首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Holm TH  Draeby D  Owens T 《Glia》2012,60(4):630-638
Within the central nervous system, astrocytes and microglia are the primary responders to endogenous ligands released upon injury and stress, as well as to infectious pathogens. Toll-like receptors (TLRs) are implicated in recognition of both types of stimulus. Whether astrocytes respond as strongly as microglia to TLR agonists remains contentious. In this study, we have rigorously purified astrocytes to determine their capacity for autonomous TLR response, in absence of microglia. We used flow cytometry and differential adhesion as well as a myeloid lineage-specific suicide gene to purify astrocytes from mixed glial cultures and measured their response to TLR agonists. Our results show that the response of astrocytes to TLR2 and TLR3 agonists is greatly enhanced by, and response to TLR4 agonists is completely dependent on, the presence of functional microglia. In the case of the TLR4 response to lipopolysaccharide, microglia exert their effect on astrocytes at least partially through release of soluble mediators that directly activate or facilitate astrocyte responses. Our findings underline the contribution of glial crosstalk in CNS responses to injury or inflammation.  相似文献   

5.
We used lipopolysaccharide (LPS) to activate microglia that play an important role in the brain immune system. LPS injected into the rat hippocampus CA1 region activated microglial cells resulting in an increased production of interleukin (IL)-1beta and tumor necrosis factor (TNF)-alpha in the hippocampus during the initial stage of treatment. Immunostaining for IL-1beta was increased at 6 hr after LPS injection. IL-1beta-immunopositive cells were co-localized with immunostaining for CD11b. Subacute treatment with LPS by the same route for 5 days caused long-term activation of microglia and induced learning and memory deficits in animals when examined with a step-through passive avoidance test, but histochemical analysis showed that neuronal cell death was not observed under these experimental conditions. The increased expression of the heme oxygenase-1 (HO-1) gene, an oxidative stress maker, was observed. However, the genetic expression of brain-derived neurotrophic factor (BDNF) and its receptor, TrkB, decreased during the course of LPS treatment. We found decreases in [3H]MK801 binding in the hippocampus CA1 region by LPS-treatment for 5 days. The data shows that glutamatergic transmission was attenuated in the LPS-treated rats. These results suggest that long-term activation of microglia induced by LPS results in a decrease of glutamatergic transmission that leads to learning and memory deficits without neuronal cell death. The physiologic significance of these findings is discussed.  相似文献   

6.
Through undefined mechanisms, dominant mutations in (Cu/Zn) superoxide dismutase‐1 (mSOD1) cause the non‐cell‐autonomous death of motoneurons in inherited amyotrophic lateral sclerosis (ALS). Microgliosis at sites of motoneuron injury is a neuropathological hallmark of ALS. Extracellular mutant SOD1 (mSOD1) causes motoneuron injury and triggers microgliosis in spinal cord cultures, but it is unclear whether the injury results from extracellular mSOD1 directly interacting with motoneurons or is mediated through mSOD1‐activated microglia. To dissociate these potential mSOD1‐mediated neurotoxic mechanisms, the effects of extracellular human mSOD1G93A or mSOD1G85R were assayed using primary cultures of motoneurons and microglia. The data demonstrate that exogenous mSOD1G93A did not cause detectable direct killing of motoneurons. In contrast, mSOD1G93A or mSOD1G85R did induce the morphological and functional activation of microglia, increasing their release of pro‐inflammatory cytokines and free radicals. Furthermore, only when microglia was co‐cultured with motoneurons did extracellular mSOD1G93A injure motoneurons. The microglial activation mediated by mSOD1G93A was attenuated using toll‐like receptors (TLR) 2, TLR4 and CD14 blocking antibodies, or when microglia lacked CD14 expression. These data suggest that extracellular mSOD1G93A is not directly toxic to motoneurons but requires microglial activation for toxicity, utilizing CD14 and TLR pathways. This link between mSOD1 and innate immunity may offer novel therapeutic targets in ALS. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
8.
Inflammation has been argued to play a primary role in the pathogenesis of Alzheimer's disease by contributing to the development of neuropathology and clinical symptoms. However, the mechanisms underlying these effects remain obscure. Lipopolysaccharide (LPS) activates the innate immune response and triggers gliosis when injected into the central nervous system. In the studies described in the present work, we evaluated the time course of microgliosis after a single intrahippocampal injection of LPS. Mice were injected bilaterally with 4 mug of LPS. Post-injection survival times were 1, 6, and 24 h, as well as 3, 7, 14, and 28 days. Protein and RNA analyses were performed for inflammatory markers. Significant elevations of cluster differentiation marker CD45, glial fibrillary acidic protein (GFAP), scavenger receptor A (SRA), and Fcgamma receptor mRNA were seen after 24 h. Immunohistochemistry revealed a complex pattern of protein expression by microglia, as well as changes in cell morphologies. RNA and protein for Fcgamma receptor and SRA were transiently elevated, peaked at 3 days, and returned to basal levels after 1 week. In contrast, microglia remained significantly activated through the 28-day time point, as determined by CD45 and complement receptor 3 levels. These findings indicate a multivariate response to LPS, and evaluation of microglial phenotypes may lead to a better understanding of neuroinflammatory diseases.  相似文献   

9.
10.
Microglia, the resident immune cells of the central nervous system, play critical roles in neurodevelopment, synaptic pruning, and neuronal wiring. Early in development, microglia migrate via the tangential and radial migration pathways to their final destinations and mature gradually, a process that includes morphological changes. Recent research has implicated microglial abnormality in the etiology of schizophrenia. Since prenatal exposure to viral or bacterial infections due to maternal immune activation (MIA) leads to increased risk of schizophrenia in the offspring during adulthood, the present study systematically investigated how MIA induced by polyinosinic:polycytidylic acid (a mimic of viral double‐stranded RNA) affected microglial immunoreactivity along the migration and maturation trajectories in the brains of male and female rat offspring on postnatal day (PND) 2. The immunohistochemistry revealed significant changes in the density of IBA‐1 immunoreactive cells in the corpus callosum, somatosensory cortex, striatum, and the subregions of the hippocampus of the MIA offspring. The male and female MIA offspring displayed markedly altered microglial immunoreactivity in both the tangential and radial migration, as well as maturation, pathways when compared to their sex‐ and age‐matched controls as evidenced by morphology‐based cell counting. Given the important roles of microglia in synaptic pruning and neuronal wiring and survival, these changes may lead to structural and functional neurodevelopmental abnormalities, and so contribute to the functional deficits observed in juvenile and adult MIA offspring. Future research is required to systematically determine how MIA affects microglial migration and maturation in rat offspring.  相似文献   

11.
Microglial cells constitute the first line of defense of the central nervous system (CNS) against microbial invasion. Pathogens are detected thanks to an array of innate immune receptors termed pattern recognition receptors (PRRs). PRRs have been thoroughly characterized in bone marrow‐derived macrophages, but the PRRs repertoire and functionality in microglial cells remain largely unknown. Microglial cells express various Toll‐like Receptors and the Nod1/2 receptors. Recently, a novel innate immune signalling pathway, the inflammasome pathway has been uncovered. Inflammasome activation leads to caspase‐1 activation, release of the proinflammatory cytokines, IL‐1β and IL‐18 and cell death in a process termed pyroptosis. One inflammasome receptor, NLRP3, has been characterized in microglial cells and associated with response to infections and in the initiation of neuro‐degeneration in an Alzheimer's disease model. Legionella pneumophila (L.pneumophila) is a flagellated bacterium replicating within macrophages. In bone marrow‐derived macrophages, L. pneumophila is detected in a flagellin‐dependent manner by the Naip5‐NLRC4 (Ipaf) inflammasome pathway. In this study, we decided to use L. pneumophila to investigate the presence and the functionality of this inflammasome in primary murine microglial cells. We show that microglial cells detect L. pneumophila infection in a flagellin‐dependent manner leading to caspase‐1‐mediated bacterial growth restriction, infected cell death and secretion of the proinflammatory cytokines IL‐1β and IL18. Overall, our data demonstrate that microglial cells have a functional Naip5‐NLRC4 inflammasome likely to be important to monitor and clear CNS infections by flagellated bacteria. © 2013 Wiley Periodicals, Inc. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
The inflammation hypothesis of Alzheimer's pathogenesis has directed much scientific effort towards ameliorating this disease. The development of mouse models of amyloid deposition permitted direct tests of the proposal that amyloid‐activated microglia could cause neurodegeneration in vivo. Many approaches to manipulating microglial activation have been applied to these mouse models, and are the subject of this review. In general, these results do not support a direct neuricidal action of microglia in mouse amyloid models under any activation state. Some of the manipulations cause both a reduction in pathology and a reduction in microglial activation. However, at least for agents like ibuprofen, this outcome may result from a direct action on amyloid production, and a reduction in the microglial‐provoking amyloid deposits, rather than from reduced microglial activation leading to a decline in amyloid deposition. Instead, a surprising number of the experimental manipulations which increase microglial activation lead to enhanced clearance of the amyloid deposits. Both the literature and new data presented here suggest that either classical or alternative activation of microglia can lead to enhanced amyloid clearance. However, a limited number of studies comparing the same treatments in amyloid‐depositing vs. tau‐depositing mice find the opposite effects. Treatments that benefit amyloid pathology accelerate tau pathology. This observation argues strongly that potential treatments be tested for impact on both amyloid and tau pathology before consideration of testing in humans.  相似文献   

13.
Synthetic phosphothioated (PTO) oligodeoxynucleotide (ODN) sequences are commonly used for a variety of applications that benefit from nuclease protection. The PTO modification is implemented mainly in antisense ODN, but also in ODN that were shown to activate members of the toll‐like receptor (TLR) family such as TLR3 (poly‐I:C), TLR8 (ssRNA), and TLR9 (CpG). Neurons are routinely plated on surfaces coated with either cationic substances such as poly‐L‐ornithine (PLO), polyethylenimine (PEI), poly‐L‐lysine or ECM components such as laminin, collagen, or fibronectin. We found that PTO‐ODN aimed at activating TLR9 induces a non‐TLR9‐specific detachment phenotype in cortical neurons plated on either laminin or PEI, but not on PLO. This phenotype was correlated with decreased viability and was partially inhibited when caspase‐3 was inhibited with Ac‐DEVD‐CMK. This finding suggests that the use of PTO‐ODN can cause nonspecific effects on cell adhesion that could compromise interpretation of data from experiments using PTO‐ODN. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
15.
In the present work the role of calmodulin (CaM) in regulating lipopolysaccharide (LPS)-induced microglial activation and in the spontaneous microglial differentiation has been investigated. We used pure rat microglial cell cultures to examine the effects of W13, a specific inhibitor of CaM, on microglial activation produced by LPS and the effect of CaM inhibition on microglial proliferation induced by the macrophage colony-stimulating factor (M-CSF). Microglial morphological transformation, inducible nitric oxide synthase (iNOS) activity and proliferating cell nuclear antigen (PCNA) immunostaining were determinate. Results show that CaM does not participate in the microglial increase of iNOS produced by LPS. In contrast, it is involved in spontaneous microglial ramification and in the activation of proliferation from quiescence. Multiple second-messenger pathways are involved in the transduction of signals initiated by LPS. The study of these mechanisms may allow us to extend our knowledge of the signals controlling the expression of these mediators.  相似文献   

16.
Heregulin, a polypeptide growth factor, and forskolin, an adenylyl cyclase activator, synergistically stimulate expression of cyclin D3 and cell division in Schwann cells. Heregulin induces expression in Schwann cells of a luciferase reporter gene linked to the cyclin D3 promoter. Forskolin markedly augments reporter expression in the presence of heregulin. Deletion analysis identified several promoter sites that contribute to high-level reporter expression in heregulin- and forskolin-treated Schwann cells. A promoter fragment that contains 103 bp of 5'-flanking sequence produced significant reporter expression in heregulin- and forskolin-stimulated cells. Deletion of a consensus CCAAT site within this promoter fragment caused a nearly complete loss of reporter expression. Similar results were obtained when CCAAT site mutations were introduced into the promoter. Heregulin and forskolin increased steady-state levels of CCAAT/enhancer binding protein-beta (C/EBPbeta) in Schwann cells. Mobility shift assays identified proteins in Schwann cell nuclear extracts that formed stable complexes with the cyclin D3 CCAAT promoter element and were disrupted by anti-C/EBPbeta antibody. Transfection of Schwann cells with C/EBPbeta cDNA increased cyclin D3 reporter expression. In contrast to these results, mutation of a cAMP response element in the cyclin D3 promoter had only a modest effect on heregulin- and forskolin-stimulated reporter expression. These findings demonstrate that C/EBPbeta plays a key role in the heregulin and cAMP-dependent regulation of cyclin D3 expression in Schwann cells.  相似文献   

17.
Previous studies have suggested that the microglial P2X7 purinoceptor is involved in the release of tumor necrosis factor‐α (TNFα) following activation of toll‐like receptor‐4 (TLR4), which is associated with nociceptive behavior. In addition, this progress is evoked by the activation of the P2X4 purinoceptor (P2X4R). Although P2X4R is also localized within spinal microglia in the dorsal horn, little is known about its role in cancer‐induced bone pain (CIBP), which is in some ways unique. With the present rat model of CIBP, we demonstrate a critical role of the microglial P2X4R in the enhanced nociceptive transmission, which is associated with TLR4 activation and secretion of brain‐derived neurotrophic factor (BDNF) and TNFα in the dorsal horn. We assessed mechanical threshold and spontaneous pain of CIBP rats. Moreover, P2X4R small interfering RNA (siRNA) was administered intrathecally, and real‐time PCR, Western blots, immunofluorescence histochemistry, and ELISA were used to detect the expression of P2X4R, TLR4, OX‐42, phosphorylated‐p38 MAPK (p‐p38), BDNF, and TNFα. Compared with controls, intrathecal injection of P2X4R siRNA could prevent nociceptive behavior induced by ATP plus lipopolysaccharide and CIBP and reduce the expression of P2X4R, TLR4, p‐p38, BDNF, and TNFα. In addition, the increase of BDNF protein in rat microglial cells depended on P2X4 receptor signaling, which is partially associated with TLR4 activation. The ability of microglial P2X4R to activate TLR4 in spinal cord leading to behavioral hypersensitivity and oversecretion of BDNF could provide an opportunity for the prevention and treatment of CIBP. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
Activated microglia can influence the survival of neural cells through the release of cytotoxic factors. Here, we investigated the interaction between Toll‐like receptor 4 (TLR4)‐activated microglia and oligodendrocytes or their precursor cells (OPC). Primary rat or N9 microglial cells were activated by exposure to TLR4‐specifc lipopolysaccharide (LPS), resulting in mitogen‐activated protein kinase activation, increased CD68 and inducible nitric oxide synthase expression, and release of the proinflammatory cytokines tumor necrosis factor (TNF) and interleukin‐6 (IL‐6). Microglial conditioned medium (MGCM) from LPS‐activated microglia attenuated primary OPC proliferation without inducing cell death. The microglial‐induced inhibition of OPC proliferation was reversed by stimulating group III metabotropic glutamate receptors in microglia with the agonist L‐AP4. In contrast to OPC, LPS‐activated MGCM enhanced the survival of mature oligodendrocytes. Further investigation suggested that TNF and IL‐6 released from TLR4‐activated microglia might contribute to the effect of MGCM on OPC proliferation, insofar as TNF depletion of LPS‐activated MGCM reduced the inhibition of OPC proliferation, and direct addition of TNF or IL‐6 attenuated or increased proliferation, respectively. OPC themselves were also found to express proteins involved in TLR4 signalling, including TLR4, MyD88, and MAL. Although LPS stimulation of OPC did not induce proinflammatory cytokine release or affect their survival, it did trigger JNK phosphorylation, suggesting that TLR4 signalling in these cells is active. These findings suggest that OPC survival may be influenced not only by factors released from endotoxin‐activated microglia but also through a direct response to endotoxins. This may have consequences for myelination under conditions in which microglial activation and cerebral infection are both implicated. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
20.
Microglial activation is a key element in initiating and perpetuating inflammatory responses to stroke. Interferon regulatory factor 5 (IRF5) and IRF4 signaling have been found critical in mediating macrophage pro‐inflammatory (M1) and anti‐inflammatory (M2) phenotypes, respectively, in peripheral inflammation. We hypothesize that the IRF5/4 regulatory axis also mediates microglial activation after stroke. C57BL6 mice of 8–12 weeks were subject to a 90‐min middle cerebral artery occlusion, and the brains evaluated at 24 h, 3, 10 and 30 days after reperfusion. Flow cytometry was utilized to examine microglial activation and cytokine expression. RT‐PCR was performed for mRNA levels of IRF5/4 in sorted microglia. Microglial expression of IRF5/4 was examined by immunohistochemistry, and brain cytokine levels were determined by ELISA. Our results revealed that the IRF5 mRNA level in sorted microglia increased at 3 days of stroke; whereas IRF4 mRNA level exhibited biphasic increases, with a transient rise at 24 h and a peak at 10 days. The same pattern was seen in IRF5/4 protein colocalization with Iba‐1+ cells by IHC. Intracellular levels of TNF‐α and IL‐1β in microglia peaked at 3 days of stroke, and IL‐4+IL‐10+ double‐positive microglia significantly increased at day 10. Brain levels of these cytokines were consistent with microglial cytokine changes. Worse behavior test results were seen at 3 days vs. 10 days of stroke. We conclude that microglia phenotypes are dynamic to ischemic stroke, and IRF5/4 signaling may regulate microglial M1/M2 activation and impact on stroke outcomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号