首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Temporal profile of neuronal deaths in the mouse retina evoked by a transient retinal ischemia and the protective effect of hypothermia on such deaths were evaluated. A transient ischemic insult was induced in the mouse retina by elevating the intra-ocular pressure. The retina tissue responses after reperfusion were histopathologically detected by monitoring the retinal cell death in the ganglion cell layer and inner nuclear layer, using a sequential TUNEL-staining technique, and by measuring the inner retinal thickness. Elevation of intra-ocular pressure induced a time-related appearance of TUNEL-positive cells in the mouse inner retinas. Peak TUNEL staining occurred 12 h after reperfusion. Lowering mice body temperature to 35 degrees C, 33 degrees C and 29 degrees C during the ischemia period significantly inhibited DNA fragmentation of retinal neurons in a lowering temperature dependent manner. In this experiment, the inner retinal thickness was preserved in 29 degrees C group compared with that in 37 degrees C group. From these results, the 45-min transient ischemia and histopathological examination 12 h later provided a reproducible number of retinal neuronal deaths. Furthermore, hypothermic intervention showed a protective effect to salvage retinal neuronal cells from a transient ischemic insult.  相似文献   

2.
《Neurological research》2013,35(7):730-735
Abstract

Temporal profile of neuronal deaths in the mouse retina evoked by a transient retinal ischemia and the protective effect of hypothermia on such deaths were evaluated. A transient ischemic insult was induced in the mouse retina by elevating the intra-ocular pressure. The retina tissue responses after reperfusion were histopathologically detected by monitoring the retinal cell death in the ganglion cell layer and inner nuclear layer, using a sequential TUNEL-staining technique, and by measuring the inner retinal thickness. Elevation of intra-ocular pressure induced a time-related appearance of TUNEL-positive cells in the mouse inner retinas. Peak TUNEL staining occurred 12 h after reperfusion. Lowering mice body temperature to 35°C, 33°C and 29°C during the ischemia period significantly inhibited DNA fragmentation of retinal neurons in a lowering temperature dependent manner. In this experiment, the inner retinal thickness was preserved in 29°C group compared with that in 37°C group. From these results, the 45-min transient ischemia and histopathological examination 12 h later provided a reproducible number of retinal neuronal deaths. Furthermore, hypothermic intervention showed a protective effect to salvage retinal neuronal cells from a transient ischemic insult.  相似文献   

3.
Neuroprotective effects of 6‐formylpterin (6FP) on transient retinal ischemia–reperfusion injury were evaluated in rats by means of counting the number of retinal ganglion cells, measuring the thicknesses of the inner plexiform and inner nuclear layers, and by immunohistochemical detection of apoptotic cells in the retina. Sixty‐one Sprague–Dawley rats (12 weeks, male, 295–330 g) were subjected to transient retinal ischemia–reperfusion by elevated intra‐ocular pressure (80 mmHg for 60 min). Intraperitoneal injection of 6FP (3.8 mg/kg) was performed before or after ischemia. The retina was histologically better preserved in rats with 6FP treatment than without 6FP treatment. 6FP showed more strong neuroprotective effects when it was administered before ischemia. The number of single‐stranded DNA‐positive cells in the retina also decreased remarkably in rats with 6FP treatment, especially when administered before ischemia. These results suggest that 6FP protects retinal neurons from transient ischemia–reperfusion injury, at least in part by inhibiting apoptotic cell death.  相似文献   

4.
The objectives of the present study were to determine the localization of K(ATP) channels in normal retina and to evaluate their potential roles in ischemic preconditioning (IPC) in a rat model of ischemia induced by increased intraocular pressure (IOP). Brown Norway rats were subjected to sublethal 3-, lethal 20- and 40-min ischemia and the functional recovery was evaluated using electroretinography. The time interval between ischemic insults ranged from 1 to 72 h. The effects of K(ATP) channel blockade on IPC protection were studied by treatment with 0.01% glipizide. IPC was mimicked by injection of K(ATP) channel openers of 0.01% (-)cromakalim or 0.01% P1060 72 h before 20-min ischemia. Co-expression of K(ATP) channel subunits Kir6.2/SUR1 was observed in the retinal pigment epithelium, inner segments of photoreceptors, outer plexiform and ganglion cell layers and at the border of the inner nuclear layer. In contrast to a 20- or 40-min ischemia, a 3-min ischemia induced no alteration of the electroretinogram (ERG) and constituted the preconditioning stimulus. An ischemic challenge of 40 min in preconditioned rats induced impairment of retinal function. However, animals preconditioned 24, 48 and 72 h before 20-min ischemia had a significant improvement of the ERG. (-)Cromakalim and P1060 mimicked the effect of IPC. Glipizide significantly suppressed the protective effects of preconditioning. In conclusion, activation of K(ATP) channels plays an important role in the mechanism of preconditioning by enhancing the resistance of the retina against a severe ischemic insult.  相似文献   

5.
Jiang W  Wolfe K  Xiao L  Zhang ZJ  Huang YG  Zhang X 《Brain research》2004,1015(1-2):154-160
Brief ischemia was reported to protect various cells against injury induced by subsequent ischemia-reperfusion, and this phenomenon is known as ischemic preconditioning. The aims of the present study were to clarify whether early ischemic preconditioning could be observed in the rat retina by histological examination. Male Sprague-Dawley rats were subjected to 60 min of retinal ischemia by raising intraocular pressure to 130 mm Hg. Ischemic preconditioning was achieved by applying 5 min of ischemia 5-60 min before 60 min of ischemia. Additional groups of rats received 10 mg/kg 8-phenyltheophiline and 4.5 mg/kg 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), adenosine A1 receptor antagonists, 5 mg/kg 5-hydroxydecanoate and 1 mg/kg glibenclamide, ATP-sensitive K+ channel blockers, or 2.5 mg/kg chelerythrine and 0.1 mg/kg bisindolylmaleimide I, protein kinase C inhibitors, 15 or 30 min before preconditioning. In the non-preconditioned group, cell loss in the ganglion cell layer and thinning of the inner plexiform and inner nuclear layer were observed 7 days after 60 min of ischemia. Five minutes of preconditioning ischemia 20-40 min before 60 min of sustained ischemia completely prevented the retinal tissue damage induced by the sustained ischemia. Treatment with 8-phenyltheophylline, DPCPX, 5-hydroxydecanoate, glibenclamide, chelerythrine and bisindolylmaleimide I almost completely reduced the protective effect of early ischemic preconditioning. The results in the present study indicated that early ischemic preconditioning was demonstrated in the rat retina. Stimulation of adenosine receptors, opening of ATP-sensitive K+ channels and activation of protein kinase C might be involved in the underlying protective mechanisms.  相似文献   

6.
In this study we investigated the extent and time course of neuronal cell death and the regulation of the proliferating cell nuclear antigen (PCNA) in the different retinal cell layers following ischemia-reperfusion injury. Retinal ischemia was induced by controlled elevation of the intraocular pressure for a duration of 60 min. Changes in thickness and cell numbers in the retinal cell layers were analyzed at various time points (1 h to 4 weeks) after reperfusion. In parallel, apoptotic cell death was determined by the TUNEL method and the expression of PCNA analyzed by immunocytochemistry. In addition, we tested whether PCNA is expressed in neurons by double immunocytochemistry. The reduction in thickness was found to be less pronounced in the inner nuclear layer (INL). Correspondingly, cell numbers decreased by only 33% in the inner retina, but by more than 80% in the outer nuclear layer (ONL). Alterations in glial cell numbers did not contribute significantly to postischemic changes in the INL and ONL as assessed by using immunocytochemical markers for microglial and Müller cells. The time course of cell death determined by the TUNEL technique also differed markedly in the retinal layers being rapid and transient in the inner retina but delayed and prolonged in the ONL. PCNA immunoreactivity was undetectable in the normal retina, but was specifically induced in neurons of the inner retina within 1 h after reperfusion and was sustained for at least 4 weeks. We conclude that in contrast to photoreceptors in the ONL, a significant proportion of inner retinal neurons is resistant to ischemic insult induced by transiently increased intraocular pressure and that PCNA may possibly play a role in the selective postischemic survival of these cells.  相似文献   

7.
Nervous tissue is characterized by a tight structural association between glial cells and neurons. It is well known that glial cells support neuronal functions, but their role under pathologic conditions is less well understood. Here, we addressed this question in vivo using an experimental model of retinal ischemia and transgenic mice for glia‐specific inhibition of soluble N‐ethylmaleimide‐sensitive factor attachment protein receptor (SNARE)‐dependent exocytosis. Transgene expression reduced glutamate, but not ATP release from single Müller cells, impaired glial volume regulation under normal conditions and reduced neuronal dysfunction and death in the inner retina during the early stages of ischemia. Our study reveals that the SNARE‐dependent exocytosis in glial cells contributes to neurotoxicity during ischemia in vivo and suggests glial exocytosis as a target for therapeutic approaches.  相似文献   

8.
9.
Vitamin B6 protects primate retinal neurons from ischemic injury   总被引:4,自引:0,他引:4  
Vitamin B6 derivatives protect the retinal neurons from excitotoxic injury in vitro. However, their in vivo role in a process involving excitotoxicity, such as ischemia, remains unknown. We studied potential protective effects of pyridoxal 5′-phosphate (PLP) and pyridoxal hydrochloride (pyridoxal) on the retinal neurons in a monkey model of transient global ischemia. Daily intravenous injections (15 mg/kg) of pyridoxal and PLP were performed for consecutive 10 days. On the sixth day, whole brain complete ischemia was produced by clipping the innominate and the left subclavian arteries for 20 min. The monkeys were sacrificed 5 days after ischemia and their retinas were processed for histological analysis. The ischemia induced a marked cellular injury in the retina as shown by the loss of ganglion cells and the reduction of thickness of the ganglion cell, inner plexiform, and inner nuclear layers. PLP significantly prevented the ganglion cell loss and the reduction of thickness of the ganglion cell layer. Pyridoxal significantly prevented the ganglion cell loss as well as the reduction of thickness of ganglion cell, inner plexiform and inner nuclear layers. These results suggest that PLP and pyridoxal counteract the postischemic neuronal death in the adult primate retina, offering a potential for a novel pharmacotherapy of retinal ischemic injury.  相似文献   

10.
Ischemia is a primary cause of neuronal death in retinal diseases. The repertoire of expressed transmitter receptors would determine the neurons' responses to ischemic damage, and peptidergic receptors may be involved. With a new in vitro model of the ischemic mouse retina, we investigated whether an altered expression of somatostatin receptors could modulate retinal responses to ischemia. We used retinas of somatostatin receptor 1 (sst(1)) knock out (KO) mice, where sst(2) are over-expressed and over-functional, and of sst(2) KO mice. TUNEL analysis of ischemic retinas showed a marked reduction of cell death in sst(1) KO retinas, while there were no differences between wild-type (WT) and sst(2) KO retinas. In addition, caspase-3 mRNA expression was also reduced in sst(1) KO as compared to WT retinas. An immunohistochemical analysis demonstrated that different cell populations responded differently to the ischemic insult, and that the persistence of some immunohistochemical markers was greater in sst(1) KO than in WT or in sst(2) KO retinas. In particular, rod bipolar cell survival was markedly improved in sst(1) KO retinas, while it was dramatically decreased in sst(2) KO retinas. Furthermore, consistent with a role of glutamate excitotoxicity in ischemia-induced neuronal death, retinal glutamate release was observed to increase under ischemic conditions, but this increase was significantly reduced in sst(1) KO retinas. These observations demonstrate that an increased presence of functional sst(2) protects against retinal ischemia, thus implementing the background for the use of sst(2) analogs in therapies of retinal diseases such as glaucoma or diabetic retinopathy.  相似文献   

11.
Tryptophan‐derived indole compounds have been widely investigated as antioxidants and as free‐radical scavengers. Indole‐3‐propionic acid (IPA), one of these compounds, is a deamination product of tryptophan. In the present study, we used Mongolian gerbils to investigate IPA's neuroprotective effects against ischemic damage and its antioxidative effects in the hippocampal CA1 region (CA1) after 5 min of transient forebrain ischemia. The repeated oral administration of IPA (10 mg/kg) for 15 days before ischemic surgery protected neurons from ischemic damage. In this group, the percentage of cresyl violet–positive neurons in the CA1 was 56.8% compared with that in the sham group. In the vehicle‐treated group, glial fibrillary acidic protein (GFAP)‐, S‐100‐, and vimentin‐immunoreactive astrocytes and ionized calcium‐binding adapter molecule 1 (Iba‐1)– and isolectin B4 (IB4)–immunoreactive microglia were activated 4 days after ischemia/reperfusion, whereas in the IPA‐treated ischemic group, GFAP, S‐100, Iba‐1, and IB4, but not vimentin, immunoreactivity was distinctly lower than that in the vehicle‐treated ischemic groups. The administration of IPA significantly decreased the level of 4‐hydroxy‐2‐nonenal, a marker of lipid peroxidation, in ischemic hippocampal homogenates compared with that in the vehicle‐treated ischemic groups at various times after ischemia/reperfusion. In addition, immunostaining for 8‐hydroxy‐2′‐deoxyguanosine showed DNA damage in pyramidal neurons in the ischemic CA1 was significantly lower in the IPA‐treated ischemic groups than in the vehicle‐treated ischemic groups. These results suggest that IPA protects neurons from ischemia‐induced neuronal damage by reducing DNA damage and lipid peroxidation. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Hegazy KA  Dunn MW  Sharma SC 《Neuroreport》2000,11(6):1185-1189
Adult retina subjected to transient ischemia and reperfusion leads to controlled retinal ganglion cell (RGC) death over a period. Modification of intracellular mechanisms through a specific adenoviral vector containing the hemoxygenase gene (HO-1) provides avenues for RGC survival following HO-1 gene transfer and ischemia. RGC death rate was reduced by an average of 15% at 1, 2 and 3 weeks. A significant number of RGC transfected with functional HO-1 survived ischemic insults. Pharmacological stimulation of HO-1 may constitute a novel therapeutic approach to rescuing RGC experiencing ischemic/reperfusion injury.  相似文献   

13.
Cheon EW  Park CH  Kang SS  Cho GJ  Yoo JM  Song JK  Choi WS 《Neuroreport》2003,14(3):329-333
Patterns of endothelial nitric oxide synthase (eNOS) expression in retinal ischemia were studied utilizing a transient high intraocular pressure (HIOP) model. We investigated neuronal cell damage and changes in eNOS immunoreactive expression in the ischemic retina, and its relationship to the neuroprotection of betaxolol treatment after ischemic injury. Immunohistochemical staining for eNOS was performed at 3, 7, 14 and 28 days after ischemia/reperfusion. In controls, eNOS immunoreactivity was detected in retinal vessels, but was not detected in neurons. After ischemia/reperfusion, the intensity of eNOS immunoreactivity increased in both retinal vessels and the ganglion cell layer (GCL) compared with controls. eNOS-positive neurons were induced first in the inner nuclear layer (INL) 7 days after reperfusion. However, when experiments were carried out on animals that had been treated with betaxolol after ischemia/reperfusion, the intensity of eNOS immunoreactivity decreased compared to the untreated ischemic retinas. These results suggest that an increase in eNOS expression could be associated with the degenerative changes in the ischemic retina, and that betaxolol treatment appears to protect retinal tissue from ischemic damage.  相似文献   

14.
15.
Glial cell line‐derived neurotrophic factor (GDNF) and hepatocyte growth factor (HGF) are strong neurotrophic factors, which function as antiapoptotic factors. However, the neuroprotective effect of GDNF and HGF in ameliorating ischemic brain injury via an antiautophagic effect has not been examined. Therefore, we investigated GDNF and HGF for changes of infarct size and antiapoptotic and antiautophagic effects after transient middle cerebral artery occlusion (tMCAO) in rats. For the estimation of ischemic brain injury, the infarct size was calculated at 24 hr after tMCAO by HE staining. Terminal deoxynucleotidyl transferase‐mediated dUTP‐biotin in situ nick end labeling (TUNEL) was performed for evaluating the antiapoptotic effect. Western blot analysis of microtubule‐associated protein 1 light chain 3 (LC3) and immunofluorescence analysis of LC3 and phosphorylated mTOR/Ser2448 (p‐mTOR) were performed for evaluating the antiautophagic effect. GDNF and HGF significantly reduced infarct size after cerebral ischemia. The amounts of LC3‐I plus LC3‐II (relative to β‐tubulin) were significantly increased after tMCAO, and GDNF and HGF significantly decreased them. GDNF and HGF significantly increased p‐mTOR‐positive cells. GDNF and HGF significantly decreased the numbers of TUNEL‐, LC3‐, and LC3/TUNEL double‐positive cells. LC3/TUNEL double‐positive cells accounted for about 34.3% of LC3 plus TUNEL‐positive cells. This study suggests that the protective effects of GDNF and HGF were greatly associated with not only the antiapoptotic but also the antiautophagic effects; maybe two types of cell death can occur in the same cell at the same time, and GDNF and HGF are capable of ameliorating these two pathways. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
Nitric oxide (NO) synthesis in the retina is triggered by light stimulation. NO has been shown to modulate visual signal processing at multiple sites in the vertebrate retina, via activation of the most sensitive target of NO signaling, soluble guanylate cyclase. NO can also alter protein structure and function and exert biological effects directly by binding to free thiol groups of cysteine residues in a chemical reaction called S‐nitrosylation. However, in the central nervous system, including the retina, this reaction has not been considered to be significant under physiological conditions. Here we provide immunohistochemical evidence for extensive S‐nitrosylation that takes place in the goldfish and mouse retinas under physiologically relevant light intensities, in an intensity‐dependent manner, with a strikingly similar pattern in both species. Pretreatment with N‐ethylmaleimide (NEM), which occludes S‐nitrosylation, or with 1‐(2‐trifluromethylphenyl)imidazole (TRIM), an inhibitor of neuronal NO synthase, eliminated the light‐evoked increase in S‐nitrosylated protein immunofluorescence (SNI) in the retinas of both species. Similarly, light did not increase SNI, above basal levels, in retinas of transgenic mice lacking neuronal NO synthase. Qualitative analysis of the light‐adapted mouse retina with mass spectrometry revealed more than 300 proteins that were S‐nitrosylated upon illumination, many of which are known to participate directly in retinal signal processing. Our data strongly suggest that in the retina light‐evoked NO production leads to extensive S‐nitrosylation and that this process is a significant posttranslational modification affecting a wide range of proteins under physiological conditions. J. Comp. Neurol. 523:2082–2110, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

17.
OBJECTIVES: Much of our knowledge of the pathophysiology of retinal ischemic injury is from a multitude of studies that use in vitro or in vivo animal models of retinal ischemia followed by reperfusion. The objective of this study was to compare histopathologic and electrophysiologic (electroretinography) parameters using two different models of transient retinal ischemia: high intraocular pressure (HIOP) and suture ligation of the optic nerve (SL). METHODS: Transient retinal ischemia was induced using the HIOP model or the SL model in the Sprague-Dawley rat for either 30 or 60 minutes. Histopathologic outcome was determined at 1 and 7 days after ischemia. In addition, electroretinography (ERG) was performed at 2 hours, I day, 3 days, and 7 days after ischemia. RESULTS: At 1 and 7 days after 30 minutes of ischemia, there were no significant histopathologic abnormalities in the retina with either model, except for a slight decrease of the cell count in the ganglion cell layer (GCL) with the SL method. After 60 minutes of ischemia, there was significant thinning of the inner retina. There was a significant early dropout of cells at 1 day in the inner nuclear layer (INL) in the HIOP method compared to the SL method where the dropout was delayed and gradually progressive. Dropout of cells in the GCL was early (I day) and gradually progressive in both models but more severe in HIOP than SL. There was a significant decrease in the ERG b-wave amplitudes as early as 2 hours after both 30 and 60 minutes of ischemia compared to preischemic baselines. CONCLUSIONS: The degree of retinal injury after transient retinal ischemia was more severe at 1 day after reperfusion in the HIOP method compared to the SL method but was similar at 7 days in both models. Furthermore, our data suggests that functional assessment of ischemic damage by electroretinography may be a more sensitive parameter than conventional histopathologic quantification. The timing of either measurement relative to the ischemic stimulus is critical because histologic measurements performed too early after ischemia may underestimate the degree of injury.  相似文献   

18.
Many common causes of blindness involve the death of retinal photoreceptors, followed by progressive inner retinal cell remodeling. For an inducible model of retinal degeneration to be useful, it must recapitulate these changes. Intravitreal administration of adenosine triphosphate (ATP) has recently been found to induce acute photoreceptor death. The aim of this study was to characterize the chronic effects of ATP on retinal integrity. Five‐week‐old, dark agouti rats were administered 50 mM ATP into the vitreous of one eye and saline into the other. Vision was assessed using the electroretinogram and optokinetic response and retinal morphology investigated via histology. ATP caused significant loss of visual function within 1 day and loss of 50% of the photoreceptors within 1 week. At 3 months, 80% of photoreceptor nuclei were lost, and total photoreceptor loss occurred by 6 months. The degeneration and remodeling were similar to those found in heritable retinal dystrophies and age‐related macular degeneration and included inner retinal neuronal loss, migration, and formation of new synapses; Müller cell gliosis, migration, and scarring; blood vessel loss; and retinal pigment epithelium migration. In addition, extreme degeneration and remodeling events, such as neuronal and glial migration outside the neural retina and proliferative changes in glial cells, were observed. These extreme changes were also observed in the 2‐year‐old P23H rhodopsin transgenic rat model of retinitis pigmentosa. This ATP‐induced model of retinal degeneration may provide a valuable tool for developing pharmaceutical therapies or for testing electronic implants aimed at restoring vision. J. Comp. Neurol. 522:2928–2950, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

19.
In cerebral ischemia, the induction of angiogenesis may represent a natural defense mechanism that enables the hypoxic brain to avoid progression into infarction. Angiopoietin‐1 (Ang1) is known to produce non‐leaky and stable blood vessel formation mainly by the Tie2 receptor. Therefore, we envisioned that the application of cartilage oligomeric matrix protein‐Ang1 (COMP‐Ang1), a soluble, stable, and potent form of Ang1, would promote angiogenesis and provide a protective effect following unilateral middle cerebral artery occlusion (MCAO) in rats. To this end, we employed a 2‐hour‐MCAO model, and treated rats with adenovirus encoding COMP‐Ang1 (Ade‐COMP‐Ang1) or control virus encoding β‐gal (Ade‐β‐gal). Time course magnetic resonance images (MRIs) revealed significantly reduced infarct volume in the rats treated with Ade‐COMP‐Ang1 with an improvement of post‐ischemic neurological deficits compared with rats treated with Ade‐β‐gal. Moreover, compared to the rats treated with Ade‐β‐gal, the rats treated with Ade‐COMP‐Ang1 showed an increase in blood vessels, especially in the border zone adjacent to the infarction, increased number of endogenous neuronal progenitor cells in the ischemic brain, and decreased number of TUNEL‐positive cells. Taken together, COMP‐Ang1 reduced infarct volume and consequently attenuated post‐ischemic neurological deficits through enhanced angiogenesis and increased viable cell mass of neuronal cells. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
Aldose reductase (AR), the first enzyme in the polyol pathway, has been implicated in a wide variety of physiological and pathological functions, such as diabetic vascular and neural complications. It is known that diabetes mellitus can exacerbate brain and retina damage after ischemic injuries. However, the underlying mechanisms are not clear. In the present study, we made use of db/db mice with an AR null mutation (AR?/?db/db) to understand better the role of AR in the pathogenesis of brain and retina ischemic injuries under diabetic conditions. Cerebral and retinal ischemia was induced by transient middle cerebral artery occlusion in control and diabetic mice either with or without an AR null mutation. Mice were evaluated for neurological deficits after 30 min of ischemia and 23.5 hr of reperfusion. Our results showed that the diabetic db/db mice had significantly more severe neurological deficit and larger brain infarct size than the nondiabetic mice. Compared with wild‐type db/db mice, the AR?/?db/db mice had significantly lower neurological scores, smaller brain infarct areas, and less hemispheric brain swelling. Retinal swelling was also significantly decreased in the AR?/?db/db mice. Less swelling in the brain and retina of the AR?/?db/db mice correlated with less expression of the water channel aquaporin 4. Taken together, these data clearly show that deletion of AR leads to less severe brain and retinal ischemic injuries in the diabetic db/db mouse. The present study indicates that inhibition of AR in diabetics may protect against damage in the brain and retina following ischemic reperfusion injury. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号