首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arterial spin labeling (ASL) perfusion measurements may have many applications outside the brain. In the abdomen, severe image artifacts can arise from motions between acquisitions of multiple signal averages in ASL, even with single‐shot image acquisition. Background suppression and respiratory motion synchronization techniques can be used to ameliorate these artifacts. Two separate in vivo studies of renal perfusion imaging using pulsed continuous ASL (pCASL) were performed. The first study assessed various combinations of background suppression and breathing strategies. The second investigated the retrospective sorting of images acquired during free breathing based on respiratory position. Quantitative assessments of the test‐retest repeatability of perfusion measurements and the image quality scored by two radiologists were made. Image quality was most significantly improved by using background suppression schemes and controlled breathing when compared to other combinations without background suppression or with free breathing, assessed by test‐retests (5% level, F‐test), and by radiologists' scores (5% level, Mann‐Whitney U‐test). Under free breathing, retrospectively sorting images based on respiratory position showed significant improvement. Both radiologists found 100% of the images had preferable image sharpness after sorting. High‐quality renal perfusion measurements with reduced respiratory motion artifacts have been demonstrated using ASL when appropriate background suppression and breathing strategies are applied. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Nyquist ghosts are an inherent artifact in echo planar imaging acquisitions. An approach to robustly eliminate Nyquist ghosts is presented that integrates two previous Nyquist ghost correction techniques: temporal domain encoding (phase labeling for additional coordinate encoding: PLACE and spatial domain encoding (phased array ghost elimination: PAGE). Temporal encoding modulates the echo planar imaging acquisition trajectory from frame to frame, enabling one to interleave data to remove inconsistencies that occur between sampling on positive and negative gradient readouts. With PLACE, one can coherently combine the interleaved data to cancel residual Nyquist ghosts. If the level of ghosting varies significantly from image to image, however, the signal cancellation that occurs with PLACE can adversely affect SNR‐sensitive applications such as perfusion imaging with arterial spin labeling. This work proposes integrating PLACE into a PAGE‐based reconstruction process to yield significantly better Nyquist ghost correction that is more robust than PLACE or PAGE alone. The robustness of this method is demonstrated in the presence of magnetic field drift with an in‐vivo arterial spin labeling perfusion experiment. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
First‐pass perfusion MRI is a promising technique to detect ischemic heart disease. Sliding window (SW) conjugate‐gradient (CG) highly constrained back‐projection reconstruction (HYPR) (SW‐CG‐HYPR) has been proposed to increase spatial coverage, spatial resolution, and SNR. However, this method is sensitive to respiratory motion and thus requires breath‐hold. This work presents a non‐model‐based motion correction method combined with SW‐CG‐HYPR to perform free‐breathing myocardial MR imaging. Simulation studies were first performed to show the effectiveness of the proposed motion correction method and its independence from the pattern of the respiratory motion. After that, in vivo studies were performed in six healthy volunteers. From all of the volunteer studies, the image quality score of free breathing perfusion images with motion correction (3.11 ± 0.34) is improved compared with that of images without motion correction (2.27 ± 0.32), and is comparable with that of successful breath‐hold images (3.12 ± 0.38). This result was further validated by a quantitative sharpness analysis. The left ventricle and myocardium signal changes in motion corrected free‐breathing perfusion images were closely correlated to those observed in breath‐hold images. The correlation coefficient is 0.9764 for myocardial signals. Bland–Altman analysis confirmed the agreement between the free‐breathing SW‐CG‐HYPR method with motion correction and the breath‐hold SW‐CG‐HYPR. This technique may allow myocardial perfusion MRI during free breathing. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
An improved arterial spin labeling (ASL) perfusion technique that combines pseudo-continuous labeling and a T2*-insensitive sequence (GRASE) with background suppression was used to acquire perfusion maps in normal volunteers and stroke patients. It is shown that perfusion measurements obtained in less than 1 min of scan time are reproducible, with a coefficient of variation of 7%. The perfusion maps generated from these data can be used to characterize the stroke lesion.  相似文献   

5.
FAIR true-FISP perfusion imaging of the kidneys.   总被引:7,自引:0,他引:7  
Most arterial spin labeling (ASL) techniques apply echoplanar imaging (EPI) because this strategy provides relatively high SNR in short measuring times. Unfortunately, those techniques are very susceptible to static magnetic field inhomogeneities and perfusion signals from organs with fast transverse relaxation might decrease due to the exchange of water molecules in capillaries and organ tissue combined with relatively long echo times of EPI sequences. To overcome these problems a novel imaging technique, FAIR True-FISP, was developed. It combines a FAIR (flow-sensitive alternating inversion recovery) perfusion preparation and a true fast imaging with steady precession (True-FISP) data acquisition strategy. True-FISP was chosen since this sequence type does not show the mentioned disadvantages of EPI, but provides a similar SNR per measuring time. An important problem of this approach is that True-FISP sequences usually work in a steady state which is independent of a previous preparation of magnetization. For this reason a sequence structure had to be developed which keeps the advantages of True-FISP and makes the signal intensity sensitive to the FAIR preparation. Breathhold and nonbreathhold examinations of kidneys are presented and possible strategies to quantitative flow measurements are reported. It is shown that correction of spatially inhomogeneous receiver coil characteristics is easily feasible and leads to clinically valuable perfusion examinations of kidneys without application of potentially nephrotoxic contrast media.  相似文献   

6.
A method is presented for multislice measurements of quantitative cerebral perfusion based on magnetic labeling of arterial spins. The method combines a pulsed arterial inversion, known as the FAIR (Flow-sensitive Alternating Inversion Recovery) experiment, with a fast spiral scan image acquisition. The short duration (22 ms) of the spiral data collection allows simultaneous measurement of up to 10 slices per labeling period, thus dramatically increasing efficiency compared to current single slice acquisition protocols. Investigation of labeling efficiency, suppression of unwanted signals from stationary as well as intraarterial spins, and the FAIR signal change as a function of inversion delay are presented. The assessment of quantitative cerebral blood flow (CBF) with the new technique is demonstrated and shown to require measurement of arterial transit time as well as suppression of intraarterial spin signals. CBF values measured on normal volunteers are consistent with results obtained from H2O15 positron emission tomography (PET) studies and other radioactive tracer approaches. In addition, the new method allows detection of activation-related perfusion changes in a finger-tapping experiment, with locations of activation corresponding well to those observed with blood oxygen level dependent (BOLD) fMRI.  相似文献   

7.
Cerebral blood flow‐dependent phase differences between tagged and control arterial spin labeling images are reported. A biophysical model is presented to explain the vascular origin of this difference. Arterial spin labeling data indicated that the phase difference is largest when the arterial component of the signals is preserved but is greatly reduced as the arterial contribution is suppressed by postinversion delays or flow‐crushing gradients. Arterial vasculature imaging by saturation data of activation and hypercapnia conditions showed increases in phase accompanying blood flow increases. An arterial spin labeling functional magnetic resonance imaging study yielded significant activation by magnitude‐only, phase‐only, and complex analyses when preserving the whole arterial spin labeling signal. After suppression of the arterial signal by postinversion delays, magnitude‐only and complex models yielded similar activation levels, but the phase‐only model detected nearly no activation. When flow crushers were used for arterial suppression, magnitude‐only activation was slightly lower and fluctuations in phase were dramatically higher than when postinversion delays were used. Although the complex analysis performed did not improve detection, a simulation study indicated that the complex‐valued activation model exhibits combined magnitude and phase detection power and thus maximizes sensitivity under ideal conditions. This suggests that, as arterial spin labeling imaging and image correction methods develop, the complex‐valued detection model may become helpful in signal detection. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
PURPOSE: To estimate cerebral blood perfusion in areas of strong magnetic susceptibility changes with high spatial and temporal resolution using a flow-sensitive alternating inversion recovery (FAIR) arterial spin labeling (ASL) method. MATERIALS AND METHODS: We implemented an ASL method that is capable of imaging perfusion in areas of high magnetic susceptibility changes by combining a FAIR spin preparation with a true fast imaging in steady precession (TrueFISP) data acquisition strategy. A TrueFISP readout sequence was applied especially in regions with magnetic field inhomogeneities and compared with corresponding FAIR measurements obtained with a standard echo-planar imaging (EPI) readout. Quantitative perfusion images were obtained at 1.5 Tesla (1.5T) from eight healthy volunteers (24-42 years old) and one patient (23 years old). FAIR-TrueFISP perfusion images were compared with FAIR echo-planar images. T1 maps, which are necessary for quantitative perfusion estimation, were obtained with inversion recovery (IR) TrueFISP and IR EPI. Additionally, high-resolution perfusion measurements were performed on four volunteers at 3T. RESULTS: The two ASL perfusion imaging modalities yielded comparable diagnostic image quality in brain areas with low susceptibility differences at 1.5T. Cerebral perfusion of gray matter (GM) areas was 105.7 +/- 5.2 mL/100 g/minute for FAIR-TrueFISP and 88.8 +/- 14.6 mL/100 g/minute for FAIR-EPI at 1.5T, and 70.4 +/- 7.1 mL/100 g/minute for FAIR-TrueFISP and 63.5 +/- 6.9 mL/100 g/minute for FAIR-EPI at 3.0T. Higher perfusion values at 1.5T were due to more pronounced partial-volume effects from fast moving spins at lower spatial resolution. The FAIR-TrueFISP sequence showed no significant distortions and markedly reduced signal void artifacts in areas of high susceptibility changes (e.g., near brain-bone transitions and close to metallic clips) compared to FAIR-EPI. At 3T, highly resolved FAIR-TrueFISP perfusion images were acquired with an in-plane resolution of up to 1.3 mm. CONCLUSION: FAIR-TrueFISP allows for assessment of cerebral perfusion in areas of critically high susceptibility changes with conventional ASL methods.  相似文献   

9.
Arterial spin labeling (ASL) provides noninvasive measurement of tissue blood flow, but sensitivity to motion has limited its application to imaging of myocardial blood flow. Although different cardiac phases can be synchronized using electrocardiography triggering, breath holding is generally required to minimize effects of respiratory motion during ASL scanning, which may be challenging in clinical populations. Here a free‐breathing myocardial ASL technique with the potential for reliable clinical application is presented, by combining ASL with a navigator‐gated, electrocardiography‐triggered TrueFISP readout sequence. Dynamic myocardial perfusion signals were measured at multiple delay times that allowed simultaneous fitting of myocardial blood flow and arterial transit time. With the assist of a nonrigid motion correction program, the estimated mean myocardial blood flow was 1.00 ± 0.55 mL/g/min with a mean transit time of ∼400 msec. The intraclass correlation coefficient of repeated scans was 0.89 with a mean within subject coefficient of variation of 22%. Perfusion response during mild to moderate stress was further measured. The capability for noninvasive, free‐breathing assessment of myocardial blood flow using ASL may offer an alternative approach to first‐pass perfusion MRI for clinical evaluation of patients with coronary artery disease. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
MRI is important for the assessment of cardiac structure and function in preclinical studies of cardiac disease. Arterial spin labeling techniques can be used to measure perfusion noninvasively. In this study, an electrocardiogram‐gated Look‐Locker sequence with segmented k‐space acquisition has been implemented to acquire single slice arterial spin labeling data sets in 15 min in the mouse heart. A data logger was introduced to improve data quality by: (1) allowing automated rejection of respiration‐corrupted images, (2) providing additional prospective gating to improve consistency of acquisition timing, and (3) allowing the recombination of uncorrupted k‐space lines from consecutive data sets to reduce respiration corruption. Finally, variability and repeatability of perfusion estimation within‐session, between‐session, between‐animal, and between image rejection criteria were assessed in mice. The criterion used to reject images from the T1 fit was shown to affect the perfusion estimation. These data showed that the between‐animal coefficient of variability (24%) was greater than the between‐session variability (17%) and within‐session variability (11%). Furthermore, the magnitude of change in perfusion required to detect differences was 30% (within‐session) and 55% (between‐session) according to Bland‐Altman repeatability analysis. These technique developments and repeatability statistics will provide a platform for future preclinical studies applying cardiac arterial spin labeling. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
Amongst the various implementations of arterial spin labeling MRI methods for quantifying cerebral perfusion, the QUASAR method is unique. By using a combination of labeling with and without flow suppression gradients, the QUASAR method offers the separation of macrovascular and tissue signals. This permits local arterial input functions to be defined and “model‐free” analysis, using numerical deconvolution, to be used. However, it remains unclear whether arterial spin labeling data are best treated using model‐free or model‐based analysis. This work provides a critical comparison of these two approaches for QUASAR arterial spin labeling in the healthy brain. An existing two‐component (arterial and tissue) model was extended to the mixed flow suppression scheme of QUASAR to provide an optimal model‐based analysis. The model‐based analysis was extended to incorporate dispersion of the labeled bolus, generally regarded as the major source of discrepancy between the two analysis approaches. Model‐free and model‐based analyses were compared for perfusion quantification including absolute measurements, uncertainty estimation, and spatial variation in cerebral blood flow estimates. Major sources of discrepancies between model‐free and model‐based analysis were attributed to the effects of dispersion and the degree to which the two methods can separate macrovascular and tissue signal. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
Quantification of perfusion with arterial spin labeling MRI requires a calibration of the imaging sensitivity to water throughout the imaged volume. Since this sensitivity is affected by coil loading and other interactions between the subject and the scanner, the sensitivity must be calibrated in the subject at the time of scan. Conventional arterial spin labeling perfusion quantification assumes a uniform proton density and acquires a proton density reference image to serve as the calibration. This assumption, in the form of an assumed constant brain‐blood partition coefficient, incorrectly adds inverse proton density weighting to the perfusion image. Here, a sensitivity calibration is proposed by generating a uniform magnetization image whose intensity is highly independent of brain tissue type. It is shown that such a uniform magnetization image can be achieved, and brain tissue perfusion values quantified with the sensitivity calibration agree with those quantified with a proton density image when segmentation of brain tissues is performed and appropriate partition coefficients are assumed. Quantification of brain tissue water density is also demonstrated using this sensitivity calibration. This approach can improve and simplify quantification of arterial spin labeling perfusion and may have broader applications to measurement of edema and sensitivity calibration for parallel imaging. Magn Reson Med, 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

13.
Purpose: A steady pulsed imaging and labeling (SPIL) scheme is proposed to obtain high‐resolution multislice perfusion images of mice brain using standard preclinical MRI equipment. Theory and Methods: The SPIL scheme repeats a pulsed arterial spin labeling (PASL) module together with a short mixing time to extend the temporal duration of the generated PASL bolus to the total experimental time. Multislice image acquisition takes place during the mixing times. The mixing time is also used for magnetization recovery following image acquisition. The new scheme is able to yield multislice perfusion images rapidly. The perfusion kinetic curve can be measured by a multipulsed imaging and labeling (MPIL) scheme, i.e., acquiring single‐slice ASL signals before reaching steady‐state in the SPIL sequence. Results: When applying the SPIL method to normal mice, and to mice with unilateral ischemia, high‐resolution multislice (five slices) CBF images could be obtained in 8 min. Perfusion data from ischemic mice showed clear CBF reductions in ischemic regions. The SPIL method was also applied to postmortem mice, showing that the method is free from magnetization transfer confounds. Conclusion: The new SPIL scheme provides for robust measurement of CBF with multislice imaging capability in small animals. Magn Reson Med 75:238–248, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

14.
15.
In this study, a new arterial spin labeling technique that requires no separate spin preparation pulse was developed. Sequential two‐dimensional slices were acquired in ascending and descending orders by turns using balanced steady state free precession for pair‐wise subtraction. Simulation studies showed this new technique, alternate ascending/descending directional navigation (ALADDIN), has high sensitivity to both slow‐ (1–10 cm/sec) and fast‐moving (>10 cm/sec) blood because of the presence of multiple labeling planes proximal to imaging planes and sensitivity of balanced steady state free precession to initial magnetization differences. ALADDIN provided high‐resolution multislice perfusion‐weighted images in ~3 min. About 80–90% of signals in a slice were ascribed to spins saturated in the four prior slices. Three to five edge slices on each side of imaging group were affected by transient magnetization transfer effects and incomplete T1 recovery between successive acquisitions. ALADDIN signals were dependent on many imaging parameters, implying room for improvement. Sagittal and coronal ALADDIN images demonstrated perfusion direction in gray matter regions was mostly from center to lateral, anterior, or posterior, whereas that in some white matter regions was reversed. ALADDIN is likely useful for many studies requiring perfusion‐weighted imaging with short scan time, insensitiveness to arterial transit time, directional information, high resolution, and/or wide coverage. Magn Reson Med, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

16.

Purpose:

To use the acquisition of the k‐space center signal (DC signal) implemented into a Cartesian three‐dimensional (3D) FLASH sequence for retrospective respiratory self‐gating and, thus, for the examination of the whole human lung in high spatial resolution during free breathing.

Materials and Methods:

Volunteer as well as patient measurements were performed under free breathing conditions. The DC signal is acquired after the actual image data acquisition within each excitation of a 3D FLASH sequence. The DC signal is then used to track respiratory motion for retrospective respiratory gating.

Results:

It is shown that the acquisition of the DC signal after the imaging module can be used in a 3D FLASH sequence to extract respiratory motion information for retrospective respiratory self‐gating and allows for shorter echo times (TE) and therefore increased lung parenchyma SNR.

Conclusion:

The acquisition of the DC signal after image signal acquisition allows successful retrospective gating, enabling the reconstruction of high resolution images of the whole human lung under free breathing conditions. J. Magn. Reson. Imaging 2013;37:727–732. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
This study compares the implementation of the STAR and FAIR pulsed arterial spin labeling (PASL) schemes to form quantitative perfusion maps at ultra‐high field, 7 Tesla (T), and high field, 3T. Phantom experiments were performed to compare the inversion efficiency and profile of the labeling pulses at 7T and 3T and to optimize in‐plane saturation techniques. The perfusion weighted (PW) signal was measured at a range of postlabeling delay times and quantitative perfusion maps were calculated on a voxel‐by‐voxel basis. An increase in PW signal was found with field strength, and together with the increased signal‐to‐noise ratio, this led to improved image signal‐to‐noise and quality of fit of perfusion maps at 7T. Magn Reson Med, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
Arterial spin labeling offers great potential in clinical applications for noninvasive measurement of cerebral blood flow. Arterial spin labeling tagging methods such as the flow sensitive alternating inversion recovery technique require efficient spatial inversion pulses with high inversion accuracy and sharp transition zones between inverted and noninverted magnetization, i.e., require a high performance inversion pulse. This work presents a comprehensive comparison of the advantages offered by a variable‐rate selective excitation variant of the hyperbolic secant pulse against the widely used conventional hyperbolic secant pulse and the frequency offset corrected inversion pulses. Pulses were compared using simulation and experimental measurement in phantoms before being used in a flow sensitive alternating inversion recovery‐arterial spin labeling perfusion measurement in normal volunteers. Both the hyperbolic secant and frequency offset corrected inversion pulses have small variations in inversion profiles that may lead to unwanted subtraction errors in arterial spin labeling at a level where the residual signal is comparable to the desired perfusion contrast. The variable‐rate selective excitation pulse is shown to have improved inversion efficiency indicating its potential in perfusion MRI. The variable‐rate selective excitation pulse variant also showed greatest tolerance to radiofrequency variation and off‐resonance conditions, making it a robust choice for in vivo arterial spin labeling measurement. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
Imaging the contribution of different arterial vessels to the blood supply of the brain can potentially guide the treatment of vascular disease and other disorders. Previously available only with catheter angiography, vessel‐selective labeling of arteries has now been demonstrated with pulsed and continuous arterial spin labeling methods. Pulsed continuous labeling, which permits continuous labeling on standard scanner radiofrequency hardware, has been used to encode the contribution of different vessels to the blood supply of the brain. Vessel encoding requires a longer scan and a more complex reconstruction algorithm and may be more sensitive to fluctuations in flow, however. Here a method is presented for single‐artery selective labeling, in which a disk around the targeted vessel is labeled. Based on pulsed continuous labeling, this method is achieved by rotating the directions of added in‐plane gradients. Numerical simulations of the simplest strategy show good efficiency but poor suppression of labeling at large distances from the target vessel. Amplitude modulation of the rotating in‐plane gradients results in better suppression of distant vessels. In vivo results demonstrate highly selective labeling of individual vessels and a rapid falloff of the labeling with distance from the center of the labeling disk, in agreement with the simulations. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
Single-shot quantitative perfusion imaging of the human lung.   总被引:1,自引:0,他引:1  
The major drawback to quantitative perfusion imaging using arterial spin labeling (ASL) techniques is the need to acquire two images (tag and control), which must be subtracted in order to obtain a perfusion-weighted image. This can potentially result in misregistration artifacts, especially in lung imaging, due to varying lung inflation levels in different breath-holds. In this work a double inversion recovery (DIR) imaging technique that yields perfusion-weighted images of the human lung in a single shot is presented. This technique ensures the complete suppression of background tissue while it preserves signal from the blood. Furthermore, the perfusion-weighted images and an additional (independent) acquired reference scan can be used to obtain quantitative perfusion information from the lungs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号