首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bcr-Abl tyrosine kinase, a chimeric oncoprotein responsible for chronic myelogenous leukemia, constitutively activates several signal transduction pathways that stimulate cell proliferation and prevent apoptosis in hematopoietic cells. The antiapoptotic function of Bcr-Abl is necessary for hematopoietic transformation, and also contributes to leukemogenesis. Herein, we show for the first time that cell transformation induced by Bcr-Abl leads to increased expression and kinase activity of MEK kinase 1 (MEKK1), which acts upstream of the c-Jun N-terminal kinase (JNK), extracellular signal regulated kinase (ERK) and NF-kappaB signaling pathways. Inhibition of MEKK1 activity using a dominant-negative MEKK1 mutant (MEKK1km) diminished the ability of Bcr-Abl to protect cells from genotoxin-induced apoptosis, but had no effect on the proliferation of Bcr-Abl-transformed cells. Expression of MEKK1km also reduced NF-kappaB activation, and inhibited antiapoptotic c-IAP1 and c-IAP2 mRNA expression in response to the genotoxin. By contrast, neither JNK nor ERK activation was affected. These results indicate that MEKK1 is a downstream target of Bcr-Abl, and that the antiapoptotic effect of Bcr-Abl in chronic myelogenous leukemia cells is mediated via the MEKK1-NF-kappaB pathway.  相似文献   

2.
FADD has been shown to be phosphorylated at Ser194 at the G2/M transition of the cell cycle. Here we have investigated the contribution of this phosphorylation to apoptosis induced by anticancer drugs in two human prostate cancer cell lines, LNCaP and DU145. Both were arrested at G2/M and FADD was found to be phosphorylated at Ser194 on treatment with paclitaxel. Inhibition of paclitaxel-induced c-jun NH2-terminal kinase (JNK) activation by treatment with a specific inhibitor, SP600125, or overexpression of a dominant-negative mutant form of upstream kinases, MEK kinase 1 (MEKK1) and mitogen-activated protein kinase kinase (MKK) 7, significantly reduced the increase in phosphorylated FADD. It is noteworthy that pretreatment with paclitaxel significantly up-regulated MEKK1 expression, resulting in enhancement of etoposide- or cisplatin-induced MEKK1/MKK7-dependent JNK activation and apoptosis in LNCaP and DU145 cells. Interestingly, MEKK1 up-regulation and the synergistic effects of paclitaxel on anticancer drug-induced apoptosis were abolished by overexpression of mutant FADD (Ser194-->Ala). The results clearly show that FADD phosphorylation at Ser194 affects functions both upstream and downstream of the MEKK1/MKK7/JNK1 pathway and is closely associated with chemosensitivity in prostate cancer cells. This is the first report indicating that phosphorylated FADD plays an essential role in the mechanisms of amplifications of chemotherapy-induced apoptosis.  相似文献   

3.
MEK kinase 1 (MEKK1) induces apoptosis through the activation of caspases. The mechanism for MEKK1-induced apoptosis involves caspase-mediated cleavage of MEKK1, releasing a pro-apoptotic 91 kDa kinase fragment that serves to further amplify caspase activation in a feedback loop. Both cleavage of MEKK1 and increased expression of death receptor 4 (DR4, TRAILR1) and death receptor 5 (DR5, TRAILR2) occur following exposure of cells to genotoxins. Overexpression of kinase inactive MEKK1 inhibits MEKK1-mediated apoptosis and effectively blocks death receptor upregulation following etoposide treatment. Herein, we investigate the role of death receptor activation and the ability of AKT/PKB (AKT) to inhibit cell death in MEKK1-induced apoptosis. We show that by preventing DR4 and DR5 activation through expression of decoy receptor 1 (DcR1) and dominant negative FADD, we inhibit MEKK1-induced apoptosis. Furthermore, expression of 91 kDa MEKK1 increased DR4 and FAS mRNA and protein levels. MEKK1-induced apoptosis is amplified by blocking PI-3 kinase activation and overexpression of AKT blocked both MEKK1-induced apoptosis and caspase activation. AKT overexpression also prevented the cleavage of endogenous MEKK1 by genotoxins. AKT did not, however, block MEKK1-induced JNK activation, showing that regulation of the JNK pathway by MEKK1 is independent of its role in regulation of apoptosis. Thus, MEKK1-induced apoptosis requires TRAIL death receptor activation and is blocked by AKT through inhibition of MEKK1 cleavage.  相似文献   

4.
Interactions between histone deacetylase inhibitors (HDACIs) and the alkyl-lysophospholipid perifosine were examined in human leukemia cells. Coadministration of sodium butyrate, suberoylanilide hydroxamic acid (SAHA), or trichostatin with perifosine synergistically induced mitochondrial dysfunction (cytochrome c and apoptosis-inducing factor release), caspase-3 and -8 activation, apoptosis, and a marked decrease in cell growth in U937 as well as HL-60 and Jurkat leukemia cells. These events were associated with inactivation of extracellular signal-regulated kinase (ERK) 1/2 and Akt, p46 c-jun-NH2-kinase (JNK) activation, and a pronounced increase in generation of ceramide and reactive oxygen species (ROS). They were also associated with up-regulation of Bak and a marked conformational change in Bax accompanied by membrane translocation. Ectopic expression of Bcl-2 delayed but was ultimately ineffective in preventing perifosine/HDACI-mediated apoptosis. Enforced expression of constitutively active mitogen-activated protein kinase kinase (MEK) 1 or myristoylated Akt blocked HDACI/perifosine-mediated ceramide production and cell death, suggesting that MEK/ERK and Akt inactivation play a primary role in these phenomena. However, inhibition of JNK activation (e.g., by the JNK inhibitor SP600125) did not attenuate sodium butyrate/perifosine-induced apoptosis. In addition, the free radical scavenger N-acetyl-L-cysteine attenuated ROS generation and apoptosis mediated by combined treatment. Finally, the acidic sphingomyelinase inhibitor desipramine attenuated HDACI/perifosine-mediated ceramide and ROS production as well as cell death. Together, these findings indicate that coadministration of HDACIs with perifosine in human leukemia cells leads to Akt and MEK/ERK disruption, a marked increase in ceramide and ROS production, and a striking increase in mitochondrial injury and apoptosis. They also raise the possibility that combining these agents may represent a novel antileukemic strategy.  相似文献   

5.
目的研究非离子型的diazeniumdiolate类一氧化氮供体引起肝癌细胞凋亡的分子机制.方法利用免疫印迹、免疫沉淀、凝胶阻滞实验研究一氧化氮供体处理Hep3B肝癌细胞后,丝裂原激活的蛋白激酶、AP-1的激活以及和Hep3B肝癌细胞凋亡的关系.结果一氧化氮可引起细胞外信号调节蛋白激酶、c-jun N末端激酶和p38激酶的激活,特别是细胞外信号调节的蛋白激酶的持续激活,其中细胞外信号调节的蛋白激酶和c-jun N末端激酶的特异的阻断剂U0126和JNK抑制剂Ⅱ可阻断AP-1的激活和Hep3B细胞的凋亡,而p38激酶的阻断剂SB203580不能阻断AP-1的激活和Hep3B肝癌细胞的凋亡.结论一氧化氮通过激活细胞外信号调节蛋白激酶、c-jun N末端激酶,进而激活AP-1而引起Hep3B肝癌细胞的凋亡.  相似文献   

6.
Yu C  Rahmani M  Almenara J  Sausville EA  Dent P  Grant S 《Oncogene》2004,23(7):1364-1376
Effects of the tyrphostin tyrosine kinase inhibitor adaphostin (NSC 680410) have been examined in human leukemia cells (Jurkat, U937) in relation to mitochondrial events, apoptosis, and perturbations in signaling and cell cycle regulatory events. Exposure of cells to adaphostin concentrations > or =0.75 microM for intervals > or =6 h resulted in a pronounced release of cytochrome c and AIF, activation of caspase-9, -8, and -3, and apoptosis. These events were accompanied by the caspase-independent downregulation of Raf-1, inactivation of MEK1/2, ERK, Akt, p70S6K, dephosphorylation of GSK-3, and activation of c-Jun-N-terminal kinase (JNK) and p38 MAPK. Adaphostin also induced cleavage and dephosphorylation of pRb on CDK2- and CDK4-specific sites, as well as the caspase-dependent downregulation of cyclin D1. Inducible expression of a constitutively active MEK1 construct markedly diminished adaphostin-induced cytochrome c and AIF release, JNK activation, and apoptosis in Jurkat cells. Ectopic expression of Raf-1 or constitutively activated (myristolated) Akt also significantly attenuated adaphostin-induced apoptosis, but protection was less than that conferred by enforced activation of MEK. Lastly, antioxidants (e.g., L-N-acetylcysteine; L-NAC) opposed adaphostin-mediated mitochondrial dysfunction, Raf-1/MEK/ERK downregulation, JNK activation, and apoptosis. However, in contrast to L-NAC, enforced activation of MEK failed to block adaphostin-mediated ROS generation. Together, these findings demonstrate that the tyrphostin adaphostin induces multiple perturbations in signal transduction pathways in human leukemia cells, particularly inactivation of the cytoprotective Raf-1/MEK/ERK and Akt cascades, that culminate in mitochondrial injury, caspase activation, and apoptosis. They also suggest that adaphostin-related oxidative stress acts upstream of perturbations in these signaling pathways to trigger the cell death process.  相似文献   

7.
Chemotherapeutic agents induce alterations in intracellular signal transduction cascades that culminate in the initiation of the apoptotic program. Here, the relationship between the mitogen-activated protein kinase (MAPK) response and apoptosis in ML-1 cells treated with vinblastine and paclitaxel was investigated. We show that these compounds elicit different effects on MAPKs with vinblastine, but not paclitaxel, increasing both c-Jun-NH2-terminal kinase (JNK) and p38 activity. However, vinblastine and paclitaxel both induced apoptosis with similar kinetics, suggesting that increased JNK and p38 activity is not required for apoptosis that is induced by microtubule interfering agents. Strikingly, the abrogation of extracellular signal-regulated kinase (ERK)-signaling by the MAPK/ERK kinase (MEK)1/2 inhibitor PD098059 in combination with vinblastine robustly induced apoptosis in ML-1 cells at a rate much faster than treatment with vinblastine alone and occurred at all phases of the cell cycle. This apoptotic induction was attributed to JNK activation because: (a) non-JNK-activating concentrations of vinblastine failed to increase apoptosis in the presence of PD098059; (b) apoptosis induced by paclitaxel, which did not activate JNK, was not potentiated by PD098059; and (c) transduction of an inhibitor of JNK activity partially suppressed both JNK activity and apoptosis induced by vinblastine plus PD098059. Additionally, we found that the activation of JNK by vinblastine occurred upstream of effector caspase activation because treatment with a pan-specific caspase inhibitor (valine-alanine-aspartate-fluoromethylketone) resulted in complete abrogation of apoptosis with no effect on MAPK signaling. Taken together, these data suggest that inhibition of the MEK-->ERK signal transduction cascade alleviates cell cycle dependence for vinblastine-induced apoptosis by a mechanism that requires JNK activation.  相似文献   

8.
In the present study, we investigated the effects of geranylgeraniol (GGO), a potent inducer of apoptosis in various lines of human tumor cells, on signal transduction cascades involved in apoptosis in human leukemia cells. GGO strongly induced the activation of c-Jun N-terminal kinase (JNK/SAPK) within 2 h in U937 and K562 cells, while neither ERK nor p38 was activated to any considerable extent during GGO-induced apoptosis. Transient expression of a constitutively active mutant form of mitogen-activated protein kinase kinase 1 (MEKK1), deltaMEKK1, or of deltaMEKK1-green fluorescent protein (GFP) in K562 cells activated JNK, but not a caspase-3-like protease, and was insufficient to induce cell death but rendered cells susceptible to GGO-induced cell death. Stable expressions of deltaMEKK1-GFP in U937 cells gave similar results. In contrast to VP-16-induced apoptosis, GGO-induced activation of JNK was almost completely inhibited by benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethylketone (Z-DEVD) and by benzyloxycarbonyl-Asp-CH2OC[O]-2,6,-dichlorobenzene (Z-Asp), indicating that the JNK-activation step is located downstream of the caspase signaling pathway in GGO-induced apoptosis. Moreover, apoptosis induced by GGO was significantly inhibited in two lines of cells with a dominant-negative deletion mutation in c-Jun, indicating a requirement for JNK signaling. In addition, unlike the effects on other inducers of apoptosis, the activation of JNK and of the caspase-3-like protease by GGO was significantly delayed by 12-O-tetradecanoylphorbol-13-acetate (TPA), suggesting that the site of inhibition by TPA might be located upstream of the protease and JNK in the GGO-induced apoptotic signaling pathway.  相似文献   

9.
In this study, the downstream signaling of Bcr-Abl tyrosine kinase responsible for apoptosis resistance was investigated. DNA fragmentation, a hallmark of apoptosis, was observed after 2 days of herbimycin A treatment with a peak on 3 day. During the apoptosis induced by the treatment of herbimycin A, stress-activated protein kinase (SAPK) and p38 kinase were activated time- and dose-dependently, while extracellular signal-regulated kinase (ERK) was inhibited. However, apoptosis was induced by the treatment of PD98059, a specific inhibitor of MEK (MAPK or ERK kinase), not by the treatment of sorbitol, a strong activator of SAPK and p38 kinase. Although K562 cells were very resistant to sorbitol-induced apoptosis, DNA fragmentation was induced rapidly in Jurkat, HL-60 and U937 cells after exposure to sorbitol, despite that these apoptosis-sensitive cells have similar or lower activities of JNK/SAPK and p38 kinase compared with K562 cells after treatment of sorbitol. K562 cells had a much higher basal activity of ERK/MAPK than other apoptosis-sensitive cell lines, which were very susceptible to apoptosis induced by low dose of PD98059 compared with K562 cells. In HL-60 cells, sorbitol-induced apoptosis was prevented by the treatment of phorbol myristate 13-acetate (PMA), which activates the ERK/MAPK pathway, and this was blocked by PD98059. From these results, it could be suggested that the inhibition of ERK/MAPK not the activation of JNK/SAPK is primarily required to induce apoptosis in K562 cells.  相似文献   

10.
Sulindac sulfone (Exisulind) induces apoptosis and exhibits cancer chemopreventive activity, but in contrast to sulindac, it does not inhibit cyclooxygenases 1 or 2. We found that sulindac sulfone and two potent derivatives, CP248 and CP461, inhibited the cyclic GMP (cGMP) phosphodiesterases (PDE) 2 and 5 in human colon cells, and these compounds caused rapid and sustained activation of the c-Jun NH2-terminal kinase 1 (JNK1). Rapid activation of stress-activated protein/ERK kinase 1 (SEK1) and mitogen-activated protein kinase kinase kinase (MEKK1), which are upstream of JNK1, was also observed. Other compounds that increase cellular levels of cGMP also activated JNK1, and an inhibitor of protein kinase G (PKG), Rp-8-pCPT-cGMPS, inhibited JNK1 activation by the sulindac sulfone derivatives. Expression of a dominant-negative JNK1 protein inhibited CP248-induced cleavage of poly(ADP-ribose) polymerase, a marker of apoptosis. Thus, it appears that sulindac sulfone and related compounds induce apoptosis, at least in part, through activation of PKG, which then activates the MEKK1-SEK1-JNK1 cascade. These studies also indicate a role for cGMP and PKG in the JNK pathway.  相似文献   

11.
12.
Lee M  Koh WS  Han SS 《Cancer letters》2003,193(1):57-64
Experiments were carried out to determine the role of Raf-1 kinase in the development of drug resistance and apoptosis induced by paclitaxel. In the present study, paclitaxel sensitivity, Raf-1 activity and mitogen-activated protein kinases activation were compared in two cell lines: parental human breast cancer cells and its drug resistant variant (MCF-7/Adr) cells. Paclitaxel treatment of parental MCF-7 cells caused a marked inhibition of Raf-1 kinase activity, concomitant with its mobility shift after 18 h exposure. In addition, paclitaxel greatly increased c-Jun N-terminal protein kinase (JNK) activity whereas showing a small enhancing effect on extracellular-regulated kinases (ERK) activity. Interestingly, MCF-7/Adr cells have lower basal Raf-1 activity, yet have much higher basal ERK activity than parental cells. However, it appeared that PD 98059, which turns off ERK through mitogen-activated protein kinase kinase (MEK) inhibition, enhanced basal Raf-1 kinase activity in MCF-7/Adr cells. Thus, the findings suggest that paclitaxel-induced apoptosis is mediated by JNK and occurs in parallel with suppression of the Raf-1 kinase activity in parental MCF-7 cells. In addition, down-regulation of Raf-1 kinase, which can be induced through the sustained ERK activation, may contribute to the development of acquired resistance in MCF-7/Adr cells.  相似文献   

13.
We previously demonstrated that hypoxia increased the hypoxia‐inducible factor (HIF‐1)–dependent MGr1‐Ag/37LRP expression, which enhanced adhesion of gastric cancer cells to laminin, inhibited drug‐induced apoptosis and caused cell adhesion–mediated drug resistance (CAM‐DR). Here, we investigated the role of extracellular‐regulated kinase (ERK) 1/2 in the signaling mechanisms underlying these events. We found that hypoxia activated ERK activity in vitro and in vivo. Overexpression of mitogen‐activated protein kinase (MAPK) kinase (MEK), which preferentially activated ERK, mimics, in a nonadditive way, hypoxia‐induced activity of MGr1‐Ag/37LRP promoter and expression of MGr1‐Ag/37LRP. Furthermore, U0126, the MEK inhibitor, inhibited hypoxia‐ and MEK‐induced MGr1‐Ag/37LRP promoter activity in a dose‐dependent manner. MEK inhibition also reversed hypoxia‐ and MEK‐induced HIF‐1 protein and its activity in a dose‐dependent manner. We also investigated reactive oxygen species signaling this response. Exogenous addition of H2O2 was sufficient to activate ERK in a dose‐dependent profile. Reactive oxygen species scavengers of H2O2 significantly inhibited hypoxia‐induced ERK or HIF‐1 activation and sequential expression of MGr1‐Ag/37LRP. We also investigated the signaling in hypoxia‐induced cell adhesion and apoptosis induced by vincristine. Hypoxia significantly enhanced adhesion of SGC7901 cells to laminin in a time‐dependent manner, which might be inhibited by the MEK inhibitor U0126 and MGr1‐Ag/37LRP siRNA. Consistent with results of adhesion assay, hypoxia‐resistant apoptosis might be reversed by U0126 in a dose‐dependent manner. Our results suggest that hypoxia‐elicited MGr1‐Ag/37LRP expression activated by HIF‐1 depends on ERK activation. These events are dependent of reactive oxygen intermediates.  相似文献   

14.
Analysis of patient tumors suggests that multiple MAP3 kinases (MAP3Ks) are critical for growth and metastasis of cancer cells. MAP3Ks selectively control the activation of extracellular signal-regulated kinase 1/2 (ERK1/2), Jun N-terminal kinase (JNK), p38 and ERK5 in response to receptor tyrosine kinases and GTPases. We used MDA-MB-231 cells because of their ability to metastasize from the breast fat pad to distant lymph nodes for an orthotopic xenograft model to screen the function of seven MAP3Ks in controlling tumor growth and metastasis. Stable short hairpin RNA (shRNA) knockdown was used to inhibit the expression of each of the seven MAP3Ks, which were selected for their differential regulation of the MAPK network. The screen identified two MAP3Ks, MEKK2 and MLK3, whose shRNA knockdown caused significant inhibition of both tumor growth and metastasis. Neither MEKK2 nor MLK3 have been previously shown to regulate tumor growth and metastasis in vivo. These results demonstrated that MAP3Ks, which differentially activate JNK, p38 and ERK5, are necessary for xenograft tumor growth and metastasis of MDA-MB-231 tumors. The requirement for MAP3Ks signaling through multiple MAPK pathways explains why several members of the MAPK network are activated in cancer. MEKK2 was required for epidermal growth factor receptor and Her2/Neu activation of ERK5, with ERK5 being required for metastasis. Loss of MLK3 expression increased mitotic infidelity and apoptosis in vitro. Knockdown of MEKK2 and MLK3 resulted in increased apoptosis in orthotopic xenografts relative to control tumors in mice, inhibiting both tumor growth and metastasis; MEKK2 and MLK3 represent untargeted kinases in tumor biology for potential therapeutic development.  相似文献   

15.
Kim HJ  Chakravarti N  Oridate N  Choe C  Claret FX  Lotan R 《Oncogene》2006,25(19):2785-2794
N-(4-hydroxyphenyl)retinamide (4HPR), a synthetic retinoid effective in cancer chemoprevention and therapy, is thought to act via apoptosis induction resulting from increased reactive oxygen species (ROS) generation. As ROS can activate MAP kinases and protein kinase C (PKC), we examined the role of such enzymes in 4HPR-induced apoptosis in HNSCC UMSCC22B cells. 4HPR increased ROS level within 1 h and induced activation of caspase 3 and PARP cleavage within 24 h. Activation of MKK3/6 and MKK4, JNK, p38 and ERK was detected between 6 and 12 h, increased up to 24 h and preceded apoptosis. 4HPR-induced activation of these kinases was abrogated by the antioxidants BHA and vitamin C. SP600125, a JNK inhibitor, suppressed 4HPR-induced c-Jun phosphorylation, cytochrome c release from mitochondria and apoptosis. Suppression of JNK1 and JNK2 using siRNA decreased, whereas overexpression of wild type-JNK1 enhanced 4HPR-induced apoptosis. PD169316, a p38, inhibitor suppressed phosphorylation of Hsp27 and apoptosis. PD98059, an MEK1/2 inhibitor, also suppressed ERK1/2 activation and apoptosis induced by 4HPR. Likewise, PKC inhibitor GF109203X suppressed ERK and p38 phosphorylation and PARP cleavage. These data indicate that 4HPR-induced apoptosis is triggered by ROS increase, leading to the activation of the mitogen-activated protein serine/threonine kinases JNK, p38, PKC and ERK, and subsequent apoptosis.  相似文献   

16.
Signal transduction events regulating induction of apoptosis by the histone deacetylase inhibitors (HDIs) sodium butyrate (SB) and SAHA have been examined in Bcr/Abl+ human leukemia cells (K562, LAMA 84). Exposure of K562 cells to greater or less than 3.0 mM SB or 3.0 mM SAHA for 24-48 hr resulted in a marked induction of mitchondrial damage (e.g., cytochrome c release) and apoptosis, events associated with downregulation of Bcr/Abl and Raf-1, induction of p21CIP1, inactivation of MEK1/2, ERK1/2, and p70S6K, and a dramatic increase in JNK activation. HDI-mediated apoptosis was attenuated by pharmacologic JNK inhibitors and enhanced by the MEK1/2 inhibitor U0126 as well as by the JNK activator anisomycin. Interestingly, HDI-induced JNK activation was potentiated by pharmacologic MEK inhibition. Furthermore, HDI lethality was significantly diminished in cells ectopically expressing constitutively active MEK1, confirming a functional role for MEK/ERK inactivation in HDI-mediated apoptosis. Similar events were observed in Bcr/Abl+ LAMA 84 cells. Lastly, the free radical scavenger L-N-acetylcysteine (LNAC) attenuated HDI-mediated ROS generation, JNK activation, and apoptosis. Together, these findings support a model in which induction of apoptosis in Bcr/Abl+ cells by HDIs involves coordinate inactivation of the cytoprotective Raf/MEK/ERK pathway in conjunction with the ROS-dependent activation of JNK.  相似文献   

17.
Treatment of human promyeloleukemic HL-60 cells with the experimental antileukemic drug ajoene induces the activation of the mitogen-activated protein kinases (MAPKs) c-Jun NH(2)-terminal kinase (JNK), p38 and extracellular signal-regulated kinases (ERK) 1/2 as well as the survival kinase Akt. JNK activation occurred in HL-60/neo, HL-60/bcl-x(L), and in HL-60 cells pretreated with the pan-caspase inhibitor zVAD-fmk, indicating that JNK activation is not dependent on ajoene-induced mitochondria perturbation and subsequent caspase activation. Cells overexpressing a dominant-negative JNK showed no altered sensitivity towards ajoene suggesting that the activation of JNK is not necessary for ajoene-induced cell death. Inhibition of p38 MAPK by SB 203580 had no influence on ajoene-mediated apoptosis. In contrast, inhibition of ERK1/2 vastly enhanced ajoene-induced cell death. The survival kinase Akt, in contrast, did not participate in ajoene-induced death signaling as shown by the use of the phosphatidylinositol-3-kinase inhibitor wortmannin. Thus in contrast to the previous findings regarding stress-induced cell death, ajoene-mediated activation of JNK and p38 has no impact on ajoene-induced apoptosis in HL-60 cells. Blockade of ERK1/2 but not Akt pathways leads to sensitization of cells against ajoene-mediated apoptosis supporting the view that inhibition of ERK1/2 is a valuable strategy to increase the sensitivity of promyeloleukemic cells towards ajoene.  相似文献   

18.
Chuang SM  Wang IC  Yang JL 《Carcinogenesis》2000,21(7):1423-1432
Cadmium (Cd), a human carcinogen, can induce apoptosis in various cell types. Three major mitogen-activated protein kinases (MAPKs), c-JUN N-terminal kinase (JNK), p38 and extracellular signal-regulated kinase (ERK), have been shown to regulate apoptosis. In this study we explore the ability of Cd to activate JNK, p38 and ERK, including their effects on Cd-mediated growth inhibition and apoptosis in a human non-small cell lung carcinoma cell line, CL3. The kinase activity of JNK was induced dose-dependently by 30-160 microM CdCl(2). High cytotoxic doses of Cd (130-160 microM) markedly activated p38, but low Cd doses did not. Conversely, the activities of ERK1 and ERK2 were decreased by low cytotoxic doses of Cd (相似文献   

19.
Nonsteroidal antiinflammatory drugs (NSAIDs) can prevent colorectal tumorigenesis in humans and in rodents. In vitro and in vivo studies indicate that one of their principal antineoplastic avenues is the induction of apoptosis. We have shown previously that NS-398, which selectively inhibits cyclooxygenase-2 (COX-2) over cyclooxygenase-1, induces apoptosis of colorectal tumour cells and elevates COX-2 protein expression. Here, we have determined that the extracellular signal-regulated kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway mediates these effects of NS-398. Treatment of HT29 colorectal carcinoma cells with 75 microM NS-398 caused activation of ERK-1/-2 but not of the p38 and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinases. This was apparent at 24 hr and maintained at 72 hr. U0126, a specific inhibitor of the ERK-activating kinases MEK-1/-2, prevented the activation of ERK induced by NS-398 and blocked the increase in COX-2 protein expression seen when HT29 cells were treated with NS-398 alone. The activation of ERK by NS-398 preceded and accompanied a decrease in attached cell yield and an increase in apoptosis. U0126 dose-dependently protected HT29 cells from these antiproliferative effects of NS-398, indicating an antiproliferative role for sustained ERK-1/-2 activation in response to this NSAID. These results point to a key role for the MEK/ERK signalling pathway in mediating the effects of a COX-2-selective NSAID on colorectal carcinoma cells.  相似文献   

20.
Interactions between the PKC and Chk1 inhibitor UCN-01 and pharmacologic MEK1/2 inhibitors (e.g., U0126, PD184352) were examined in Bcr/Abl(+) = human leukemia cells (K562, LAMA 84) sensitive and resistant to the Bcr/Abl kinase inhibitor STI571. Coexposure of K562 cells to UCN-01 (e.g., 100 nM) or U0126 (30 microM) resulted in a marked increase in mitochondrial injury (e.g., release of cytochrome c; loss of deltapsi(m)) and apoptosis. Similar results were obtained in other Bcr/Abl(+) cells (e.g., LAMA 84, BV-173) and with other MEK1/2 inhibitors (e.g., PD184352). Exposure of K562 cells to UCN-01 resulted in activation of ERK, an effect that was abrogated by co-administration of MEK1/2 inhibitors. Coadminstration of UCN-01 with U0126 produced multiple perturbations in signal transduction/cell cycle regulatory pathways, including diminished expression of Bcr/Abl, Mcl-1, cylin D(1), and activation of JNK and p34(cdc2). Coadministration of the JNK inhibitor SP600125 attenuated UCN-01/MEK inhibitor- associated lethality, suggesting a functional role for JNK activation in enhanced lethality. Finally, UCN-01 and MEK1/2 inhibitors effectively induced apoptosis in Bcr/Abl(+) cells (e.g., K562 and LAMA 84) overexpressing Bcr/Abl and resistant to STI571. These findings indicate that BcrAbl(+) leukemia cells are sensitive to a strategy combining UCN-01 with MEK/ERK inhibitors that simultaneously disrupts two signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号