首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bone marrow‐derived mesenchymal stem cells (MSCs) represent an autologous cell source for nucleus pulposus (NP) tissue engineering and regeneration. Although studies have demonstrated the ability of MSCs to differentiate to NP‐like chondrocytic cells, few have comparatively studied the matrix synthesis and composition of the cartilaginous tissue formed in vitro from both cell types, particularly with respect to the expression of basement membrane (BM) molecules. The objective of this study was to evaluate chondrogenesis and expression of BM molecules, laminin and type IV collagen, in monolayer and in pellet cultures of caprine NP cells and MSCs. Both cell types demonstrated comparable levels of chondrogenesis, indicated by the percentage of chondrocytic cells, and the amounts of glycosaminoglycan and type II collagen. Laminin and type IV collagen were expressed intracellularly by NP cells and MSCs cultured in monolayer. During chondrogenesis in pellet cultures, the deposition of BM molecules in NP and MSC pellets followed an orderly spatiotemporal shift in pattern from a diffuse territorial and interterritorial distribution to a defined pericellular localization, as seen in normal adult NP. These results inform the use of MSCs for NP regeneration and suggest the possible involvement of certain BM molecules in chondrogenesis and cartilage regeneration. © 2013 Orthopaedic Research Society Published by Wiley Periodicals, Inc. J Orthop Res 31:1136–1143, 2013  相似文献   

2.
目的研究骨髓间充质干细胞(marrow mesenchymal stem cells,MSCs)种植在Ⅰ型胶原支架材料(type Ⅰ collagen-glycosaminoglycan,CG)上,软骨定向诱导后修复关节软骨缺损的可能性.方法将来源于10只成年实验犬骨髓的贴壁细胞培养传代至第3代,收集后以2×106密度种植于直径9 mm,厚3 mm(干样品尺寸)干热交联处理(dehydrothermal treatment,DHT)的CG材料中,软骨诱导培养基诱导培养21 d.观察每日细胞-材料复合体直径与初始直径的百分比,反应其收缩性.Ⅱ型胶原及平滑肌肌动蛋白(smooth muscle actin,SMA)免疫组织化学染色观测体外软骨形成情况.将体外诱导培养的细胞-材料复合体植入实验犬膝关节软骨缺损模型,12周后取材观察.结果诱导培养过程中细胞材料复合体直径随时间延长而下降.21 d后,细胞-材料复合体收缩至初始直径的64.4%±0.3%;组织学见:材料的孔隙收缩,新合成的基质使细胞-材料复合体的多数区域变为实体组织;Ⅱ型胶原及SMA染色阳性.植入实验犬膝关节软骨缺损12周后,犬膝关节功能恢复,关节软骨缺损处有软骨样组织填充.结论将MSCs种植于CG材料中,经软骨诱导培养后并植入软骨缺损后能形成含有Ⅱ型胶原的软骨样实体组织.  相似文献   

3.
Ex vivo induction of chondrogenesis is a promising approach to improve upon the use of bone marrow mesenchymal stem cells (MSCs) for cartilage tissue engineering. This study evaluated the potential to induce chondrogenesis with days of culture in chondrogenic medium for MSCs encapsulated in self‐assembling peptide hydrogel. To simulate the transition from preconditioning culture to implantation, MSCs were isolated from self‐assembling peptide hydrogel into an individual cell suspension. Commitment to chondrogenesis was evaluated by seeding preconditioned MSCs into agarose and culturing in the absence of the chondrogenic cytokine transforming growth factor beta (TGFβ). Positive controls consisted of undifferentiated MSCs seeded into agarose and cultured in medium containing TGFβ. Three days of preconditioning was sufficient to produce chondrogenic MSCs that accumulated ~75% more cartilaginous extracellular matrix than positive controls by day 17. However, gene expression of type X collagen was ~65‐fold higher than positive controls, which was attributed to the absence of TGFβ. Potential induction of immunogenicity with preconditioning culture was indicated by expression of major histocompatibility complex class II (MHCII), which was nearly absence in undifferentiated MSCs, and ~7% positive for preconditioned cells. These data demonstrate the potential to generate chondrogenic MSCs with days of self‐assembling peptide hydrogel, and the ability to readily recover an individual cell suspension that is suited for injectable therapies. However, continued exposure to TGFβ may be necessary to prevent hypertrophy indicated by type X collagen expression, while immunogenicity may be a concern for allogeneic applications. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1368–1375, 2019.  相似文献   

4.
Bone marrow mesenchymal stem cells (BM‐MSCs) and adipose‐derived progenitor cells (ADPCs) are potential alternatives to autologous chondrocytes for cartilage resurfacing strategies. In this study, the chondrogenic potentials of these cell types were compared by quantifying neo‐tissue synthesis and assaying gene expression and accumulation of extracellular matrix (ECM) components of cartilage. Adult equine progenitor cells encapsulated in agarose or self‐assembling peptide hydrogels were cultured in the presence or absence of TGFβ1 for 3 weeks. In BM‐MSCs‐seeded hydrogels, TGFβ1 stimulated ECM synthesis and accumulation 3–41‐fold relative to TGFβ1‐free culture. In ADPC cultures, TGFβ1 stimulated a significant increase in ECM synthesis and accumulation in peptide (18–29‐fold) but not agarose hydrogels. Chromatographic analysis of BM‐MSC‐seeded agarose and peptide hydrogels cultured in TGFβ1 medium showed extensive synthesis of aggrecan‐like proteoglycan monomers. ADPCs seeded in peptide hydrogel also synthesized aggrecan‐like proteoglycans, although to a lesser extent than seen in BM‐MSC hydrogels, whereas aggrecan‐like proteoglycan synthesis in ADPC‐seeded agarose was minimal. RT‐PCR analysis of TGFβ1 cultures showed detectable levels of type II collagen gene expression in BM‐MSC but not ADPC cultures. Histological analysis of TGFβ1‐cultured peptide hydrogels showed the deposition of a continuous proteoglycan‐ and type II collagen rich ECM for BM‐MSCs but not ADPCs. Therefore, this study showed both protein and gene expression evidence of superior chondrogenesis of BM‐MSCs relative to ADPCs. © 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 26:322–331, 2008  相似文献   

5.
There is increasing evidence showing that adult stem cells are useful for tissue regeneration. Bone marrow mesenchymal stem cells (MSCs) are self‐renewing and are potent in differentiating into multiple cells and tissues. To investigate the practicability of repairing burn wounds with tissue‐engineered (TE) skin combined with bone MSCs, we established a burn wound model in the porcine skin. With a controlling temperature and time of the burning device to obtain different degrees of burn wounds, a deep dermal partial thickness burn was introduced to the porcine skin using a heated‐brass contact injury at 100°C for 20 s. Collagen‐GAG scaffolds were utilized as the matrix; MSCs separated from pigs were seeded on them to form the skin equivalent. When grafted to the burn wounds, the TE skin containing MSCs showed better healing and keratinization, less wound contraction, and more vascularization. Grafts proliferated well and contributed to the neo‐tissues. These data suggest that TE skin containing MSCs in a burn defect can accelerate wound healing and receive satisfactory effects.  相似文献   

6.
The objective of our study was to investigate chondrogenesis potential of human adipose‐derived mesenchymal stromal cells (MSCs), using as a positive control a human source of cartilage‐derived progenitor cells (PCs). This source of PCs was recently described by our group and dwells on the surface of nasoseptal cartilage. Histological analysis using Safranin O staining and immunofluorescence for actin filaments and collagen type II was performed on three‐dimensional (3D) pellet cultures. Cartilage PCs and adipose MSCs showed similarities in monolayer culture related to cell morphology and proliferation. Our 3D pellet cultures substantially reduced the actin stress and after 21 days under chondrogenic medium, we observed an increase in the pellet diameter for cartilage PCs (7.4%) and adipose MSCs (21.2%). Adipose‐derived MSCs responded to chondrogenic stimulus, as seen by positive areas for collagen type II, but they were not able to recreate a mature extracellular matrix. Using semi‐quantitative analysis, we observed a majority of Safranin O areas rising from blue (no stain) to orange (moderate staining) and no changes in fibroblastic morphology (P < 0.0001). For cartilage PCs, chondrogenic induction is responsible for morphological changes and a high percentage of matrix area/number of cells (P ≤ 0.0001), evaluated by computerized histomorphometry. Morphological analyses reveal that adipose‐derived MSCs were not able to recreate a bioengineered cartilage. The cost of culture was reduced, as the cartilage PCs under growth‐factor free medium exhibit a high score for cartilage formation compared with the induced adipose mesenchymal stromal cells (P = 0.0021). Using a pellet 3D culture, our cartilage PCs were able to produce a cartilage tissue in vitro, leading to the future development of bioengineered products.  相似文献   

7.
A scanning electron microscopic investigation of in vitro osteogenesis   总被引:2,自引:0,他引:2  
Summary Chick limb mesenchymal cells differentiate into muscle, cartilage, fibrous, and bone tissue. Previous reports show that when stage 24 limb mesenchymal cells are cultured in vitro, chondrocytes, myocytes, fibrocytes, and osteoblasts can be identified on the basis of morphological and biochemical parameters. The study reported here demonstrates that phenotypic expression in culture seems to be dependent on the initial plating density, Scanning electron microscopic observations indicate that when stage 24 limb mesenchymal cells are initially seeded at high densities (5 × 106 cells per 35 mm culture dish), mounds of cells appear in culture. These mounds represent cartilage nodules composed of a fine fibrous matrix and chondrocytes, surrounded by a loose fibrous connective tissue matrix. Cultures initially plated at intermediate densities (2.0–2.5 × 106 cells/35 mm culture dish) produce a flattened layer of fibrocytes overlying a matrix of collagen fibers and calcium phosphate deposits as determined by electron-microprobe analysis; these observations are indicative of osteoblast expression. Cells seeded at this intermediate density appear larger and possess greater surface area than cells seeded at high density. It is suggested that conditions that permit such increased cell surface area coupled with a relative compaction due to cell crowding may provide conditions permissive for osteogenesis. Based on morphological criteria, it appears that chick limb mesenchymal cell osteogenesis in vitro is not associated with chondrogenesis but represents a separate route of phenotypic expression.  相似文献   

8.
Chondrogenic differentiation and cartilage tissue formation derived from stem cells are highly dependent on both biological and mechanical factors. This study investigated whether or not fibrin‐hyaluronic acid (HA) coupled with low‐intensity ultrasound (LIUS), a mechanical stimulation, produces an additive or synergistic effect on the chondrogenesis of rabbit mesenchymal stem cells (MSCs) derived from bone marrow. For the purpose of comparison, rabbit MSCs were first cultured in fibrin‐HA or alginate hydrogels, and then subjected to chondrogenic differentiation in chondrogenic‐defined medium for 4 weeks in the presence of either transforming growth factor‐beta3 (TGF‐β3) (10 ng/mL) or LIUS treatment (1.0 MHz and 200 mW/cm2). The resulting samples were evaluated at 1 and 4 weeks by histological observation, chemical assays, and mechanical analysis. The fibrin‐HA hydrogel was found to be more efficient than alginate in promoting chondrogenesis of the MSCs by producing a larger amount of sulfated glycosaminoglycans (GAGs) and collagen, and engineered constructs made with the hydrogel demonstrated higher mechanical strength. At 4 weeks of tissue culture, the chondrogenesis of the MSCs in fibrin‐HA were shown to be further enhanced by treatment with LIUS, as observed by analyses for the amounts of GAGs and collagen, and mechanical strength testing. In contrast, TGF‐β3, a well‐known chondrogenic inducer, showed a marginal additive effect in the amount of collagen only. These results revealed that LIUS further enhanced chondrogenesis of the MSCs cultured in fibrin‐HA, in vitro, and suggested that the combination of fibrin‐HA and LIUS is a useful tool in constructing high‐quality cartilage tissues from MSCs.  相似文献   

9.
《Injury》2022,53(2):399-407
Cellular therapy based on chondrocytes implantation is the most widely used procedure for inducing cartilage regeneration. However, the dedifferentiation process that these cells suffer and their limited capacity of proliferation, when they are cultured in vitro, restrict their use in cellular therapy protocols. To investigate the capacity of mesenchymal stromal cells (MSCs) to promote chondrogenesis from chondrocytes or chondrons in 2D and 3D coculture systems. Murine chondrocytes and chondrons were cocultured with MSCs at different cell ratios (100/0, 50/50, 70/30, 0/100) in two-dimensional (2D) and three-dimensional (3D) culture systems. High proliferation of cells with chondrocyte morphology, enhanced GAG production and expression of cartilage genes (aggrecan, type II collagen, and SOX-9) were observed in chondrocytes/MSCs cocultures. In contrast, fibroblastoid cells, down-regulation of cartilage gene expression and reduction of GAG production were observed in chondrons/MSCs cocultures. Chondrocytes within cartilage lacunae and surrounded by extracellular matrix were observed in chondrocytes/MSC pellets. MSCs promote the proliferation of functional chondrocytes in 2D and 3D culture systems. Transplantation of chondrogenic construct based on MSCs and chondrocytes may constitute a potential treatment for inducing cartilage repair.  相似文献   

10.
目的比较胎猪骨髓间充质干细胞(Bone Marrow Mesenchymal Stem Cells,BMSCs)和成年猪BMSCs构建软骨能力的差异,寻找合适的同种异体组织工程软骨种子细胞来源。方法通过剖腹产手术获得胎龄为70 d的胎猪,胎猪骨髓液贴壁培养获得胎猪BMSCs;抽取成年猪骨髓液,经贴壁培养法获得成年猪BMSCs。两种细胞体外扩增培养后,观察第3代细胞形态,并进行成骨、成脂和成软骨诱导。分别取两种细胞以1×108 cells/mL的细胞终浓度,接种于聚乳酸包埋的聚羟基乙酸支架,体外诱导培养8周后取材。通过大体观察、糖胺聚糖(GAG)含量测定、总胶原含量测定、组织学,以及免疫组化等方法,对两种细胞构建的组织工程软骨的相关生物学特性进行比较。结果胎猪BMSCs比成年猪BMSCs具有更好的增殖和成骨、成脂和成软骨能力。胎猪BMSCs构建的软骨有良好的软骨外观,而且GAG含量和总胶原含量均高于成年猪BMSCs构建的软骨(P<0.01)。组织学和免疫组化显示,胎猪BMSCs构建的软骨组织结构致密,基质及Ⅱ型胶原显色程度均明显强于成年猪BMSCs构建的软骨。结论胎猪BMSCs是组织工程软骨较好的种子细胞来源。  相似文献   

11.
12.
MicroRNAs (miRNAs) can regulate cellular differentiation processes by modulating multiple pathways simultaneously. Previous studies to analyze in vivo miRNA expression patterns in developing human limb cartilage tissue identified significant downregulation of miR‐483 in hypertrophic chondrocytes relative to proliferating and differentiated chondrocytes. To test the function of miR‐483 during chondrogenesis, lentiviral strategies were used to overexpress miR‐483 during in vitro chondrogenesis of human bone marrow‐derived mesenchymal stem cells (hBM‐MSCs). While the in vivo expression patterns led us to hypothesize that miR‐483 may enhance chondrogenesis or suppress hypertrophic marker expression, surprisingly, miR‐483 overexpression reduced chondrocyte gene expression and cartilage matrix production. In addition, cell death was induced at later stages of the chondrogenesis assay. Mechanistic studies revealed that miR‐483 overexpression resulted in downregulation of the TGF‐β pathway member SMAD4, a known direct target of miR‐483‐3p. From these studies, we conclude that constitutive overexpression of miR‐483 in hBM‐MSCs inhibits chondrogenesis of these cells and does not represent an effective strategy to attempt to enhance chondrocyte differentiation and anabolism in this system in vitro. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2369–2377, 2017.
  相似文献   

13.
BACKGROUND: The developmental history of the chondrocyte results in a cell whose biosynthetic activities are optimized to maintain the concentration and organization of a mechanically functional cartilaginous extracellular matrix. While useful for cartilage tissue engineering studies, the limited supply of healthy autologous chondrocytes may preclude their clinical use. Consequently, multipotential mesenchymal stem cells (MSCs) have been proposed as an alternative cell source. OBJECTIVE: While MSCs undergo chondrogenesis, few studies have assessed the mechanical integrity of their forming matrix. Furthermore, efficiency of matrix formation must be determined in comparison to healthy chondrocytes from the same donor. Given the scarcity of healthy human tissue, this study determined the feasibility of isolating bovine chondrocytes and MSCs, and examined their long-term maturation in three-dimensional agarose culture. EXPERIMENTAL DESIGN: Bovine MSCs were seeded in agarose and induced to undergo chondrogenesis. Mechanical and biochemical properties of MSC-laden constructs were monitored over a 10-week period and compared to those of chondrocytes derived from the same group of animals maintained similarly. RESULTS: Our results show that while chondrogenesis does occur in MSC-laden hydrogels, the amount of the forming matrix and measures of its mechanical properties are lower than that produced by chondrocytes under the same conditions. Furthermore, some important properties, particularly glycosaminoglycan content and equilibrium modulus, plateau with time in MSC-laden constructs, suggesting that diminished capacity is not the result of delayed differentiation. CONCLUSIONS: These findings suggest that while MSCs do generate constructs with substantial cartilaginous properties, further optimization must be done to achieve levels similar to those produced by chondrocytes.  相似文献   

14.
目的:研究不同的应力刺激对软骨细胞与骨髓基质干细胞(BMSCs)共培养体外构建组织工程化软骨的影响。方法:分离、培养、扩传兔MSCs及软骨细胞,二者按7:3比例混和,以5.0×107/ml的细胞密度接种于聚羟基乙酸(PGA)支架上,一周后根据不同的施加力分为4组:离心组、摇床组、搅拌组,静止培养作为对照组。6周后取材行相关检测。结果:三受力组形成的细胞材料复合物基本保持原来的体积与外形。HE染色结果显示大量成熟软骨陷窝形成,细胞外基质沉积均匀;Safranin-O及甲苯胺兰染色显示有大量的GAG形成,免疫组化检测II型胶原表达强阳性。三受力组标本组织湿重、体积、GAG含量等指标均优于对照组。结论:力学刺激有利于促进少量软骨细胞与BMSCs共培养体外软骨分化;并在三维支架材料上构建组织工程化软骨。  相似文献   

15.
Aldehyde dehydrogenase (ALDH) is an enzyme that plays an important role in retinoid metabolism and highly expressed in stem cells. This study isolated ALDH‐expressing cells from subcutaneous adipose tissue and investigated their potential to enhance healing in a full‐thickness skin wound in rats by co‐implanting them with collagen‐glycosaminoglycan (c‐GAG) scaffolds. ALDH‐positive cells were isolated by a fluorescence‐activated cell sorting technique from Lewis rat's stromal‐vascular‐fraction (SVF) and transplanted with c‐GAG scaffolds in a rat full‐thickness skin wound model. At 7 days after surgery, the microscopic appearance of c‐GAG scaffolds seeded with ALDH‐positive was compared with those of uncultured‐SVF, and cultured‐SVF adipose‐derived stromal cells (ASCs). The thickness of cellular ingrowth in the ASC group (630 ± 180 μm) was significantly thicker than that in the control (390 ± 120 μm) or SVF (380 ± 140 μm) groups, but non‐significantly thicker than that in the ALDH‐positive group (570 ± 220 μm). The thickness of regenerated collagen layer was significantly thicker in the ALDH‐positive group (160 ± 110 μm) than in the ASCs (81 ± 41 μm), the control (65 ± 24 μm), or SVF (64 ± 34 μm) groups. Immunofluorescent staining with CD31 proved that transplanted ALDH‐positive cells differentiated into vascular endothelial cells in c‐GAG scaffolds. Combined transplantation with c‐GAG scaffolds and adipose‐derived ALDH‐positive cells promoted dermal regeneration, giving a possibility that ALDH‐positive cells would greatly shorten the waiting period before secondary autologous skin grafting was possible.  相似文献   

16.
目的:探讨分离骨髓间充质干细胞(MSCs)并诱导其向软骨细胞转化的体外培养方法,为软骨组织工程的种子细胞来源提供实验依据。方法:抽取兔髂骨骨髓液,经梯度离心法和贴壁法进行体外培养,贴壁细胞传代,取第3代细胞在培养基中添加软骨分化诱导剂[含转化生长因子(TGF-β2)10ng/ml、地塞米松10^7mol/L、维生素C50μmol/L,经7、14、21d诱导培养后,倒置显微镜观察细胞形态,免疫组织化学染色检测软骨特异性Ⅱ型胶原表达。将诱导细胞与软骨支架材料-聚磷酸钙纤维/左旋聚乳酸(CPP/PLLA)复合,1周后终止培养,扫描电镜观察细胞黏附情况。结果:诱导后细胞体外扩增能力显著降低,细胞形态由成纤维样梭形向多角形、多边形或类圆形转变,诱导21d后细胞形态变化最为显著,Ⅱ型胶原免疫组化染色深而均匀。诱导后的MSCs可在支架材料内良好黏附生长。结论:体外培养的MSCs可定向诱导分化为软骨细胞,分泌软骨细胞特异性基质,可用作软骨组织工程的种子细胞。  相似文献   

17.
Bone marrow—derived mesenchymal stem cells (BM‐MSCs) have properties that make them promising for the treatment of chronic nonhealing wounds. The major challenge is ensuring an efficient, safe, and painless delivery of BM‐MSCs. Tissue‐engineered skin substitutes have considerable benefits in skin damage resulting from chronic nonhealing wounds. Here, we have constructed a three‐dimensional biomimetic scaffold known as collagen‐chitosan sponge scaffolds (CCSS) using the cross‐linking and freeze‐drying method. Scanning electron microscopy images showed that CCSS had an interconnected network pore configuration about 100 μm and exhibited a suitable swelling ratio for maintaining morphological stability and appropriate biodegradability to improve biostability using swelling and degradation assays. Furthermore, BM‐MSCs were seeded in CCSS using the two‐step seeding method to construct tissue‐engineered skin substitutes. In addition, in this three‐dimensional biomimetic CCSS, BM‐MSCs secreted their own collagen and maintain favorable survival ability and viability. Importantly, BM‐MSCs exhibited a significant upregulated expression of proangiogenesis factors, including HIF‐1α, VEGF, and PDGF following hypoxia pretreatment. In vivo, hypoxia pretreatment of the skin substitute observably accelerated wound closure via the reduction of inflammation and enhanced angiogenesis in diabetic rats with hindlimb ischemia. Thus, hypoxia pretreatment of the skin substitutes can serve as ideal bioengineering skin substitutes to promote optimal diabetic skin wound healing.  相似文献   

18.
19.
20.
Extracellular matrix (ECM) materials are widely used in cartilage tissue engineering. However, the current ECM materials are unsatisfactory for clinical practice as most of them are derived from allogenous or xenogenous tissue. This study was designed to develop a novel autologous ECM scaffold for cartilage tissue engineering. The autologous bone marrow mesenchymal stem cell–derived ECM (aBMSC‐dECM) membrane was collected and fabricated into a three‐dimensional porous scaffold via cross‐linking and freeze‐drying techniques. Articular chondrocytes were seeded into the aBMSC‐dECM scaffold and atelocollagen scaffold, respectively. An in vitro culture and an in vivo implantation in nude mice model were performed to evaluate the influence on engineered cartilage. The current results showed that the aBMSC‐dECM scaffold had a good microstructure and biocompatibility. After 4 weeks in vitro culture, the engineered cartilage in the aBMSC‐dECM scaffold group formed thicker cartilage tissue with more homogeneous structure and higher expressions of cartilaginous gene and protein compared with the atelocollagen scaffold group. Furthermore, the engineered cartilage based on the aBMSC‐dECM scaffold showed better cartilage formation in terms of volume and homogeneity, cartilage matrix content, and compressive modulus after 3 weeks in vivo implantation. These results indicated that the aBMSC‐dECM scaffold could be a successful novel candidate scaffold for cartilage tissue engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号