首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The synthesis of new class of potential TPase inhibitors containing a difluoromethylphosphonate function as phosphate mimic is reported. This new series was prepared from a readily available fluorinated building block in few steps. Two series were evaluated as potential inhibitors: a linear series and a conformational constrained series. The activity of these multisubstrate inhibitors depends on the size of the spacer introduced between the pyrimidine ring and the phosphonate function. Best results were observed from triazolyl derivatives, easily obtained from propargylthymine and corresponding azides.  相似文献   

3.
4.
The poly ADP-ribosylation of proteins catalyzed by poly(ADP-ribose)polymerase (PARP) is involved in a number of important cellular metabolic activities. We evaluated various analogs of deoxythymidine and deoxyuridine as inhibitors of PARP. Most of these compounds have antiviral and/or anticancer activities. The structural requirements for these nucleoside analogs to be inhibitors of PARP were determined. The compounds evaluated had various substitutions on the 2-, 4- and/or 5-position of the pyrimidine ring, as well as on the 2'-, 3'- and/or 5'-position of the pentose moiety. Inhibition of PARP was strongly dependent on the size of the alkyl or halogen substituent on the 5-position of the pyrimidine ring. Whereas the 5-position of the pyrimidine ring could be varied, alteration of the 2- or 4-position drastically decreased the inhibition of PARP. Kinetic analysis was performed with concentrations of 1-10 microM NAD+. The Ki values for many compounds were five to seven times lower than the Ki for 3-aminobenzamide, a previously described potent inhibitor of PARP. Compounds with combined substituents at both the 5-position of the pyrimidine ring and the 3'- or 5'-position of deoxyribose generally were potent inhibitors of PARP, as for example 3'-amino-2', 3'-dideoxy-(E)-5-(2-bromovinyl)uridine (Ki = 0.7 microM), or 5'-azido-2',5'-dideoxy-5-ethyluridine (Ki = 0.8 microM). The 5-halogenated analogs had Ki values of 18, 35, 110 and greater than 1000 microM for 5-iodo-2'-deoxyuridine, 5-bromo-2'-deoxyuridine, 5-chloro-2'-deoxyuridine, and 5-fluoro-2'-deoxyuridine, respectively, and the 5-alkyl analogs had Ki values of 45, 2.2, 7, 16 and 180 microM for 5-methyl-2'-deoxyuridine, 5-ethyl-2'-deoxyuridine, 5-propyl-2'-deoxyuridine, 5-butyl-2'-deoxyuridine and 5-pentyl-2'-deoxyuridine, respectively. Two other compounds with substituents in the 5-position of the pyrimidine moiety also had potent activities: (E)-5-(2-bromovinyl)-2'-deoxyuridine (Ki = 6 microM) and 5-trifluoromethyl-2'-deoxyuridine (Ki = 1.6 microM). Compounds substituted in the 2'-, 3'- and/or 5'-position of the deoxyribose moiety were investigated and 5'-azido-5'-deoxythymidine, 5'-amino-5'-deoxythymidine, 3'-azido-3'-deoxythymidine and 3'-deoxythymidine (d2T) and Ki values of 12, 16, 18 and 30 microM, respectively.  相似文献   

5.
2-Amino-6-carboxamido-7,8-dihydropteridin-4-one and 2-amino-6-hydroxymethyl-7,7-dimethyl-7,8-dihydropteridin-4-one have been shown to be good inhibitors of Escherichia coli dihydroneopterin aldolase, an early enzyme of de novo folate biosynthesis.  相似文献   

6.
7.
To learn whether interferon could prevent the biochemical transformations induced by cloned herpesvirus thymidine kinase (TK) genes, LM(TK-) mouse fibroblast cultures were pretreated for 24 h with 2.4-40 international units (I.U.)/ml mouse alpha + beta interferon, and subsequently transformed to the TK+ phenotype with recombinant plasmids containing the herpes simplex virus type 1 (HSV-1) TK gene (pAGO and pMH110) and the marmoset herpesvirus (MarHV) TK gene (pMAR035). Mouse alpha + beta interferon inhibited transformation and the inhibition was interferon dose-dependent. Transformation was also inhibited when LM(TK-) cells were pretreated for 2-5 h with 40 I.U./ml interferon. Maximal inhibitions of TK+ colony formation were observed following a 9-20 h pretreatment period with interferon. In contrast, 40 I.U./ml interferon treatment for 20 h did not reduce the rate or extent of LM(TK-) cell growth. Experiments in which cultures were first treated with plasmid pAGO and only afterwards treated with interferon also showed that, as the interferon concentration used, interferon did not inhibit the outgrowth of transformated colonies. Enzyme assays showed that pretreatment with interferon inhibited the induction of TK activity in cells that had been transfected with pAGO DNA.  相似文献   

8.
The inhibition of dopamine β-hydroxylase by thiourea derivatives. N-phenyl, N′-3-(4H-1,2,4-triazolyl) thiourea and N-n-butyl, N′-3-(4H-1,2,4-triazolyl)thiourea, was studied. Kinetic studies using purified dopamine β-hydroxylase revealed that the inhibition by N-phenyl, N′-3-(4H-1,2,4-triazolyl)thiourea was of a noncompetitive type with the substrate and of a mixed type with ascorbic acid, one of the cofactors in this reaction. It was also found that the inhibition by N-n-butyl, N′-3-(4H-1,2,4->triazolyl)thiourea was of a noncompetitive type with both the substrate and ascorbic acid. The inhibition of dopamine β-hydroxylase by N-n-butyl, N′-3-(4H-1,2,4-triazolyl)thiourea was reversed when Cu2+ was added to the reaction mixture, indicating that the inhibition by this compound resulted from its metalchelating activity. On the other hand, the inhibition by N-phenyl, N′-3-(4H-1,2,4-triazolyl)thiourea was not recovered by the addition of Cu2+ to the reaction mixture. When N-phenyl, N′-3-(4H-1,2,4-triazolyl)thiourea was administered intraperitoneally to mice, it was demonstrated that the brain level of norepinephrine was lowered.  相似文献   

9.
10.
The passage of nucleosides across the plasma membrane of erythrocytes is a membrane-mediated process which is strongly inhibited by derivatives of 9-beta-D-ribofuranosylpurine (1) with S, O, or N atoms at the purine 6 position bearing variously substituted arylalkyl groups. In this structure-activity study, nucleoside derivatives were compared in respect to their ability to inhibit a transport-dependent aspect of nucleoside metabolism in erythrocytes, the synthesis of inosine from external guanosine and hypoxanthine. 6-Benzylthio, 6-benzylamino, and 6-benzyloxy derivatives of 1 were inhibitory at 10(-5)-10(-6) M and the similarity of their activities suggested that alkylation of the transporter as the mechanism of transport inhibition was unlikely. The hydrophobicity of the 6-position substituents appeared to contribute importantly to inhibitory activity. Although replacement of the ribofuranose moiety by other sugars reduced inhibitory activity, compounds with 9-butyl groups were inhibitory. 6-[(2-Hydroxy-5-nitrobenzyl)thio] derivatives of 1 were the most potent of the inhibitors tested, being active at about 10(-7) M.  相似文献   

11.
Herpes simplex virus type 1 (HSV-1) encodes a thymidine kinase (TK) that markedly differs from mammalian nucleoside kinases in terms of substrate specificity. It recognizes both pyrimidine 2'-deoxynucleosides and a variety of purine nucleoside analogs. Based on a computer modeling study and in an attempt to modify this specificity, an HSV-1 TK mutant enzyme containing an alanine-to-tyrosine mutation at amino acid position 167 was constructed. Compared with wild-type HSV-1 TK, the purified mutant HSV-1 TK(A167Y) enzyme was heavily compromised in phosphorylating pyrimidine nucleosides such as (E)-5-(2-bromovinyl)-2'-deoxyuridine and the natural substrate dThd, whereas its ability to phosphorylate the purine nucleoside analogs ganciclovir (GCV) and lobucavir was only reduced approximately 2-fold. Moreover, a markedly decreased competition of natural pyrimidine nucleosides (i.e., thymidine) with purine nucleoside analogs for phosphorylation by HSV-1 TK(A167Y) was observed. Human osteosarcoma cells transduced with the wild-type HSV-1 TK gene were extremely sensitive to the cytostatic effects of antiherpetic pyrimidine [i.e., (E)-5-(2-bromovinyl)-2'-deoxyuridine] and purine (i.e., GCV) nucleoside analogs. Transduction with the HSV-1 TK(A167Y) gene sensitized the osteosarcoma cells to a variety of purine nucleoside analogs, whereas there was no measurable cytostatic activity of pyrimidine nucleoside analogs. The unique properties of the A167Y mutant HSV-1 TK may give this enzyme a therapeutic advantage in an in vivo setting due to the markedly reduced dThd competition with GCV for phosphorylation by the HSV-1 TK.  相似文献   

12.
With the aim of obtaining new inhibitors of topoisomerases, we have evaluated various heterocyclic quinone derivatives for their ability to induce topoisomerase I (Topo I)- or Topo II-associated DNA breaks, using P388 cell nuclear extract. Several compounds belonging to the indolo[3,2-c]quinoline-1,4-dione series have been shown to possess DNA-cleavage activity. Further analysis using purified Topo I and II preparations has indicated that the members of the series stimulate cleavable complex formation of both Topo I and II. 3-Methoxy-11H-pyrido[3',4':4,5]pyrrolo[3,2-c] quinoline-1,4-dione (AzalQD), one of the most active members of the series, stimulates cleavable complex formation and inhibits the catalytic activities of both eukaryotic Topo I and II, with, however, less potency than camptothecin and etoposide. Topo I cleavage site patterns for AzalQD and camptothecin were found to be nearly identical, with, however, some differences in cleavage site intensities. Use of filter binding assays also indicates that AzalQD is at least 10 times more potent against Topo I than against Topo II. Structure-activity relationships of indoloquinolinedione derivatives have been established and have shown that Topo I and II inhibitions are strongly linked, with a dose-selective preference towards Topo I. AzalQD does not display detectable DNA-unwinding properties. AzalQD induces a preferential cytotoxicity for the yeast strain JN2-134 bearing the human top1 gene under the control fo the GAL1 promoter, indicating that Topo I inhibition is responsible for the yeast cytotoxicity. These data indicate that AzalQD and its structural analogs represent a new distinct class of eukaryotic Topo I and II inhibitors.  相似文献   

13.
1. The anti-allergic compound, cromoglycate, is reported to possess affinity for, and to suppress the autophosphorylation of a 72kDa protein having the sequence of nucleoside diphosphate kinase (NDPK). 2. We have tested the ability of cromoglycate, and a panel of ten structurally related flavonoids of plant origin, to inhibit the NDPK reaction and the exocytotic process of permeabilized mast cells. The conditions of permeabilization (use of an isotonic medium based on sodium glutamate) were selected to ensure that NDPK activity would be an essential component in the induction of Ca(2+)-induced exocytosis in which ATP is required for generation of GTP. For comparison, we also measured the inhibition of exocytosis induced by GTP-gamma-S; this proceeds in the absence of ATP and bypasses the need for NDPK activity. 3. We found that cromoglycate does not discriminate between Ca2+ and GTP-gamma-S-induced exocytosis and is a poor inhibitor of NDPK activity. Concentrations in the millimolar range are required for inhibition of all these functions. By comparison, many of the flavonoids are effective at concentrations in the micromolar range. 4. While we were unable to discern any systematic relationships between their ability to inhibit the three functions, two compounds, quercetin and genistein, inhibit Ca(2+)-induced, but not GTP-gamma-S-induced exocytosis. Inhibition of the late stages of the stimulus-response pathway in mast cells by these compounds is therefore likely to be due to inhibition of NDPK and the consequent failure to generate GTP.  相似文献   

14.
15.
16.
Recently, an entirely new class of bicyclic nucleoside analogs (BCNAs) was found to display exquisite potency and selectivity as inhibitors of varicella-zoster virus (VZV) replication in cell culture. A striking difference in their ability to convert the BCNAs to their phosphorylated derivatives was observed between the VZV-encoded thymidine kinase (TK) and the very closely related herpes simplex virus type 1 (HSV-1) TK. Whereas VZV TK efficiently phosphorylated the BCNAs, HSV-1 TK was unable to do so. In addition, the thymidylate (dTMP) kinase activity of VZV TK further converted BCNA-5'-MP to BCNA-5'-DP. The BCNAs (or their phosphorylated derivatives) were not a substrate for cytosolic TK, mitochondrial TK, or cytosolic dTMP kinase. Human erythrocyte nucleoside diphosphate (NDP) kinase was unable to phosphorylate the BCNA 5'-diphosphates to BCNA 5'-triphosphates. Under the same experimental conditions, the anti-herpetic (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU) derivative was efficiently converted to BVDU-MP and BVDU-DP by both VZV TK and HSV-1 TK and further, into BVDU-TP, by NDP kinase. Our observations may account for the unprecedented specificity of BCNAs as anti-VZV agents.  相似文献   

17.
Ethanol inhibits insulin and insulin-like growth factor-I (IGF-I) signaling in a variety of cell types leading to reduced mitogenesis and impaired survival. This effect is associated with inhibition of insulin receptor (IR) and insulin-like growth factor-I receptor (IGF-IR) autophosphorylation, which implicates these receptors as direct targets for ethanol. It was demonstrated previously that ethanol inhibits the autophosphorylation and kinase activity of the purified cytoplasmic tyrosine kinase domain of the IR. We performed computer modeling of the ethanol interaction with the IR and IGF-IR kinases (IRK and IGF-IRK). The analysis predicted binding of alcohols within the hydrophobic pocket of the kinase activation cleft, with stabilization at specific polar residues. Using IGF-IRK purified from baculovirus-infected insect cells, ethanol inhibited peptide substrate phosphorylation by non-phosphorylated IGF-IRK, but had no effect on the autophosphorylated enzyme. In common with the IRK, ethanol inhibited IGF-IRK autophosphorylation. In cerebellar granule neurons, ethanol inhibited autophosphorylation of the apo-IGF-IR, but did not reverse IGF-IR phosphorylation after IGF-I stimulation. In summary, the findings demonstrate direct inhibition of IGF-IR tyrosine kinase by ethanol. The data are consistent with a model wherein ethanol prevents the initial phase of IRK and IGF-IRK activation, by inhibiting the engagement of the kinase activation loop.  相似文献   

18.
Three cytotoxic dihydroxanthone derivatives, nidulalin A(1), F390B(2), and F390C(3) were evaluated for inhibitory activity against DNA topoisomerases. Compounds 1 and 2 inhibited DNA topoisomerase II with IC50 values of 2.2 microM and 16 microM, and 3 inhibited DNA topoisomerase I with an IC50 value of 5.9 microM.  相似文献   

19.
Protein kinase D (PKD) is a member of the protein kinase C (PKC) superfamily with distinctive structural, enzymological and regulatory properties. Identification of the cellular function(s) of PKD has been hampered by the absence of a selective inhibitor. Recently, Stewart et al. showed that resveratrol inhibited PKD, but not various PKC isoforms, in vitro. Here we confirmed that the activity of PKD is indeed inhibited in vitro by resveratrol (IC(50) approximately 200 microM). Additionally, we assessed the inhibition by resveratrol of PKD activity in intact cells, by Western blotting with a phosphospecific PKD antibody which recognizes the autophosphorylated enzyme. In this setting, very high concentrations of resveratrol were required to achieve inhibition of PKD autophosphorylation (IC(50) approximately 800 microM). Since resveratrol produces other pharmacological effects (e.g., cyclooxygenase inhibition) at lower concentrations than those required to inhibit PKD in intact cells, its value as a selective tool to investigate the cellular function(s) of PKD is questionable.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号