characterizing periosteum. MATERIALS AND METHODS: Two normal volunteers aged 33 and 58 years and 12 patients aged seven to 55 years were studied. A total of 10 of the patients had contrast enhancement with intravenous Gadodiamide. Two ovine tibias were examined before and after the periosteum was stripped from the bone. RESULTS: High signal regions were observed adjacent to cortical bone in all parts of the skeleton imaged. They were generally more conspicuous after fat suppression and contrast administration. In the ovine tibia there was a reduction in the high signal normally seen at the surface of the bone after periosteal stripping. The detached periosteum produced a high signal. Mean T(2)* values for adult human periosteum ranged from 5.3 to 11.4 msec. After enhancement the signal intensity increased. In two patients with tibial fractures, increased periosteal signal was seen and this showed marked enhancement. Signals from periosteum could be simulated by fat, contrast-enhanced blood and artifacts. CONCLUSION: The periosteum can be visualized with ultrashort echo time pulse sequences in health and disease.  相似文献   

11.
12.
PURPOSE: To assess the feasibility of imaging the liver in volunteers and patients with ultrashort echo time (UTE) pulse sequences. MATERIALS AND METHODS: Seven normal controls as well as 12 patients with biopsy-proven generalized liver disease and three patients with focal disease were examined using pulse sequences with initial TEs of 0.08 msec followed by three later echoes, with or without frequency-based fat suppression. T(2)* values were calculated from regions of interest in the liver. RESULTS: Good image quality was obtained in each subject. There was a highly significant difference in the mean T(2)* values between the normal controls and patients with generalized liver disease (P = 0.001). T(2)* was significantly decreased in hemochromatosis (P = 0.002) and increased in cirrhosis (P = 0.04), compared with controls. T(2)* also correlated with functional status assessed by Child's grade (P = 0.001). A hepatocellular carcinoma showed reduced short T(2) components in the region of thermal ablation and evidence of a subcapsular hematoma which were not apparent with conventional imaging. CONCLUSIONS: Imaging of the liver with UTE sequences showed good image quality and tolerance of abdominal motion. T(2)* was specifically correlated with the presence of hemochromatosis, cirrhosis, and functional grade. Imaging of short T(2) relaxation components may provide useful information in disease.  相似文献   

13.
AIM: To review the effects of contrast administration on tissues with short T2s using a pulse ultrashort echo time (UTE) sequence. MATERIALS AND METHODS: Pulse sequences were implemented with echo times of 0.08 ms and three later gradient echoes. A fat-suppression option was used and later echo images were subtracted from the first echo image. Contrast enhancement with gadodiamide (0.3 mmol/kg) was used for serial studies in a volunteer. The images of 10 patients were reviewed for evidence of contrast enhancement in short T2 tissues. RESULTS: Contrast enhancement was seen in normal meninges, falx, tendons, ligaments, menisci, periosteum and cortical bone. In addition more extensive enhancement than with conventional pulse sequences was seen in meningeal disease, intervertebral disc disease, periligamentous scar tissue and periosteum after fracture. Subtraction of an image taken with a longer TE from the first image was of value in differentiating enhancement in short T2 tissues from that in long T2 tissues or blood. CONCLUSION: Contrast enhancement can be identified in tissues with short T2s using UTE pulse sequences in health and disease.  相似文献   

14.
15.
16.
17.
18.
Ultrashort echo time (UTE) imaging has shown promise as a technique for imaging tissues with T2 values of a few milliseconds or less. These tissues, such as tendons, menisci, and cortical bone, are normally invisible in conventional magnetic resonance imaging techniques but have signal in UTE imaging. They are difficult to visualize because they are often obscured by tissues with longer T2 values. In this article, new long-T2 suppression RF pulses that improve the contrast of short-T2 species are introduced. These pulses are improvements over previous long-T2 suppression pulses that suffered from poor off-resonance characteristics or T1 sensitivity. Short-T2 tissue contrast can also be improved by suppressing fat in some applications. Dual-band long-T2 suppression pulses that additionally suppress fat are also introduced. Simulations, along with phantom and in vivo experiments using 2D and 3D UTE imaging, demonstrate the feasibility, improved contrast, and improved sensitivity of these new long-T2 suppression pulses. The resulting images show predominantly short-T2 species, while most long-T2 species are suppressed.  相似文献   

19.
T‐weighted functional MR images suffer from signal loss artifacts caused by the magnetic susceptibility differences between air cavities and brain tissues. We propose a novel spectral‐spatial pulse design that is slice‐selective and capable of mitigating the signal loss. The two‐dimensional spectral–spatial pulses create precompensatory phase variations that counteract through‐plane dephasing, relying on the assumption that resonance frequency offset and through‐plane field gradient are spatially correlated. The pulses can be precomputed before functional MRI experiments and used repeatedly for different slices in different subjects. Experiments with human subjects showed that the pulses were effective in slice selection and loss mitigation at different brain regions. Magn Reson Med 61:1137–1147, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.

Purpose:

To demonstrate the feasibility of combining a chemical shift‐based water‐fat separation method (IDEAL) with a 2D ultrashort echo time (UTE) sequence for imaging and quantification of the short T2 tissues with robust fat suppression.

Materials and Methods:

A 2D multislice UTE data acquisition scheme was combined with IDEAL processing, including T2* estimation, chemical shift artifacts correction, and multifrequency modeling of the fat spectrum to image short T2 tissues such as the Achilles tendon and meniscus both in vitro and in vivo. The integration of an advanced field map estimation technique into this combined method, such as region growing (RG), is also investigated.

Results:

The combination of IDEAL with UTE imaging is feasible and excellent water‐fat separation can be achieved for the Achilles tendon and meniscus with simultaneous T2* estimation and chemical shift artifact correction. Multifrequency modeling of the fat spectrum yields more complete water‐fat separation with more accurate correction for chemical shift artifacts. The RG scheme helps to avoid water‐fat swapping.

Conclusion:

The combination of UTE data acquisition with IDEAL has potential applications in imaging and quantifying short T2 tissues, eliminating the necessity for fat suppression pulses that may directly suppress the short T2 signals. J. Magn. Reson. Imaging 2010;31:1027–1034. ©2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号