首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sensory ataxia with neuropathy, dysarthria and ophthalmoparesis represent the clinical triad of SANDO, a specific mitochondrial phenotype first reported in 1997 in association with multiple mitochondrial DNA deletions and mutations in POLG1 or more rarely in the C10orf2 (twinkle-helicase) gene. We report a 44-year-old man with SANDO who harboured two novel mutations (P648R/R807C) in the POLG1 gene.  相似文献   

2.
Background: We describe a patient with clinical and radiological findings suggestive of multiple system atrophy of the cerebellar subtype (MSA‐C). Methods/Results: Sequencing of the polymerase‐γ 1 (POLG1) gene revealed the patient had compound heterozygous mutations of the POLG1 gene. Muscle biopsy revealed the presence of multiple mitochondrial DNA deletions and depletion, confirming the pathogenic nature of the POLG1 mutations. Discussion: This case expands the spectrum of phenotypes associated with POLG1 mutations to include multiple system atrophy and prompts further consideration regarding whether routine screening for POLG1 mutations is indicated in this patient population. © 2011 Movement Disorder Society  相似文献   

3.
Mutations affecting the mitochondrial DNA‐polymerase gamma 1 (POLG1) gene have been shown to cause Alpers‐Huttenlocher disease. Ultrastructural data on brain and muscle tissue are rare. We report on ultrastructural changes in brain and muscle tissue of two sisters who were compound heterozygous for the c.2243G>C and c.1879C>T POLG1 mutations. Patient 1 (16 years) presented with epilepsia partialis continua that did not respond to antiepileptic treatment. Neuroimaging showed right occipital and bithalamic changes. Light microscopy from a brain biopsy performed after 3 weeks suggested chronic encephalitis showing astro‐ and microgliosis as well as perivascular CD8‐positive T‐cells. However, immunosuppressive therapy failed to improve her condition. When her 17‐year‐old sister (patient 2) also developed epilepsy, an intensified search for metabolic diseases led to the diagnosis. On electron microscopy mitochondrial abnormalities mainly affecting neurons were detected in the brain biopsy of patient 1, including an increase in number and size, structural changes and globoid inclusions. In patient 2, light and electron microscopy on a muscle biopsy confirmed a mitochondrial myopathy, also revealing an increase in mitochondrial size and number, as well as globoid inclusions. Neurons may be the primary target of mitochondrial dysfunction in brains of patients with Alpers disease related to POLG1 mutations. During early disease stages, brain histopathology may be misleading, showing reactive inflammatory changes.  相似文献   

4.
Autosomal recessive ataxias caused by mutations of the polymerase γ (POLG) gene make an important group of progressive ataxias accompanied by a diverse spectrum of neurological disorders. Because the clinical picture can be quite miscellaneous, it is challenging to assort patients to any of the currently described syndromes; therefore, to provide such a patient with a conclusive diagnosis can be challenging for the neurologist. A typical magnetic resonance imaging finding is probably the most useful landmark in the diagnostic process, which will steer the clinician toward POLG gene testing. To illustrate this, we present a case of progressive ataxia caused by A467T and W748S mutations of POLG gene, who presented with overlapping symptoms of autosomal recessive mitochondrial ataxic syndrome and SANDO, as well as choreoathetotic movements and dysphonia. After lengthy investigations, magnetic resonance imaging showed T2 and FLAIR hyperintensities in the thalamus, inferior olives, and cerebellum, which led us to the analysis of POLG mutations.  相似文献   

5.
The aim of the study was to determine the prevalence of MNGIE-like phenotype in patients with recessive POLG1 mutations. Mutations in the POLG1 gene, which encodes for the catalytic subunit of the mitochondrial DNA polymerase gamma essential for mitochondrial DNA replication, cause a wide spectrum of mitochondrial disorders. Common phenotypes associated with POLG1 mutations include Alpers syndrome, ataxia-neuropathy syndrome, and progressive external ophthalmoplegia (PEO). Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disorder characterized by severe gastrointestinal dysmotility, cachexia, PEO and/or ptosis, peripheral neuropathy, and leukoencephalopathy. MNGIE is caused by TYMP mutations. Rare cases of MNGIE-like phenotype have been linked to RRM2B mutations. Recently, POLG1 mutations were identified in a family with clinical features of MNGIE but no leukoencephalopathy. The coding regions and exon-intron boundaries of POLG1 were sequence analyzed in patients suspected of POLG1 related disorders. Clinical features of 92 unrelated patients with two pathogenic POLG1 alleles were carefully reviewed. Three patients, accounting for 3.3% of all patients with two pathogenic POLG1 mutations, were found to have clinical features consistent with MNGIE but no leukoencephalopathy. Patient 1 carries p.W748S and p.R953C; patient 2 is homozygous for p.W748S, and patient 3 is homozygous for p.A467T. In addition, patient 2 has a similarly affected sibling with the same POLG1 genotype. POLG1 mutations may cause MNGIE-like syndrome, but the lack of leukoencephalopathy and the normal plasma thymidine favor POLG1 mutations as responsible molecular defect.  相似文献   

6.
Sensory ataxic neuropathy with ophthalmoparesis caused by POLG mutations   总被引:1,自引:0,他引:1  
Mutations in POLG gene are responsible for a wide spectrum of clinical disorders with altered mitochondrial DNA (mtDNA) integrity, including mtDNA multiple deletions and depletion. Sensory ataxic neuropathy with ophthalmoparesis (SANDO) caused by mutations in POLG gene, fulfilling the clinical triad of sensory ataxic neuropathy, dysarthria and/or dysphagia and ophthalmoparesis, has described in a few reports. Here we described five cases of adult onset autosomal recessive sensory ataxic neuropathy with ophthalmoplegia. All patients had ataxia, neuropathy, myopathy, and progressive external ophthalmoplegia (PEO). The muscle pathology revealed ragged-red and cytochrome c oxidase (COX) negative fibers in three patients. However, deficiencies in the activities of mitochondrial respiratory chain enzyme complexes were not detected in any of the patients' muscle samples. Multiple deletions of mtDNA were detected in blood and muscle specimens but mtDNA depletion was not found. Due to these diagnostic difficulties, POLG-related syndromes are definitively diagnosed based on the presence of deleterious mutations in the POLG gene.  相似文献   

7.
Autosomal recessive progressive external ophthalmoplegia is a mitochondrial disease characterized by accumulation of multiple large-scale deletions of mitochondrial DNA. We previously reported missense mutations in POLG, the gene encoding the mitochondrial DNA polymerase gamma in two nuclear families compatible with autosomal recessive progressive external ophthalmoplegia. Here, we report a novel POLG missense mutation (R627W) in a sporadic patient and we provide genetic support that all these POLG mutations are actually causal and recessive. The novel patient presented with sensory ataxic neuropathy and has the clinical triad of sensory ataxic neuropathy, dysarthria and ophthalmoparesis (SANDO). This is the first finding of a genetic cause of Sensory Ataxic Neuropathy, Dysarthria and Ophthalmoparesis and it implies that this disorder may actually be a variant of autosomal recessive progressive external ophthalmoplegia. Sensory neuropathy is the initial feature in Belgian compound heterozygote autosomal recessive progressive external ophthalmoplegia patients, all carrying the POLG A467T mutation, which occurs at a frequency of 0.6% in the Belgian population.  相似文献   

8.
Peripheral neuropathy (PN) has been reported in idiopathic and hereditary forms of parkinsonism, but the pathogenic mechanisms are unclear and likely heterogeneous. Levodopa‐induced vitamin B12 deficiency has been discussed as a causal factor of PN in idiopathic Parkinson's disease, but peripheral nervous system involvement might also be a consequence of the underlying neurodegenerative process. Occurrence of PN with parkinsonism has been associated with a panel of mitochondrial cytopathies, more frequently related to a nuclear gene defect and mainly polymerase gamma (POLG1) gene. Parkin (PARK2) gene mutations are responsible for juvenile parkinsonism, and possible peripheral nervous system involvement has been reported. Rarely, an association of parkinsonism with PN may be encountered in other neurodegenerative diseases such as fragile X‐associated tremor and ataxia syndrome related to premutation CGG repeat expansion in the fragile X mental retardation (FMR1) gene, Machado–Joseph disease related to an abnormal CAG repeat expansion in ataxin‐3 (ATXN3) gene, Kufor–Rakeb syndrome caused by mutations in ATP13A2 gene, or in hereditary systemic disorders such as Gaucher disease due to mutations in the β‐glucocerebrosidase (GBA) gene and Chediak–Higashi syndrome due to LYST gene mutations. This article reviews conditions in which PN may coexist with parkinsonism.  相似文献   

9.
Sensory ataxic neuropathy with dysarthria and ophthalmoparesis (SANDO) is an adult onset sensory ataxic neuropathy, dysarthria and chronic progressive external ophthalmoplegia associated with mutations in POLG1. We report a 38-year-old woman with a history of progressive gait instability and bilateral ptosis. Neurological examination found ataxia, ophthalmoplegia, and dysarthria. MRI showed bilateral thalamic and cerebellar lesions. A POLG related disorder was suspected and after DNA sequencing a SANDO with a novel mutation in POLG was confirmed.  相似文献   

10.
Mitochondrial dysfunction has been implicated in the pathogenesis of sporadic, idiopathic Parkinson disease. In some cases, mitochondrial DNA primary genetic abnormalities, or more commonly, secondary rearrangements due to polymerase gamma (POLG1) gene mutation, can directly cause parkinsonism. The case of a Parkinson disease patient with some signs or symptoms suggestive of mitochondrial disease (i.e., ptosis, myopathy, neuropathy) is a relatively common event in the neurological practice. Mitochondrial parkinsonisms do not have distinctive features allowing an immediate diagnosis, and a negative family history does not rule out a possible diagnosis of mitochondrial disorder. In this article, we do not revise the mitochondrial hypothesis of sporadic, idiopathic Parkinson disease, extensively discussed elsewhere, but we review POLG1-related parkinsonism and other well-defined forms of “mitochondrial parkinsonisms”, with mtDNA mutations or rearrangements. Lastly, we try to introduce a possible diagnostic approach for patients with parkinsonism and suspected mitochondrial disorder.  相似文献   

11.
Multiple deletions of mitochondrial DNA (mtDNA) are associated with different mitochondrial disorders inherited as autosomal dominant and recessive traits. Causative mutations have been found in five genes, mainly involved in mtDNA replication and stability. They include POLG1, the gene encoding the catalytic subunit of mtDNA polymerase (pol gamma), POLG2 encoding its accessory subunit, ANT1 coding the adenine nucleotide translocator and PEO1 which codes for Twinkle, the mitochondrial helicase. Finally OPA1 missense mutations are involved in phenotypes presenting optic atrophy as a major feature.To define the relative contribution of POLG1, POLG2, ANT1 and PEO1 genes to the mtDNA multiple deletion syndromes, we analysed them in a cohort of 67 probands showing accumulation of multiple mtDNA deletions in muscle. The patients were predominantly affected with a mitochondrial myopathy with or without progressive external ophthalmoplegia (PEO). Genetic analysis revealed that 1) PEO1 has a major role in determining familial PEO, since it accounts for 26.8% of familial cases, followed by ANT1 (14.6%) and POLG1 (9.8%); 2) no mutations in any of the known genes were found in 53.7% of probands of this series. Six novel missense mutations contributing to the mutational load of PEO1 gene (p.R334P, p.W315S, p. S426N, p.W474S, p.F478I, p.E479K) were associated with an adult onset PEO phenotype.  相似文献   

12.
Parkinson’s disease is associated with mitochondrial dysfunction. The POLG1 gene encodes DNA-polymerase γ, which is responsible for the replication of mitochondrial DNA. Mutations in POLG1 cause neurodegenerative diseases such as progressive external ophthalmoplegia and Alpers syndrome. In this study, we investigated if mutations in POLG1 had any correlation with Parkinson’s disease. Subjects consisted of Finnish patients with early-onset Parkinson’s disease (EOPD, N = 441) or late-onset Parkinson’s disease (LOPD, N = 263). The POLG1 gene was screened for nine previously known mutations. Two patients were compound heterozygotes with respect to putatively pathogenic alleles. Twenty-eight patients harbored a heterozygous missense mutation, but the allele frequencies did not differ from those of the controls. Interestingly, the frequency of affected siblings was 4.6-fold higher (95 % confidence interval; 1.09, 19.5) among the patients with EOPD and with heterozygous POLG1 mutations than among patients without mutations. Clinically the patients with or without POLG1 mutations did not differ from each other. Our findings provide two lines of evidence suggesting a role for POLG1 mutations in Parkinson’s disease: (1) identification of patients with compound heterozygous mutations in POLG1, and (2) higher frequency of affected siblings among the EOPD patients with heterozygous POLG1 mutations than among EOPD patients without mutations.  相似文献   

13.
Background Progressive external ophthalmoplegia (PEO) is a mitochondrial disorder associated with defective enzymatic activities of oxidative phosphorylation (OXPHOS), depletion of mitochondrial DNA (mtDNA) and/or accumulation of mtDNA mutations and deletions. Recent positional cloning studies have linked the disease to four different chromosomal loci. Mutations in POLG1 are a frequent cause of this disorder. Methods We describe two first–cousins: the propositus presented with PEO,mitochondrial myopathy and neuropathy, whereas his cousin showed a Charcot– Marie–Tooth phenotype. Neurophysiological studies, peroneal muscle and sural nerve biopsies, and molecular studies of mtDNA maintenance genes (ANT1, Twinkle, POLG1, TP) and non dominant CMT–related genes (GDAP1, LMNA, GJB1) were performed. Results A severe axonal degeneration was found in both patients whereas hypomyelination was observed only in the patient with PEO whose muscle biopsy specimen also showed defective OXPHOS and multiple mtDNA deletions. While no pathogenetic mutations in GDAP1, LMNA, and GJB1 were found, we identified a novel homozygous POLG1 mutation (G763R) in the PEO patient. The mutation was heterozygous in his healthy relatives and in his affected cousin. Conclusions A homozygous POLG1 mutation might explain PEO with mitochondrial abnormalities in skeletal muscle in our propositus, and it might have aggravated his axonal and hypomyelinating sensory–motor neuropathy. Most likely, his cousin had an axonal polyneuropathy with CMT phenotype of still unknown etiology.  相似文献   

14.
Mitochondrial disorders (MIDs) are frequently responsible for neuropathies with variable severity. Mitochondrial diseases causing peripheral neuropathies (PNP) may be due to mutations of mitochondrial DNA (mtDNA), as is the case in MERRF and MELAS syndromes, or to mutations of nuclear genes. Secondary abnormalities of mtDNA (such as multiple deletions of muscle mtDNA) may result from mitochondrial disorders due to mutations in nuclear genes involved in mtDNA maintenance. This is the case in several syndromes caused by impaired mtDNA maintenance, such as Sensory Ataxic Neuropathy, Dysarthria and Ophthalmoplegia (SANDO) due to recessive mutations in the POLG gene, which encodes the catalytic subunit of mtDNA polymerase (DNA polymerase gamma), or Mitochondrial Neuro-Gastro-Intestinal Encephalomyopathy (MNGIE), due to recessive mutations in the TYMP gene, which encodes thymidine phosphorylase. The last years have seen a growing list of evidence demonstrating that mitochondrial bioenergetics and dynamics might be dysfunctional in axonal Charcot-Marie-Tooth disease (CMT2), and these mechanisms might present a common link between dissimilar CMT2-causing genes.  相似文献   

15.
Occipital stroke and occipital epilepsy are possible manifestations of mitochondrial diseases. A previous study in northern Finland suggested a frequency of 10% for mitochondrial disorder in young patients with stroke. Here we studied the epidemiology of occipital brain infarcts in a defined population in southwestern Finland. Patients diagnosed with brain infarct or visual field defect with onset at the ages of 18–45 years were identified from the discharge files at the Turku University Hospital. We further ascertained those patients with an occipital brain infarct in brain imaging or homonymous hemianopia with no signs of other etiology in brain imaging. We reviewed the clinical data for known stroke risk factors and analyzed samples for the m.3243A > G and m.8344A > G mutations in mitochondrial DNA (mtDNA), and determined mtDNA haplogroups and five common mutations in the gene encoding polymerase γ (POLG1). Migraine was more common in young patients with occipital brain infarct than in the general population, especially among women. None of the patients harboured the m.3243A > G or m.8344A > G mutation in mtDNA or any of the five common mutations in POLG1. Interestingly, 17% of the men and 33% of the women belonged to the mtDNA haplogroup Uk, while its frequency in the general population is 17%. Our results suggest that mtDNA haplogroup Uk is associated with increased risk of occipital stroke in young women. POLG1 mutations have been associated with occipital epilepsy, but we did not find the common mutations in patients with occipital stroke.  相似文献   

16.
One form of familial progressive external ophthalmoplegia with multiple mitochondrial DNA deletions recently has been associated with mutations in POLG1, the gene encoding pol gammaA, the catalytic subunit of mitochondrial DNA polymerase. We screened the POLG1 gene in several PEO families and identified five different heterozygous missense mutations of POLG1 in 10 autosomal dominant families. Recessive mutations were found in three families. Our data show that mutations of POLG1 are the most frequent cause of familial progressive external ophthalmoplegia associated with accumulation of multiple mitochondrial DNA deletions, accounting for approximately 45% of our family cohort.  相似文献   

17.
Involvement of peripheral nerves is frequent in mitochondrial disorders but with variable severity. Mitochondrial diseases causing peripheral neuropathies (PN) may be due to mutations of mitochondrial DNA (mtDNA), as is the case in MERRF and MELAS syndromes, or to mutations of nuclear genes. Secondary abnormalities of mtDNA (such as multiple deletions of muscle mtDNA) may result from mitochondrial disorders due to mutations in nuclear genes involved in mtDNA maintenance. This is the case in several syndromes caused by impaired mtDNA maintenance, such as Sensory Ataxic Neuropathy, Dysarthria and Ophthalmoplegia (SANDO) due to recessive mutations in the POLG gene, which encodes the catalytic subunit of mtDNA polymerase (DNA polymerase gamma), or Mitochondrial Neuro-Gastro-Intestinal Encephalomyopathy (MNGIE), due to recessive mutations in the TYMP gene, which encodes thymidine phosphorylase. Genetically-determined PN due to mutations of mitofusin 2, a GTPase involved in the fusion of external mitochondrial membranes, were identified during the last few years. Characteristic ultrastructural lesions (abnormalities of axonal mitochondria) are observed on longitudinal sections of nerve biopsies in patients with PN due to mitofusin 2 mutations.  相似文献   

18.
While mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is typically associated with mutations in the nuclear gene encoding for thymidine phosphorylase (ECGF1, TYMP), a similar clinical phenotype was described in patients carrying mutations in the nuclear-encoded polymerase gamma (POLG1) as well as a few mitochondrial tRNA genes. Here we report a novel mutation in the mitochondrial tRNAVal (MTTV) gene in a girl presenting with clinical symptoms of MNGIE-like gastrointestinal dysmotility and cachexia. Clinical, histological, biochemical and single cell investigations were performed. The heteroplasmic m.1630A>G mutation was detected in the mitochondrial tRNAVal (MTTV) gene in the patient’s muscle, blood leukocytes and myoblasts, as well as in blood DNA of the unaffected mother. We provide clinical, biochemical, histological, and molecular genetic evidence on the single cell level for the pathogenicity of this mutation. Our finding adds to the genetic heterogeneity of MNGIE-like gastrointestinal symptoms and highlights the importance of a thorough genetic workup in case of suspected mitochondrial disease.  相似文献   

19.
Alpers syndrome is a fatal disorder due to mutations in the POLG gene encoding the catalytic subunit of mitochondrial DNA polymerase gamma (Pol gamma) involved in mitochondrial DNA (mtDNA) replication. We describe a case of Alpers syndrome due to POLG mutations, with rapidly progressive course, a fatal outcome, and an essentially normal brain MRI in the early oligo-symptomatic phase. Our observation suggests that Alpers syndrome should be considered even in patients with an initially unremarkable brain MRI. The patient was found to harbor the p.Q497H, p.W748S and p.E1143G mutations in cis on one allele, and a fourth mutation, the p.G848S on the other allele. Although the individual mutations detected in the presented case have been previously reported, the specific genotype formed by the particular combination of these is novel.  相似文献   

20.
Hypertrophic olivary degeneration (HOD) is associated with lesions within the dento-rubro-olivary pathway or Guillain–Mollaret triangle and may be associated clinically with palatal tremor. Here we report HOD on brain magnetic resonance (MR) imaging in three patients with progressive mitochondrial syndromes in the absence of palatal tremor. Two of the patients were found to have identical compound heterozygous mutations in the POLG gene, encoding the catalytic subunit of the mitochondrial DNA polymerase-γ, but presented with different clinical phenotypes. The first patient displayed the clinical syndrome of sensory ataxia, neuropathy, dysarthria, and ophthalmoparesis (SANDO), while the second patient was affected by a neurological disorder consisting of an ophthalmoplegia, myopathy, and neuropathy. The third case was a child with Leigh syndrome due to SURF1 gene mutations, who presented with a generalized tremor. We discuss the brain MR imaging findings in these three cases along with a literature review on the MR features of previously reported cases of patients with POLG gene mutations and Leigh disease due to SURF1 gene mutations. Our findings suggest that the presence of HOD, in the appropriate clinical setting, should alert the clinician to the possibility of a mitochondrial disorder and the need to screen for mutations in POLG and SURF1 genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号