首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Experiments were designed to study the effect of systemically administered IL-5 on local eosinophil accumulation induced by the intradermal injection of the chemokine eotaxin in the guinea pig. Intravenous interleukin-5 (IL-5) stimulated a rapid and dramatic increase in the numbers of accumulating eosinophils induced by i.d.- injected eotaxin and, for comparison, leukotriene B4. The numbers of locally accumulating eosinophils correlated directly with a rapid increase in circulating eosinophils: circulating eosinophil numbers were 13-fold higher 1 h after intravenous IL-5 (18.3 pmol/kg). This increase in circulating cells corresponded with a reduction in the number of displaceable eosinophils recovered after flushing out the femur bone marrow cavity. Intradermal IL-5, at the doses tested, did not induce significant eosinophil accumulation. We propose that these experiments simulate important early features of the tissue response to local allergen exposure in a sensitized individual, with eosinophil chemoattractant chemokines having an important local role in eosinophil recruitment from blood microvessels, and IL-5 facilitating this process by acting remotely as a hormone to stimulate the release into the circulation of a rapidly mobilizable pool of bone marrow eosinophils. This action of IL-5 would be complementary to the other established activities of IL-5 that operate over a longer time course.  相似文献   

2.
Interleukin (IL)-5 and IL-13 are thought to play key roles in the pathogenesis of asthma. Although both cytokines use eotaxin to regulate eosinophilia, IL-13 is thought to operate a separate pathway to IL-5 to induce airways hyperreactivity (AHR) in the allergic lung. However, identification of the key pathway(s) used by IL-5 and IL-13 in the disease process is confounded by the failure of anti-IL-5 or anti-IL-13 treatments to completely inhibit the accumulation of eosinophils in lung tissue. By using mice deficient in both IL-5 and eotaxin (IL-5/eotaxin(-/-)) we have abolished tissue eosinophilia and the induction of AHR in the allergic lung. Notably, in mice deficient in IL-5/eotaxin the ability of CD4(+) T helper cell (Th)2 lymphocytes to produce IL-13, a critical regulator of airways smooth muscle constriction and obstruction, was significantly impaired. Moreover, the transfer of eosinophils to IL-5/eotaxin(-/-) mice overcame the intrinsic defect in T cell IL-13 production. Thus, factors produced by eosinophils may either directly or indirectly modulate the production of IL-13 during Th2 cell development. Our data show that IL-5 and eotaxin intrinsically modulate IL-13 production from Th2 cells and that these signaling systems are not necessarily independent effector pathways and may also be integrated to regulate aspects of allergic disease.  相似文献   

3.
Challenge of the airways of sensitized guinea pigs with aerosolized ovalbumin resulted in an early phase of microvascular protein leakage and a delayed phase of eosinophil accumulation in the airway lumen, as measured using bronchoalveolar lavage (BAL). Immunoreactive eotaxin levels rose in airway tissue and BAL fluid to a peak at 6 h falling to low levels by 12 h. Eosinophil numbers in the tissue correlated with eotaxin levels until 6 h but eosinophils persisted until the last measurement time point at 24 h. In contrast, few eosinophils appeared in BAL over the first 12 h, major trafficking through the airway epithelium occurring at 12–24 h when eotaxin levels were low. Constitutive eotaxin was present in BAL fluid. Both constitutive and allergen-induced eosinophil chemoattractant activity in BAL fluid was neutralized by an antibody to eotaxin. Allergen-induced eotaxin appeared to be mainly in airway epithelium and macrophages, as detected by immunostaining. Allergen challenge of the lung resulted in a rapid release of bone marrow eosinophils into the blood. An antibody to IL-5 suppressed bone marrow eosinophil release and lung eosinophilia, without affecting lung eotaxin levels. Thus, IL-5 and eotaxin appear to cooperate in mediating a rapid transfer of eosinophils from the bone marrow to the lung in response to allergen challenge.  相似文献   

4.
The histological identification of increased eosinophils in the gastrointestinal tract occurs in numerous clinical disorders; however, there is a limited understanding of the mechanisms regulating eosinophil trafficking into this mucosal surface. The results presented in this study characterize the processes regulating eosinophil homing into the gastrointestinal tract at baseline. Eosinophils were found to be present in the lamina propria of 19-day-old embryos and germ-free adult mice at concentrations comparable to those present in non-germ-free adult mice. Furthermore, eosinophil gastrointestinal levels were not altered by increasing circulating eosinophils after pulmonary allergen challenge. Gastrointestinal eosinophil levels were partially reduced in mice deficient in recombinase activating gene-1 (RAG-1), IL-5, or the beta common chain (betac), but these reductions paralleled reductions in circulating eosinophils. In contrast, mice deficient in eotaxin had a marked reduction in gastrointestinal eosinophils but normal levels of eosinophils in the hematopoietic compartments. Furthermore, eotaxin was important for regulating eosinophil levels, even in the presence of high levels of IL-5. These investigations demonstrate eosinophil homing into the gastrointestinal tract during embryonic development occurring independently of viable intestinal flora. Furthermore, eotaxin is identified as the primary regulator of eosinophil gastrointestinal homing under homeostatic states, and may therefore have a fundamental role in innate immune responses.  相似文献   

5.
IL-5 is induced locally in the lung and systemically in the circulation during allergic airways eosinophilic inflammation both in humans and experimental animals. However, the precise role of local and systemic IL-5 in the development of allergic airways eosinophilia remains to be elucidated. In our current study, we demonstrate that compared with their IL-5(+/+) counterparts, IL-5(-/-) mice lacked an IL-5 response both in the lung and peripheral blood, yet they released similar amounts of IL-4, eotaxin, and MIP-1alpha in the lung after ovalbumin (OVA) sensitization and challenge. At cellular levels, these mice failed to develop peripheral blood and airways eosinophilia while the responses of lymphocytes, neutrophils, and macrophages remained similar to those in IL-5(+/+) mice. To dissect the relative role of local and systemic IL-5 in this model, we constructed a gene transfer vector expressing murine IL-5. Intramuscular IL-5 gene transfer to OVA-sensitized IL-5(-/-) mice led to raised levels of IL-5 compartmentalized to the circulation and completely reconstituted airways eosinophilia upon OVA challenge, which was associated with reconstitution of eosinophilia in the bone marrow and peripheral blood. Significant airways eosinophilia was observed for at least 7 d in these mice. In contrast, intranasal IL-5 gene transfer, when rendered to give rise to a significant but compartmentalized level of transgene protein IL-5 in the lung, was unable to reconstitute airways eosinophilia in OVA-sensitized IL-5(-/-) mice upon OVA-challenge, which was associated with a lack of eosinophilic responses in bone marrow and peripheral blood. Our findings thus provide unequivocal evidence that circulating but not local lung IL-5 is critically required for the development of allergic airways eosinophilia. These findings also provide the rationale for developing strategies to target circulating IL-5 and/or its receptors in bone marrow to effectively control asthmatic airways eosinophilia.  相似文献   

6.
Eosinophil accumulation is a distinctive feature of lung allergic inflammation. Here, we have used a mouse model of OVA (ovalbumin)-induced pulmonary eosinophilia to study the cellular and molecular mechanisms for this selective recruitment of eosinophils to the airways. In this model there was an early accumulation of infiltrating monocytes/macrophages in the lung during the OVA treatment, whereas the increase in infiltrating T-lymphocytes paralleled the accumulation of eosinophils. The kinetics of accumulation of these three leukocyte subtypes correlated with the levels of mRNA expression of the chemokines monocyte chemotactic peptide-1/JE, eotaxin, and RANTES (regulated upon activation in normal T cells expressed and secreted), suggesting their involvement in the recruitment of these leukocytes. Furthermore, blockade of eotaxin with specific antibodies in vivo reduced the accumulation of eosinophils in the lung in response to OVA by half. Mature CD4+ T-lymphocytes were absolutely required for OVA-induced eosinophil accumulation since lung eosinophilia was prevented in CD4+-deficient mice. However, these cells were neither the main producers of the major eosinophilic chemokines eotaxin, RANTES, or MIP-1alpha, nor did they regulate the expression of these chemokines. Rather, the presence of CD4+ T cells was necessary for enhancement of VCAM-1 (vascular cell adhesion molecule-1) expression in the lung during allergic inflammation induced by the OVA treatment. In support of this, mice genetically deficient for VCAM-1 and intercellular adhesion molecule-1 failed to develop pulmonary eosinophilia. Selective eosinophilic recruitment during lung allergic inflammation results from a sequential accumulation of certain leukocyte types, particularly T cells, and relies on the presence of both eosinophilic chemoattractants and adhesion receptors.  相似文献   

7.
The chemokines are a large group of chemotactic cytokines that regulate leukocyte trafficking and have recently been shown to inhibit human immunodeficiency virus entry into cells. Eotaxin is a C–C chemokine implicated in the recruitment of eosinophils in a variety of inflammatory disorders and, unlike all other eosinophil chemoattractants, is eosinophil specific. However, given the large number of chemoattractants that have activities on eosinophils, it is unclear whether eotaxin has an important role in vivo. Furthermore, it remains unclear why there is constitutive expression of eotaxin in healthy states in the absence of eosinophilic inflammation. To begin to determine the significance of eotaxin at baseline and during eosinophil-mediated disease processes, we have used targeted gene disruption to generate mice that are deficient in eotaxin. Such mice demonstrate that eotaxin enhances the magnitude of the early (but not late) eosinophil recruitment after antigen challenge in models of asthma and stromal keratitis. Surprisingly, a role for eotaxin in regulating the constitutive number of eosinophils in the peripheral circulation is also demonstrated. These results indicate a contributory role for eotaxin in the generation of peripheral blood and antigen-induced tissue eosinophilia.  相似文献   

8.
Eosinophil infiltration into the esophagus is observed in diverse diseases including gastroesophageal reflux and allergic gastroenteritis, but the processes involved are largely unknown. We now report an original model of experimental esophagitis induced by exposure of mice to respiratory allergen. Allergen-challenged mice develop marked levels of esophageal eosinophils, free eosinophil granules, and epithelial cell hyperplasia, features that mimic the human disorders. Interestingly, exposure of mice to oral or intragastric allergen does not promote eosinophilic esophagitis, indicating that hypersensitivity in the esophagus occurs with simultaneous development of pulmonary inflammation. Furthermore, in the absence of eotaxin, eosinophil recruitment is attenuated, whereas in the absence of IL-5, eosinophil accumulation and epithelial hyperplasia are ablated. These results establish a pathophysiological connection between allergic hypersensitivity responses in the lung and esophagus and demonstrate an etiologic role for inhaled allergens and eosinophils in gastrointestinal inflammation.  相似文献   

9.
Mice were exposed to different intensities of infection with Schistosoma mansoni (10, 50, or 200 cercariae) and the kinetics of peripheral and bone marrow eosinophilia was followed for as long as 20 wk. When the schistosomula (immature worms) were migrating from the lungs to the liver there was a mild, transient eosinophilia, but soon after the onset of egg laying by the schistosomes, a major and prolonged increase in eosinophils occurred. This was terminated in the heavier infections by the death of the animals, but showed a spontaneous decline beginning at 18 wk in the lightly infected mice. The effect of S. mansoni eggs on eosinophilia in the blood, bone marrow, and granulomatous lesions was then examined by injecting schistosome eggs into mice intraperitoneally, subcutaneously, and intravenously. While the host response was dependent on the route by which eggs were administered, primary peripheral and bone marrow responses were seen on intravenous injection, and secondary responses occurred on intravenous and subcutaneous injection. In unsensitized and egg-sensitized mice, eosinophils were first seen around eggs injected into the pulmonary microvasculature at 96 and 24 h respectively. When the granulomas were maximal in size eosinophils made up at least 50% of the lesions. Administration of antieosinophil serum profoundly suppressed eosinophils in the peripheral blood, eliminated mature eosinophils and markedly increased eosinophil precursors in the bone marrow, and ablated eosinophils from the tissue lesions, considerably reducing their area.  相似文献   

10.
Chuang YH  Fu CL  Lo YC  Chiang BL 《Gene therapy》2004,11(20):1497-1505
Allergic asthma is characterized by airway hyper-responsiveness (AHR) and cellular infiltration of the airway with predominantly eosinophils and Th2 cells. The normal resolution of inflammation in the lung occurs through the regulated removal of unneeded cells by Fas-Fas ligand-mediated apoptosis. Fas ligand (FasL) is a member of the tumor necrosis factor family, and when bound to Fas, it induces apoptosis of the cells. To examine the effect of the FasL gene on airway inflammation and immune effector cells in allergic asthma, recombinant adenovirus expressing murine FasL (Ad-FasL) was delivered intratracheally into ovalbumin (OVA)-immunized mice. We found that a single administration of Ad-FasL in OVA-immunized mice significantly alleviated AHR and eosinophilia by inducing the apoptosis of eosinophils and/or reducing eosinophil attractant factors, such as IL-5 and eotaxin levels. The number of infiltrated lymphocytes and Th2 cytokines, including IL-5 and IL-13, decreased in OVA-immunized mice by administration of Ad-FasL. KC and TNF-alpha production also decreased in Ad-FasL-treated OVA-immunized mice. These findings indicated that the administration of Ad-FasL to OVA-sensitized mice significantly suppressed pulmonary allergic responses. Although more studies are needed, these results suggested that Ad-FasL might be applied as an alternative therapy for allergic asthma.  相似文献   

11.
The marked diminution in the number of circulating eosinophils, which has been shown to occur during acute bacterial infections, is a distinctive aspect of eosinophil physiology and of the host response to acute infection. The mouse rendered eosinophilic by infection with trichinosis provides a suitable model for study of the eosinopenic response induced by acute inflammation. The alterations in eosinophil dynamics associated with acute inflammatory reactions in trichinous mice were studied with pneumococcal abscesses, with Escherichia coli pyelonephritis, with Coxsackie viral pancreatitis, and with acute subcutaneous inflammation due to turpentine. Each of these stimuli of acute inflammation markedly suppressed the eosinophilia of trichinosis. This suggests that the eosinopenia is a response to the acute inflammatory process rather than the response to a specific type of pathogen. These studies apply quantitative techniques to ascertain the effects of acute inflammation on eosinophil production in bone marrow and on distribution of eosinophils in the peripheral tissues. From these observations, it is apparent that the initial response to acute inflammation includes a rapid drop in numbers of circulating eosinophils, a rapid accumulation of eosinophils at the periphery of the inflammatory site, and an inhibition of egress of eosinophils from the bone marrow. With prolongation of the inflammatory process, inhibition of eosinopoiesis occurs.  相似文献   

12.
13.
Eotaxin is a member of the C-C family of chemokines and is related during antigen challenge in a guinea pig model of allergic airway inflammation (asthma). Consistent with its putative role in eosinophilic inflammation, eotaxin induces the selective infiltration of eosinophils when injected into the lung and skin. Using a guinea pig lung cDNA library, we have cloned full-length eotaxin cDNA. The cDNA encodes a protein of 96 amino acids, including a putative 23-amino acid hydrophobic leader sequence, followed by 73 amino acids composing the mature active eotaxin protein. The protein-coding region of this cDNA is 73, 71, 50, and 48% identical in nucleic acid sequence to those of human macrophage chemoattractant protein (MCP) 3, MCP-1, macrophage inflammatory protein (MIP) 1 alpha, and RANTES, respectively. Analysis of genomic DNA suggested that there is a single eotaxin gene in guinea pig which is apparently conserved in mice. High constitutive levels of eotaxin mRNA expression were observed in the lung, while the intestines, stomach, spleen, liver, heart, thymus, testes, and kidney expressed lower levels. To determine if eotaxin mRNA levels are elevated during allergen-induced eosinophilic airway inflammation, ovalbumin (OVA)-sensitized guinea pigs were challenged with aerosolized antigen. Compared with the lungs from saline-challenged animals, eotaxin mRNA levels increased sixfold within 3 h and returned to baseline by 6 h. Thus, eotaxin mRNA levels are increased in response to allergen challenge during the late phase response. The identification of constitutive eotaxin mRNA expression in multiple tissues suggests that in addition to regulating airway eosinophilia, eotaxin is likely to be involved in eosinophil recruitment into other tissues as well as in baseline tissue homing.  相似文献   

14.
OBJECTIVE: To characterize eosinophils and soluble factors in effluent from continuous ambulatory peritoneal dialysis (CAPD) patients and connect these findings to related conditions with eosinophilic accumulation. PATIENTS: Three newly started CAPD patients, two with peritoneal fluid eosinophilia (PFE) and one with bacteria-induced peritonitis. One patient with PFE was followed up for 10 visits during a 7-month period. METHODS: Leukocytes were analyzed in dialysate and peripheral blood from the patients, by flow cytometry, and soluble mediators by ELISA or CAP technique. RESULTS: We found an increased number of neutrophils in the effluent from the patient with bacteria-induced peritonitis; accumulation of eosinophils in combination with negative cultures was noted in the patients with PFE. Increased levels of interleukin (IL)-5 and eosinophil cationic protein, but equal levels of eotaxin, were found in effluent from the PFE patients compared to the patient with neutrophilia. Peritoneal fluid eosinophils were activated by means of EG2, CD11b, CD9, and CD69 expression. Compared to blood eosinophils, the cytokine receptors for IL-5 and granulocyte-macrophage colony-stimulating factor, but not IL-3, were down regulated. CONCLUSION: The finding of activated eosinophils in combination with IL-5 and eotaxin in PFE indicates existing similarities between PFE and conditions found during recruitment of eosinophils in allergic inflammatory responses.  相似文献   

15.
T lymphocytes have been implicated in controlling the recruitment of eosinophils into the lung in murine models of allergic asthma. The mechanism by which T cells assist in the recruitment of eosinophils to the lung in these models is not completely understood. We hypothesized that eosinophil-active chemokines might be regulated by antigen (Ag)- induced T cell activation in vivo and thereby mediate T cell-dependent eosinophil recruitment. To test this hypothesis, we examined the effect of an anti-CD3 mAb on Ag-induced pulmonary eosinophilia and correlated this with the expression of three eosinophil-active chemokines: eotaxin, macrophage inflammatory protein (MIP)-1 alpha, and RANTES. We found that Ag-induced pulmonary eosinophilia was associated with the induction of eotaxin and MIP-1 alpha, but not RANTES mRNA. Prechallenge treatment with anti-CD3 mAb inhibited eotaxin, but not MIP-1 alpha and RANTES mRNA induction, and significantly reduced eosinophil accumulation in the lung. In addition, Ag-specific antibody responses and mast cell degranulation after Ag challenge in sensitized mice were not affected by T cell elimination, and were not sufficient to induce the expression of eotaxin and cause pulmonary eosinophilia. These findings suggest that eotaxin is one of the molecular links between Ag- specific T cell activation and the recruitment of eosinophils into the airways.  相似文献   

16.
Chemokines bind and signal through G-protein coupled seven transmembrane receptors. Various chemokine receptors are expressed on leukocytes, and these may impart selective homing of leukocyte subsets to sites of inflammation. Human eosinophils express the eotaxin receptor, CCR3, but respond to a variety of CC chemokines apart from eotaxin, including RANTES, monocyte chemotactic protein (MCP)-2, MCP-3, and MCP-4. Here we describe a mAb, 7B11, that is selective for CCR3 and has the properties of a true receptor antagonist. 7B11 blocked binding of various radiolabeled chemokines to either CCR3 transfectants, or eosinophils. Pretreatment of eosinophils with this mAb blocked chemotaxis and calcium flux induced by all CCR3 ligands. In all individuals examined, including allergic and eosinophilic donors, > 95% of the response of eosinophils to eotaxin, RANTES, MCP-2, MCP-3, and MCP-4 was shown to be mediated through CCR3. The IL-8 receptors, particularly CXCR2, were induced on IL-5 primed eosinophils, however these eosinophils responded to CC chemokines in the same manner as unprimed eosinophils. These results demonstrate the importance of CCR3 for eosinophil responses, and the feasibility of completely antagonizing this receptor.  相似文献   

17.
We have proposed previously that hemopoietic myeloid progenitors contribute to the ongoing recruitment of proinflammatory cells, namely eosinophils, to sites of allergen challenge in allergic diseases such as asthma. In this study, we investigated the involvement of bone marrow-derived progenitors in the development of allergen-induced pulmonary inflammation in mild asthmatic subjects. By flow cytometry, we enumerated the level of expression of CD34, a hemopoietic progenitor cell marker, on bone marrow aspirates taken before and 24 h after allergen challenge. In addition, the coexpression of the alpha-subunits of IL-3 receptor (IL-3R) and IL-5 receptor (IL-5R) on CD34+ cells was investigated. After allergen-challenge, although no significant change in total BM CD34+ cell numbers was observed, a significant increase in the proportion of CD34+ cells expressing IL-5R alpha, but not IL-3R alpha, was detected in the 24-h post-allergen, compared with the pre-allergen bone marrow. This was associated with a significant blood and sputum eosinophilia and increased methacholine airway responsiveness, 24 h post-allergen. Using simultaneous in situ hybridization and immunocytochemistry, we colocalized the expression of messenger RNA for membrane-bound IL-5R alpha to CD34+ cells. In summary, our data suggest that increased expression of IL-5R alpha on CD34+ cells favors eosinophilopoiesis and may thus contribute to the subsequent development of blood and tissue eosinophilia, a hallmark of allergic inflammation.  相似文献   

18.
Mobilization of bone marrow eosinophils is a critical early step in their trafficking to the lung during allergic inflammatory reactions. We have shown previously that the cytokine interleukin (IL)-5, generated during an allergic inflammatory reaction in the guinea pig, acts systemically to mobilize eosinophils from the bone marrow. Here, we have investigated the mechanisms underlying this release process. Examination by light and electron microscopy revealed the rapid migration of eosinophils from the hematopoietic compartment and across the bone marrow sinus endothelium in response to IL-5. Using an in situ perfusion system of the guinea pig hind limb, we showed that IL-5 stimulated a dose-dependent selective release of eosinophils from the bone marrow. Eosinophils released from the bone marrow in response to IL-5 expressed increased levels of β2 integrin and a decrease in L-selectin, but no change in α4 integrin levels. A β2 integrin–blocking antibody markedly inhibited the mobilization of eosinophils from the bone marrow stimulated by IL-5. In contrast, an α4 integrin blocking antibody increased the rate of eosinophil mobilization induced by IL-5. In vitro we demonstrated that IL-5 stimulates the selective chemokinesis of bone marrow eosinophils, a process markedly inhibited by two structurally distinct inhibitors of phosphatidylinositol 3-kinase, wortmannin and LY294002. Wortmannin was also shown to block eosinophil release induced by IL-5 in the perfused bone marrow system. The parallel observations on the bone marrow eosinophil release process and responses in isolated eosinophils in vitro suggest that eosinophil chemokinesis is the driving force for release in vivo and that this release process is regulated by α4 and β2 integrins acting in opposite directions.  相似文献   

19.
IL-5 and granulocyte macrophage-colony-stimulating factor (GM-CSF) are important regulators of eosinophil survival, proliferation, and effector function. To determine whether IL-5 and/or GM-CSF are generated by eosinophils at sites of allergic inflammation, we have used in situ hybridization with 35S-labeled RNA probes to study the expression of IL-5 and GM-CSF mRNA in bronchoalveolar lavage (BAL) eosinophils derived from asthmatics (n = 5) before and after endobronchial allergen challenge. Endobronchial allergen challenge induced a significant airway eosinophilia (pre-allergen challenge 0.6 +/- 0.5% eosinophilia vs post-allergen challenge 48.2 +/- 25.6% eosinophilia). Post-allergen challenge eosinophils expressed IL-5 and GM-CSF mRNA, but did not express IL-1 beta or IL-2 mRNA. To determine whether the IL-5 mRNA-positive cells coexpressed GM-CSF mRNA, double mRNA labeling experiments with a digoxigenin-11-UTP nonradioactive labeled IL-5 RNA probe and a GM-CSF 35S-labeled RNA probe were performed. These studies demonstrated that individual eosinophils expressed one of four cytokine mRNA profiles (IL-5+, GM-CSF+, 34 +/- 13%; IL-5+, GM-CSF-, 34 +/- 5%; IL-5-, GM-CSF+, 11 +/- 9%; IL-5-, GM-CSF-, 21 +/- 25%). The expression of IL-5 and GM-CSF by eosinophils at sites of allergic inflammation in asthmatics may provide an important autocrine pathway, maintaining the viability and effector function of the recruited eosinophils.  相似文献   

20.
Interleukin-17 is a negative regulator of established allergic asthma   总被引:19,自引:0,他引:19       下载免费PDF全文
T helper (Th)17 cells producing interleukin (IL)-17 play a role in autoimmune and allergic inflammation. Here, we show that IL-23 induces IL-17 in the lung and IL-17 is required during antigen sensitization to develop allergic asthma, as shown in IL-17R-deficient mice. Since IL-17 expression increased further upon antigen challenge, we addressed its function in the effector phase. Most strikingly, neutralization of IL-17 augmented the allergic response in sensitized mice. Conversely, exogenous IL-17 reduced pulmonary eosinophil recruitment and bronchial hyperreactivity, demonstrating a novel regulatory role of IL-17. Mechanistically, IL-17 down modulated eosinophil-chemokine eotaxin (CCL11) and thymus- and activation-regulated chemokine/CCL17 (TARC) in lungs in vivo and ex vivo upon antigen restimulation. In vitro, IL-17 reduced TARC production in dendritic cells (DCs)-the major source of TARC-and antigen uptake by DCs and IL-5 and IL-13 production in regional lymph nodes. Furthermore, IL-17 is regulated in an IL-4-dependent manner since mice deficient for IL-4Ralpha signaling showed a marked increase in IL-17 concentration with inhibited eosinophil recruitment. Therefore, endogenous IL-17 is controlled by IL-4 and has a dual role. Although it is essential during antigen sensitization to establish allergic asthma, in sensitized mice IL-17 attenuates the allergic response by inhibiting DCs and chemokine synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号