共查询到20条相似文献,搜索用时 22 毫秒
1.
Background contextDegeneration and injuries of the intervertebral disc (IVD) result in large alterations in biomechanical behaviors. Repair strategies using biomaterials can be optimized based on the biomechanical and biological requirements of the IVD. PurposeTo review the present literature on the effects of degeneration, simulated degeneration, and injury on biomechanics of the IVD, with special attention paid to needle puncture injuries, which are a pathway for diagnostics and regenerative therapies and the promising biomaterials for disc repair with a focus on how those biomaterials may promote biomechanical repair. Study designA narrative review to evaluate the role of biomechanics on disc degeneration and regenerative therapies with a focus on what biomechanical properties need to be repaired and how to evaluate and accomplish such repairs using biomaterials. Model systems for the screening of such repair strategies are also briefly described. MethodsArticles were selected from two main PubMed searches using keywords: intervertebral AND biomechanics (1,823 articles) and intervertebral AND biomaterials (361 articles). Additional keywords (injury, needle puncture, nucleus pressurization, biomaterials, hydrogel, sealant, tissue engineering) were used to narrow the articles down to the topics most relevant to this review. ResultsDegeneration and acute disc injuries have the capacity to influence nucleus pulposus (NP) pressurization and annulus fibrosus (AF) integrity, which are necessary for an effective disc function and, therefore, require repair. Needle injection injuries are of particular clinical relevance with the potential to influence disc biomechanics, cellularity, and metabolism, yet these effects are localized or small and more research is required to evaluate and reduce the potential clinical morbidity using such techniques. NP replacement strategies, such as hydrogels, are required to restore the NP pressurization or the lost volume. AF repair strategies including cross-linked hydrogels, fibrous composites, and sealants offer promise for regenerative therapies to restore AF integrity. Tissue engineered IVD structures, as a single implantable construct, may promote greater tissue integration due to the improved repair capacity of the vertebral bone. ConclusionsIVD height, neutral zone characteristics, and torsional biomechanics are sensitive to specific alterations in the NP pressurization and AF integrity and must be addressed for an effective functional repair. Synthetic and natural biomaterials offer promise for NP replacement, AF repair, as an AF sealant, or whole disc replacement. Meeting mechanical and biological compatibilities are necessary for the efficacy and longevity of the repair. 相似文献
3.
STUDY DESIGN: Coil springs were stretched and attached to produce a compressive force across the lumbar intervertebral discs of dogs for up to 53 weeks. OBJECTIVE: To test the hypothesis that compressive forces applied to the intervertebral disc for a long period of time cause disc degeneration in vivo in a dog model. SUMMARY OF BACKGROUND DATA: It is a commonly held belief that high forces applied to the intervertebral disc, and to joints in general, play a role in causing degeneration. METHODS: Coil springs were stretched and attached to produce a compressive force across the lumbar intervertebral discs (L3/L4) of 12 dogs. After up to a year, the dogs were killed, and their lumbar spines were removed and radiographed. The L3/L4 disc and the controls (T13/L1 and L4/L5) were excised and examined for visible signs of degeneration. The discs then were assessed using immunohistochemical analysis and enzyme-linked immunosorbent assay. Disc chondrocytes also were assayed for apoptosis. RESULTS: No obvious signs of degeneration in the discs (L3/L4) that had been under compression for up to a year could be observed. There was no disc bulging, anular fissures, or disc space narrowing. Some changes were observed at the microscopic level, although no thickening of the endplate was apparent. The enzyme-linked immunosorbent assay analysis provided significant data for all three regions of the disc (nucleus, inner anulus, and outer anulus). When comparing the compressed disc (L3/L4) with either of the control discs (T13/L1 and L4/L5), in the compressed disc: 1) the nucleus contained less proteoglycan and more collagen I and II; 2) the inner anulus contained less proteoglycan and collagen I; and 3) the outer anulus contained more proteoglycan and less collagen I. The collagen II differences for the inner and outer anulus were not significant. CONCLUSION: Compression applied to the lumbar intervertebral discs of dogs for up to a year does not produce degeneration in any visible form. It does produce microscopic changes and numerical changes, however, in the amounts of proteoglycan and collagen in the nucleus, inner anulus, and outer anulus. The present results add no credence to the commonly held belief that high compressive forces play a causative role in disc degeneration. 相似文献
4.
STUDY DESIGN: Review and reinterpretation of existing literature. OBJECTIVE: To suggest how intervertebral disc degeneration might be distinguished from the physiologic processes of growth, aging, healing, and adaptive remodeling. SUMMARY OF BACKGROUND DATA: The research literature concerning disc degeneration is particularly diverse, and there are no accepted definitions to guide biomedical research, or medicolegal practice. DEFINITIONS: The process of disc degeneration is an aberrant, cell-mediated response to progressive structural failure. A degenerate disc is one with structural failure combined with accelerated or advanced signs of aging. Early degenerative changes should refer to accelerated age-related changes in a structurally intact disc. Degenerative disc disease should be applied to a degenerate disc that is also painful. JUSTIFICATION: Structural defects such as endplate fracture, radial fissures, and herniation are easily detected, unambiguous markers of impaired disc function. They are not inevitable with age and are more closely related to pain than any other feature of aging discs. Structural failure is irreversible because adult discs have limited healing potential. It also progresses by physical and biologic mechanisms, and, therefore, is a suitable marker for a degenerative process. Biologic progression occurs because structural failure uncouples the local mechanical environment of disc cells from the overall loading of the disc, so that disc cell responses can be inappropriate or "aberrant." Animal models confirm that cell-mediated changes always follow structural failure caused by trauma. This definition of disc degeneration simplifies the issue of causality: excessive mechanical loading disrupts a disc's structure and precipitates a cascade of cell-mediated responses, leading to further disruption. Underlying causes of disc degeneration include genetic inheritance, age, inadequate metabolite transport, and loading history, all of which can weaken discs to such an extent that structural failure occurs during the activities of daily living. The other closely related definitions help to distinguish between degenerate and injured discs, and between discs that are and are not painful. 相似文献
8.
PurposeLDD is an important cause of low back pain. Many people believe there is an adverse influence of type 2 diabetes (T2D) on lumbar intervertebral disc degeneration (LDD). We examined a population sample for epidemiological evidence of association.MethodsTwin volunteers from the TwinsUK cohort having spine magnetic resonance (MR) scans coded for LDD and information about T2D were investigated in two ways. First, as a population sample and second as a cotwin case control study in twin pairs discordant for T2D. Other risk factors for LDD considered were age, body-mass index (BMI), smoking, and alcohol.ResultsIn 956 twin volunteers T2D had a prevalence of 6.6 %. LDD score was higher in T2D twins (14.9 vs 13.1 p = 0.04) but was not an independent risk factor if the influence of age and BMI were included in the model. Discordant twin analysis (n = 33 pairs) showed no significant difference in LDD between twins having T2D and their unaffected cotwins.ConclusionsTwins having T2D did manifest higher LDD scores but the effect was abrogated once BMI was included in multivariable analysis, showing it is not an independent risk factor for LDD. The population study had 80 % power at 0.1 significance level to detect a difference of 1.8 in LDD score (range of 0–60), so if there is an effect of T2D on LDD, it is likely to be small. 相似文献
9.
It has been proposed that intervertebral disc degeneration might be caused by low-grade infection. The purpose of the present study was to assess the incidence of herpes viruses in intervertebral disc specimens from patients with lumbar disc herniation. A polymerase chain reaction based assay was applied to screen for the DNA of eight different herpes viruses in 16 patients and two controls. DNA of at least one herpes virus was detected in 13 specimens (81.25%). Herpes Simplex Virus type-1 (HSV-1) was the most frequently detected virus (56.25%), followed by Cytomegalovirus (CMV) (37.5%). In two patients, co-infection by both HSV-1 and CMV was detected. All samples, including the control specimens, were negative for Herpes Simplex Virus type-2, Varicella Zoster Virus, Epstein Barr Virus, Human Herpes Viruses 6, 7 and 8. The absence of an acute infection was confirmed both at the serological and mRNA level. To our knowledge this is the first unequivocal evidence of the presence of herpes virus DNA in intervertebral disc specimens of patients with lumbar disc herniation suggesting the potential role of herpes viruses as a contributing factor to the pathogenesis of degenerative disc disease. 相似文献
12.
PurposeLow back pain (LBP), a widely prevalent and costly disease around the world, is mainly caused by intervertebral disc (IVD) degeneration (IDD). Although numerous factors may trigger this degenerative process, microbiome dysbiosis has recently been implicated as one of the likely causes. However, the exact relationship between the microbiome and IDD is not well understood. This review summarizes the potential mechanisms and discusses microbiome dysbiosis’s possible influence on IDD and LBP. MethodsProspective literature review. ResultsAlterations in microbiome composition and host responses to the microbiota causing pathological bone development and involution, led to the concept of gut-bone marrow axis and gut-bone axis. Moreover, the concept of the gut-disc axis was also proposed to explain the microbiome’s role in IDD and LBP. According to the existing evidence, the microbiome could be an important factor for inducing and aggravating IDD through changing or regulating the outside and inside microenvironment of the IVD. Three potential mechanisms by which the gut microbiota can induce IVD and cause LBP are: (1) translocation of the bacteria across the gut epithelial barrier and into the IVD, (2) regulation of the mucosal and systemic immune system, and (3) regulation of nutrient absorption and metabolites formation at the gut epithelium and its diffusion into the IVD. Furthermore, to investigate whether IVD is initiated by pathogenic bacteria and establish the correlation between the presence of certain microbial groups with the disease in question, microbiome diversity analysis based on16S rRNA data can be used to characterise stool/blood microbiota from IVD patients. ConclusionFuture studies on microbiome, fungi and viruses in IDD is necessary to revolutionize our thinking about their possible role in the development of IVD diseases. Furthermore, we believe that inflammation inhibition and interruption of amplification of cascade reaction in IVD by targeting the gut and IVD microbiome is worthwhile for the treatment of IDD and LBP. Level of Evidence IDiagnostic: individual cross-sectional studies with the consistently applied reference standard and blinding. 相似文献
13.
The aim of this report is to review the indication and the practical use of the antiepileptic drugs in patients with cerebral lesions. The use of antiepileptic drugs to treat seizure or status epilepticus in an emergency is well catalogued and reported in this paper. Practical use of antiepileptic drugs, after a first seizure or to prevent a seizure, in patients with a cerebral lesion, is controversial. The question of antiepileptic drugs in seizures and in prophylaxis is discussed in different types of cerebral lesions: head injury, stroke, cerebral arteriovenous malformation and cerebral tumour. 相似文献
15.
Background contextPatients often present to spine clinic with evidence of intervertebral disc degeneration (IDD). If conservative management fails, a safe and effective injection directly into the disc might be preferable to the risks and morbidity of surgery. PurposeTo determine whether injecting human umbilical tissue–derived cells (hUTC) into the nucleus pulposus (NP) might improve the course of IDD. DesignProspective, randomized, blinded placebo–controlled in vivo study. Patient sampleSkeletally mature New Zealand white rabbits. Outcome measuresDegree of IDD based on magnetic resonance imaging (MRI), biomechanics, and histology. MethodsThirty skeletally mature New Zealand white rabbits were used in a previously validated rabbit annulotomy model for IDD. Discs L2–L3, L3–L4, and L4–L5 were surgically exposed and punctured to induce degeneration and then 3 weeks later the same discs were injected with hUTC with or without a hydrogel carrier. Serial MRIs obtained at 0, 3, 6, and 12 weeks were analyzed for evidence of degeneration qualitatively and quantitatively via NP area and MRI Index. The rabbits were sacrificed at 12 weeks and discs L4–L5 were analyzed histologically. The L3–L4 discs were fixed to a robotic arm and subjected to uniaxial compression, and viscoelastic displacement curves were generated. ResultsQualitatively, the MRIs demonstrated no evidence of degeneration in the control group over the course of 12 weeks. The punctured group yielded MRIs with the evidence of disc height loss and darkening, suggestive of degeneration. The three treatment groups (cells alone, carrier alone, or cells+carrier) generated MRIs with less qualitative evidence of degeneration than the punctured group. MRI Index and area for the cell and the cell+carrier groups were significantly distinct from the punctured group at 12 weeks. The carrier group generated MRI data that fell between control and punctured values but failed to reach a statistically significant difference from the punctured values. There were no statistically significant MRI differences among the three treatment groups. The treated groups also demonstrated viscoelastic properties that were distinct from the control and punctured values, with the cell curve more similar to the punctured curve and the carrier curve and carrier+cells curve more similar to the control curve (although no creep differences achieved statistical significance). There was some histological evidence of improved cellularity and disc architecture in the treated discs compared with the punctured discs. ConclusionsTreatment of degenerating rabbit intervertebral discs with hUTC in a hydrogel carrier solution might help restore the MRI, histological, and biomechanical properties toward those of nondegenerated controls. Treatment with cells in saline or a hydrogel carrier devoid of cells also might help restore some imaging, architectural, and physical properties to the degenerating disc. These data support the potential use of therapeutic cells in the treatment of disc degeneration. 相似文献
16.
Evidence-based medicine (EBM) was proposed as a possible method of solving two of health care's present problems: the increasing flood of information and rising expenditures. Although this concept appears to be plausible, the measurable improvements in health care brought about by possible implementation of EBM should be explicitly described. After having demonstrated the present problems as well as the necessity to solve them, we described the goals intended to be achieved by the implementation of EBM. Furthermore, the impact of EBM on medical education was described. The possible influence of EBM on the effectiveness and efficiency of health care was also considered. The conflicts caused by the introduction of EBM were demonstrated using the example of the "German Guideline Discussion". Finally, three proposals were made; the integration of EBM into education, the avoiding of conflicts similar to the German Guideline Discussion and the need to alter the political framework accompanying these processes. 相似文献
17.
The cadaver organ shortage has pushed the transplant community to extend the boundaries beyond the traditional criteria used for living donor transplantation. This new liberal policy involves: (1) the type of donor, such as emotionally related individuals, the direct or indirect interchange of donors, anonymous as well as rewarded donation; (2) challenging immunological criteria, using incompatible ABO blood types and or transplantation across a positive cross-match; (3) relaxing clinical criteria related to elderly, hypertensive, or obese donors, or patients with nephrolithiasis, fibromuscular renal artery disease, hematuria, or renal cell carcinomas. However, these practices may be dangerous. They must be clearly validated to promote a liberal policy of donor acceptance since it may carry a risk for both the donor and the recipient as well as for society. It is crucial to ensure the physical integrity of the donor as well as to provide guarantees, for instance a 1-year policy of life insurance, an indefinite long-term medical follow-up and the assurance of going to the top of the waiting list if the donor becomes uremic in the future. 相似文献
18.
The intervertebral disc(IVD) is the largest avascular tissue. Hypoxia-inducible factors(HIFs) play essential roles in regulating cellular adaptation in the IVD under physiological conditions. Disc degeneration disease(DDD) is one of the leading causes of disability, and current therapies are ineffective. This study sought to explore the role of HIFs in DDD pathogenesis in mice. The findings of this study showed that among HIF family members, Hif1α was significantly upregulated in cartilaginous e... 相似文献
19.
BACKGROUND CONTEXTLumbar intervertebral disc herniation (LDH) is a common disease that causes low back pain, radiating leg pain, and sensory impairment. Preclinical studies rely heavily upon standardized animal models of human diseases to predict clinical treatment efficacy and to identify and investigate potential adverse events in human subjects. The current method for making the LDH model involves harvesting the nucleus pulposus (NP) from autologous coccygeal discs and applying to the lumbar nerve roots just proximal to the corresponding dorsal root ganglion. However, this surgical method generates a model that exhibits very different characteristics of disc herniation than that observed in human. PURPOSETo produce a rat LDH model that better resembles disc herniation in humans and a standardized and uniform LDH model using Interleukin-1 beta (IL-1β). STUDY DESIGNExperimental rat LDH model. METHODSWe exposed the L5–6 disc dorsolaterally on the right side through hemi-laminectomy without nerve compression. Herniation was initiated by puncturing the exposed disc with a 30-gauge needle at a depth of 4 mm. Interleukin-1 beta (IL-1β) was injected simultaneously to heighten the pathological processes of disc degeneration, including inflammatory responses, matrix destruction, and herniation of the NP. We performed histological staining to assess morphological changes, immunohistochemistry to analyze inflammation- and pain-related expression within and around the puncture site of the L5–6 disc, and real-time polymerase chain reaction to examine expression of markers for degenerative processes. In addition, we performed locomotor tests on the rats. RESULTSWe found that the IL-1β groups showed that the border between the annulus fibrosis and nucleus pulposus was severely interrupted compared to that of the control (puncture only) group. And, the injection of IL-1β leads to accelerated disc degeneration and inflammation in a more consistent manner in LDH model. Functional deficit was consistently induced by puncturing and injection of IL-1β in the exposed disc. CONCLUSIONSThe method proposed here can be used as an index to control the severity of disc degeneration and inflammation through the injected IL-1β concentration concurrent with surgically induced herniation. CLINICAL SIGNIFICANCEOur proposed model may facilitate research in drug development to evaluate the efficacy of potential therapeutic agents for disc herniation and neuropathic pain and may also be used for nonclinical studies to more accurately assess the effectiveness of various treatment strategies according to the severity of disc degeneration. 相似文献
20.
BACKGROUND CONTEXTEndplate (EP) injury plays critical roles in painful IVD degeneration since Modic changes (MCs) are highly associated with pain. Models of EP microfracture that progress to painful conditions are needed to better understand pathophysiological mechanisms and screen therapeutics. PURPOSEEstablish in vivo rat lumbar EP microfracture model and assess crosstalk between IVD, vertebra and spinal cord. STUDY DESIGN/SETTINGIn vivo rat EP microfracture injury model with characterization of IVD degeneration, vertebral remodeling, spinal cord substance P (SubP), and pain-related behaviors. METHODSEP-injury was induced in 5 month-old male Sprague-Dawley rats L4–5 and L5–6 IVDs by puncturing through the cephalad vertebral body and EP into the NP of the IVDs followed by intradiscal injections of TNFα (n=7) or PBS (n=6), compared with Sham (surgery without EP-injury, n=6). The EP-injury model was assessed for IVD height, histological degeneration, pain-like behaviors (hindpaw von Frey and forepaw grip test), lumbar spine MRI and μCT, and spinal cord SubP. RESULTSSurgically-induced EP microfracture with PBS and TNFα injection induced IVD degeneration with decreased IVD height and MRI T2 signal, vertebral remodeling, and secondary damage to cartilage EP adjacent to the injury. Both EP injury groups showed MC-like changes around defects with hypointensity on T1-weighted and hyperintensity on T2-weighted MRI, suggestive of MC type 1. EP injuries caused significantly decreased paw withdrawal threshold, reduced axial grip, and increased spinal cord SubP, suggesting axial spinal discomfort and mechanical hypersensitivity and with spinal cord sensitization. CONCLUSIONSSurgically-induced EP microfracture can cause crosstalk between IVD, vertebra, and spinal cord with chronic pain-like conditions. CLINICAL SIGNIFICANCEThis rat EP microfracture model was validated to induce broad spinal degenerative changes that may be useful to improve understanding of MC-like changes and for therapeutic screening. 相似文献
|