首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hereditary breast cancer comprises a minor but clinically meaningful breast cancer (BC) subgroup. Mutations in the major BC‐susceptibility genes are important prognostic and predictive markers; however, their carriers represent only 25% of high‐risk BC patients. To further characterize variants influencing BC risk, we performed SOLiD sequencing of 581 genes in 325 BC patients (negatively tested in previous BRCA1/BRCA2/PALB2 analyses). In 105 (32%) patients, we identified and confirmed 127 truncating variants (89 unique; nonsense, frameshift indels, and splice site), 19 patients harbored more than one truncation. Forty‐six (36 unique) truncating variants in 25 DNA repair genes were found in 41 (12%) patients, including 16 variants in the Fanconi anemia (FA) genes. The most frequent variant in FA genes was c.1096_1099dupATTA in FANCL that also show a borderline association with increased BC risk in subsequent analysis of enlarged groups of BC patients and controls. Another 81 (53 unique) truncating variants were identified in 48 non‐DNA repair genes in 74 patients (23%) including 16 patients carrying variants in genes coding proteins of estrogen metabolism/signaling. Our results highlight the importance of mutations in the FA genes' family, and indicate that estrogen metabolism genes may reveal a novel candidate genetic component for BC susceptibility.  相似文献   

2.
To understand the influence of chromosomal alterations on gene expression in a genome-wide view, chromosomal imbalances detected by single nucleotide polymorphism (SNP) chips were compared with global gene expression in 16 cases of chronic lymphocytic leukemia (CLL). A strong concordance between chromosomal gain or loss and increased or reduced expression of genes in the affected regions was found, respectively. Regions of uniparental disomy (UPD) were rare and had usually no consistent influence on gene expression, but in one instance, a large UPD was associated with a downregulation of most genes in the affected chromosome. The frequently deleted miRNAs, MIRN15A and MIRN16-1, did not show a reduced expression in cases with monoallelic deletions. The BCL2 protein, considered to be downregulated by these miRNAs, was upregulated not only in CLL with biallelic deletion of MIRN15A and MIRN16-1, but also in cases with monoallelic deletion. This suggests a complex regulation of BCL2 levels in CLL cells. Taken together, in CLL, a global gene dosage effect exists for chromosomal gains and deletions and in some instances for UPDs. We did not confirm a consistent correlation between MIRN15A and MIRN16-1 expression levels and BCL2 protein levels, indicating a complex regulation of BCL2 expression.  相似文献   

3.
Prader–Willi syndrome (PWS) is a prototypic genetic condition related to imprinting. Causative mechanisms include paternal 15q11‐q13 deletion, maternal chromosome 15 uniparental disomy (UPD15), Prader–Willi Syndrome/Angelman Syndrome (PWS/AS) critical region imprinting defects, and complex chromosomal rearrangements. Maternal UPD15‐related PWS poses risks of concomitant autosomal recessive (AR) disorders when the mother carries a pathogenic variant in one of the genes on chromosome 15 associated with autosomal recessive inherited disease. Co‐occurrence of autosomal recessive conditions in the setting of UPD leads to increased complexity of the clinical phenotype, and may delay the diagnosis of PWS. We report a patient with PWS and associated congenital ichthyosis due to maternal UPD15, and a homozygous novel pathogenic variant in ceramide synthase 3 (CERS3). We also review the literature of associated disorders reported in the setting of maternal UPD15‐related PWS and provide a summary of the previously described CERS3 variants. This represents the second case of autosomal recessive congenital ichthyosis (ARCI) in the setting of PWS and UPD15. There needs to be a high index of suspicion of this genetic mechanism when there is unexpected phenotype or evolution of the clinical course in a patient with PWS.  相似文献   

4.
《Genetics in medicine》2016,18(4):309-315
PurposeMaternal uniparental disomy of chromosome 20 (UPD(20)mat) has been reported in only four patients, three of whom also had mosaicism for complete or partial trisomy of chromosome 20. We sought to evaluate the clinical significance of isolated UPD(20)mat in eight individuals.MethodsWe evaluated phenotypic and genomic findings of a series of eight new patients with UPD(20)mat.ResultsAll eight individuals with UPD(20)mat had intrauterine growth restriction, short stature, and prominent feeding difficulties with failure to thrive. As a common feature, they often required gastric tube feeds. Genomic data in most patients are indicative of UPD as a result of trisomy rescue after meiosis II nondisjunction.ConclusionWe describe the first natural history of the disorder and the results of therapeutic interventions, including the frequent requirement of direct gastric feedings only during the first few years of life, and propose that growth hormone supplementation is probably safe and effective for this condition. We suggest that UPD(20)mat can be regarded as a new imprinting disorder and its identification requires specialized molecular testing, which should be performed in patients with early-onset idiopathic isolated growth failure.  相似文献   

5.
OBJECTIVE—To review all cases with segmental and/or complex uniparental disomy (UPD), to study aetiology and mechanisms of formation, and to draw conclusions.
DESIGN—Searching published reports in Medline.
RESULTS—The survey found at least nine cases with segmental UPD and a normal karyotype, 22 cases with UPD of a whole chromosome and a simple or a non-homologous Robertsonian translocation, eight cases with UPD and two isochromosomes, one of the short arm and one of the long arm of a non-acrocentric chromosome, 39 cases with UPD and an isochromosome of the long arm of two homologous acrocentric chromosomes, one case of UPD and an isochromosome 8 associated with a homozygous del(8)(p23.3pter), and 21 cases with UPD of a whole or parts of a chromosome associated with a complex karyotype. Segmental UPD is formed by somatic recombination (isodisomy) or by trisomy rescue. In the latter mechanism, a meiosis I error is associated with meiotic recombination and an additional somatic exchange between two non-uniparental chromatids. Subsequently, the chromatid that originated from the disomic gamete is lost (iso- and heterodisomy). In cases of UPD associated with one isochromosome of the short arm and one isochromosome of the long arm of a non-acrocentric chromosome and in cases of UPD associated with a true isochromosome of an acrocentric chromosome, mitotic complementation is assumed. This term describes the formation by misdivision at the centromere during an early mitosis of a monosomic zygote. In cases of UPD associated with an additional marker chromosome, either mitotic formation of the marker chromosome in a trisomic zygote or fertilisation of a gamete with a marker chromosome formed in meiosis by a disomic gamete or by a normal gamete and subsequent duplication are possible.
CONCLUSIONS—Research in the field of segmental and/or complex UPD may help to explain undiagnosed non-Mendelian disorders, to recognise hotspots for meiotic and mitotic recombinations, and to show that chromosomal segregation is more complex than previously thought. It may also be helpful to map autosomal recessively inherited genes, genes/regions of genomic imprinting, and dysmorphic phenotypes. Last but not least it would improve genetic counselling.


Keywords: genomic imprinting; isochromosome; Robertsonian translocation; uniparental disomy (UPD)  相似文献   

6.
Fanconi anemia (FA) is a rare recessive disease resulting from mutations in one of at least 16 different genes. Mutation types and phenotypic manifestations of FA are highly heterogeneous and influence the clinical management of the disease. We analyzed 202 FA families for large deletions, using high‐resolution comparative genome hybridization arrays, single‐nucleotide polymorphism arrays, and DNA sequencing. We found pathogenic deletions in 88 FANCA, seven FANCC, two FANCD2, and one FANCB families. We find 35% of FA families carry large deletions, accounting for 18% of all FA pathogenic variants. Cloning and sequencing across the deletion breakpoints revealed that 52 FANCA deletion ends, and one FANCC deletion end extended beyond the gene boundaries, potentially affecting neighboring genes with phenotypic consequences. Seventy‐five percent of the FANCA deletions are AluAlu mediated, predominantly by AluY elements, and appear to be caused by nonallelic homologous recombination. Individual Alu hotspots were identified. Defining the haplotypes of four FANCA deletions shared by multiple families revealed that three share a common ancestry. Knowing the exact molecular changes that lead to the disease may be critical for a better understanding of the FA phenotype, and to gain insight into the mechanisms driving these pathogenic deletion variants.  相似文献   

7.
The diagnosis of VACTERL syndrome can be elusive, especially in the prenatal life, due to the presence of malformations that overlap those present in other genetic conditions, including the Fanconi anemia (FA). We report on three VACTERL cases within two families, where the two who arrived to be born died shortly after birth due to severe organs’ malformations. The suspicion of VACTERL association was based on prenatal ultrasound assessment and postnatal features. Subsequent chromosome breakage analysis suggested the diagnosis of FA. Finally, by next‐generation sequencing based on the analysis of the exome in one family and of a panel of Fanconi genes in the second one, we identified novel FANCL truncating mutations in both families. We used ectopic expression of wild‐type FANCL to functionally correct the cellular FA phenotype for both mutations. Our study emphasizes that the diagnosis of FA should be considered when VACTERL association is suspected. Furthermore, we show that loss‐of‐function mutations in FANCL result in a severe clinical phenotype characterized by early postnatal death.  相似文献   

8.
Prader-Willi syndrome (PWS) is a neurodevelopmental disorder associated with abnormalities of chromosome 15q11q13. The majority of cases result either from a deletion approximately 4 Mb in size, affecting chromosome 15 of paternal origin or from UPD(15)mat; these account for ~70 and ~20–25% of PWS cases, respectively. In the remaining 3–5% of PWS cases where neither the deletion nor UPD is detectable, PWS is thought to be caused either by a defect in the imprinting centre resulting in a failure to reset the paternally inherited chromosome 15 derived from the paternal grandmother or, very occasionally, from a balanced translocation involving a breakpoint in 15q11q13. Nine probands with a firm clinical diagnosis of PWS but who had neither a typical deletion in the PWS region nor UPD(15)mat were investigated for inactivating mutations in 11 genes located in the PWS region, including SNURF and SNRPN, which are associated with the imprinting centre. Other genes studied for mutations included MKRN3, NDN, IPW, HBII-85, HBII-13, HBII-436, HBII-438a, PAR1 and PAR5. A possibly inactivating mutation in the SNRPN minimal promoter region was identified. No other inactivating mutations were found in the remainder of our panel of PWS subjects with atypical genetics. Expression levels of several of the candidate genes for PWS were also investigated in this series of probands. The results indicate that PWS may result from a stochastic partial inactivation of important genes.  相似文献   

9.
Over 100 genetically distinct causal known loci for hereditary ataxia phenotype poses a challenge for diagnostic work-up for ataxia patients in a clinically relevant time and precision. In the present study using next-generation sequencing, we have investigated pathogenic variants in early-onset cerebellar ataxia cases using whole exome sequencing in singleton/family-designed and targeted gene-panel sequencing. A total of 98 index patients were clinically and genetically (whole exome sequencing (WES) in 16 patients and targeted gene panel of 41 ataxia causing genes in 82 patients) evaluated. Four families underwent WES in family based design. Overall, we have identified 24 variants comprising 20 pathogenic and four likely-pathogenic both rare/novel, variations in 21 early onset cerebellar ataxia patients. Among the identified variations, SACS (n = 7) and SETX (n = 6) were frequent, while ATM (n = 2), TTPA (n = 2) and other rare loci were observed. We have prioritized novel pathogenic variants in RARS2 and FA2H loci through family based design in two out of four families.  相似文献   

10.
Maternal uniparental disomy (UPD) accounts for approximately 25% of Prader-Willi patients (PWS) and paternal UPD for about 2-5% of Angelman syndrome (AS) patients. These findings and the parental origin of deletions are evidence of genomic imprinting in the cause of PWS and AS. The natural occurrence of UPD individuals allows the study of meiotic mechanisms resulting in chromosomal nondisjunction (ND). We selected patients with UPD15 from our sample of 30 PWS and 40 AS patients to study the origin of ND and the recombination along chromosome 15. These patients were analyzed with 10 microsatellites throughout the entire chromosome 15 (D15S541, D15S542, D15S11, D15S113, GABRB3, CYP19, D15S117, D15S131, D15S984, D15S115). The analysis disclosed seven heterodisomic PWS cases originating by meiosis I (MI) ND (four showed recombination and three no recombination), and one isodisomic PWS UPD15 originating by postzygotic duplication. Among the five paternal UPD15, we detected four isodisomies, three of which showed homozigosity for all markers, corresponding to a mitotic error, and one case originating from a paternal MII ND. Our results indicate that besides maternal MI and MII ND, paternal ND occurs when a PWS UPD15 patient originates from mitotic duplication of the maternal chromosome 15. ND events in AS are mainly due to mitotic errors, but paternal MII ND can occur and give origin to an AS UPD15 individual by two different mechanisms: rescue of a trisomic fetus or fertilization of a nullisomic egg with the disomic sperm, and in this case paternal and maternal ND are necessary.  相似文献   

11.
Glioblastoma is the most frequent and aggressive brain tumor in the adult population. Loss of heterozygosity (LOH) at markers of the long arm of chromosome 10 is the most common genetic alteration in glioblastoma, being detectable in up to 80% of cases. We have tested 124 glioblastoma samples for LOH by microsatellite analysis of the 10q23.3–26.3 region which contains the cancer related genes PTEN, FGFR2, MKI67, and MGMT. Then, a real‐time quantitative microsatellite analysis (QuMA) was used to qualitatively estimate the change in copy number of this region in the samples with LOH. LOH was detected in 62.1% of the glioblastoma samples. A total of 64 samples with LOH in this region were examined by QuMA. LOH was attributed to a deletion in 37.5% of cases, and uniparental disomy (UPD) in 25% of cases. In 37.5% of cases, deletion and UPD segments alternated within the region: deletions being more frequent than UPD in its proximal part (encompassing PTEN and FGFR2) and both deletions and UPD occurring at the same frequency in its distal part (MGMT). Thus, we have investigated mechanisms of structural alterations of the chromosome region 10q23.3–26.3 in glioblastoma. In addition to a structural deletion of this region, UPD was identified as a frequent cause of LOH. We resume that more detailed studies of glioblastoma at the molecular genetic level are essential in search for potential markers suitable for predicting the disease outcome and the response to treatment.  相似文献   

12.
Maternal uniparental disomy (UPD) accounts for ∼25% of Prader‐Willi patients (PWS) and paternal UPD for about 2–5% of Angelman syndrome (AS) patients. These findings and the parental origin of deletions are evidence of genomic imprinting in the cause of PWS and AS. The natural occurrence of UPD individuals allows the study of meiotic mechanisms resulting in chromosomal nondisjunction (ND). We selected patients with UPD15 from our sample of 30 PWS and 40 AS patients to study the origin of ND and the recombination along chromosome 15. These patients were analyzed with 10 microsatellites throughout the entire chromosome 15 (D15S541, D15S542, D15S11, D15S113, GABRB3, CYP19, D15S117, D15S131, D15S984, D15S115). The analysis disclosed seven heterodisomic PWS cases originating by meiosis I (MI) ND (four showed recombination and three no recombination), and one isodisomic PWS UPD15 originating by postzygotic duplication. Among the five paternal UPD15, we detected four isodisomies, three of which showed homozigosity for all markers, corresponding to a mitotic error, and one case originating from a paternal MII ND. Our results indicate that besides maternal MI and MII ND, paternal ND occurs when a PWS UPD15 patient originates from mitotic duplication of the maternal chromosome 15. ND events in AS are mainly due to mitotic errors, but paternal MII ND can occur and give origin to an AS UPD15 individual by two different mechanisms: rescue of a trisomic fetus or fertilization of a nullisomic egg with the disomic sperm, and in this case paternal and maternal ND are necessary. Am. J. Med. Genet. 94:249–253, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

13.
To our knowledge, 22 cases of chromosome 14 maternal uniparental disomy (UPD(14)mat) have been reported so far. The majority of cases were ascertained because of an abnormal phenotype associated with a Robertsonian translocation involving chromosome 14. We report here on a child with UPD(14)mat detected prenatally and resulting from trisomy rescue in a maternal meiosis I non-disjunction trisomic zygote. After four years of clinical follow up, in addition to intrauterine growth retardation (IUGR), only short stature and small hands and feet were observed. These clinical data as well as the ascertainment and mechanism of origin of UPD(14)mat were compared with those observed in previously reported cases. It appears that the clinical spectrum of UPD(14)mat is milder in our patient than in patients with UPD(14)mat resulting from other chromosomal mechanisms. In addition, a hypothesis based on abnormal imprinting is proposed to explain the variability of the UPD(14)mat.


Keywords: maternal UPD; chromosome 14; MCP; imprinting  相似文献   

14.
15.
16.
To assess whether sleep abnormalities are related to the genetic abnormalities in Prader-Willi Syndrome (PWS), we performed polysomnographic studies (nighttime and daytime) and determined the chromosome 15 genotypes in eight patients with PWS. Four patients demonstrated sleep onset REM periods (SOREM), and five met the objective polysomnographic criteria for severe or moderate excessive daytime sleepiness (EDS). Three of the four patients with SOREM displayed a paternally derived deletion of chromosome 15q11-q13, whereas the fourth exhibited maternal uniparental heterodisomy in this chromosomal region (UPD). Two of the four patients that did not display SOREM carried paternally derived deletions; the remaining two demonstrated UPD. Four of the five patients with EDS displayed paternal deletions, and the fifth exhibited UPD. One of three patients without evidence of EDS demonstrated paternal deletion; the remaining two showed UPD. Although neither EDS nor SOREM was not consistently associated with a specific genetic abnormality, these phenotypes may be more common in patients with paternal deletions than in those with UPD. Sleep abnormalities in PWS cannot be explained by a single genetic model. © 1996 Wiley-Liss, Inc.  相似文献   

17.
Most instances of maternal uniparental disomy (UPD) start as trisomies and, similar to the latter, show a significant increase of mean maternal age at delivery. To investigate the incidence of UPD in offspring of older mothers, we investigated two groups of patients: 1) 50 patients with unclassified developmental defects born to mothers 35 years or older at delivery were tested for UPD for all autosomes by means of microsatellite marker analysis; 2) The incidence of UPD versus other etiologies in correlation, with maternal age below versus 35 years and above at delivery was studied in patients investigated in our laboratory for maternal UPD 15 (Prader-Willi syndrome, PWS), paternal UPD 15 (Angelman syndrome, AS), and maternal UPD 7 (Silver-Russell syndrome, SRS). In group 1, four patients of 50 showed UPD for an autosome that clarified the etiology of their developmental problems: a 27-year-old woman with growth retardation and early puberty disclosed maternal heterodisomy 14; a 15-year-old girl revealed paternal isodisomy 15; a 6-year-old boy with suspected Smith-Lemli-Opitz syndrome was shown to have maternal heterodisomy 16 with additional mosaic partial trisomy 16(pter-p13); a 16-month-old girl with intrauterine growth retardation and a dysmorphic pattern revealed maternal heterodisomy 7. In group 2 the offspring of older mothers showed a clear increase of UPD compared with the mothers below 35 years at delivery. The binomial distribution gave P-values of 1.9 x 10(-10), 2.6 x 10(-4), and 0.01 for PWS, AS, and SRS, respectively. The correlation between increase of paternal UPD 15 with advanced maternal age might be explained by maternal non-disjunction leading to hypohaploid gamete (nullisomy) for chromosome 15 with subsequent or concomitant duplication of the paternal homologue (paternal isodisomy). The three UPD 15 AS cases with mothers older than 35 years at delivery revealed isodisomy, whereas the three cases from younger mothers showed heterodisomy. This study confirms the hypothesis that uniparental disomy is a not negligible cause of congenital developmental anomalies in children of older mothers.  相似文献   

18.
BACKGROUND—Angelman syndrome (AS) is a severe neurobehavioural disorder caused by defects in the maternally derived imprinted domain located on 15q11-q13. Most patients acquire AS by one of five mechanisms: (1) a large interstitial deletion of 15q11-q13; (2) paternal uniparental disomy (UPD) of chromosome 15; (3) an imprinting defect (ID); (4) a mutation in the E3 ubiquitin protein ligase gene (UBE3A); or (5) unidentified mechanism(s). All classical patients from these classes exhibit four cardinal features, including severe developmental delay and/or mental retardation, profound speech impairment, a movement and balance disorder, and AS specific behaviour typified by an easily excitable personality with an inappropriately happy affect. In addition, patients can display other characteristics, including microcephaly, hypopigmentation, and seizures.
METHODS—We restricted the present study to 104 patients (93 families) with a classical AS phenotype. All of our patients were evaluated for 22 clinical variables including growth parameters, acquisition of motor skills, and history of seizures. In addition, molecular and cytogenetic analyses were used to assign a molecular class (I-V) to each patient for genotype-phenotype correlations.
RESULTS—In our patient repository, 22% of our families had normal DNA methylation analyses along 15q11-q13. Of these, 44% of sporadic patients had mutations within UBE3A, the largest percentage found to date. Our data indicate that the five molecular classes can be divided into four phenotypic groups: deletions, UPD and ID patients, UBE3A mutation patients, and subjects with unknown aetiology. Deletion patients are the most severely affected, while UPD and ID patients are the least. Differences in body mass index, head circumference, and seizure activity are the most pronounced among the classes.
CONCLUSIONS—Clinically, we were unable to distinguish between UPD and ID patients, suggesting that 15q11-q13 contains the only significant maternally expressed imprinted genes on chromosome 15.


  相似文献   

19.
DNA samples from tumors and paired normal tissues from 48 patients with prostate cancer (stage B, 16 cases; stage C, 14 cases; stage D, 18 cases) were examined with 26 polymorphic markers spanning chromosome 10. Allelic losses were observed in 17 of the 46 cases (37%) that were informative with at least one of the markers. Detailed deletion mapping identified two distict commonly deleted regions on the long arm of chromosome 10 (10q22–q24:7cM and 10q25.1:17cM) and one on 10p, suggesting that at least three tumor suppressor genes associated with prostate cancer are present on this chromosome. We observed loss of heterozygosity more frequently in tumors from fatal cases (stage D, 8/16, 50%) than in localized tumors (stage B, 0/16, 0%; P = 0.001 or stage B + C, 5/30, 17%; P = 0.02 Fisher's exact test). All metastatic tissues showed allelic loss at one or more loci on 10q. In five of the nine patients from whom DNAs were available from both metastatic and primary tumors, the primary cancer foci had no detectable abnormality of chromosome 10, while the metastatic foci showed allelic loss on chromosome 10. These results suggested that inactivation of one or more tumor suppressor genes on chromosome 10 plays an important role in late stages of prostate cancer. Genes Chromosom Cancer 17:245–253 (1996). © 1996 Wiley-Liss, Inc.  相似文献   

20.
Prader–Willi syndrome (PWS) affects 1/15,000–1/30,000 live births and is characterized by lack of expression of paternally inherited genes on 15q11.2‐15q13 caused by paternal deletions, maternal uniparental disomy (UPD), or imprinting defects. Affected individuals have distinct physical features, and growth hormone (GH) deficiency occurs in some individuals with PWS. The aim of this study is to test the hypotheses that (a) individuals with deletions and UPD have different physical and dysmorphic features, (b) individuals treated with GH have different physical and dysmorphic features than those not treated, and (c) GH treatment effects are different for individuals with UPD in comparison to those with deletions. Study participants included 30 individuals with deletions or UPD, who did or did not have GH treatment. Participants’ molecular abnormalities were determined by molecular and cytogenetic analysis. Clinical data were obtained by a single dysmorphologist. Individuals with deletions were found to be heavier (p = .001), taller (p = .031), with smaller head circumferences (p = .042) and were more likely to have fair skin and hair than their family members (p = .031, .049, respectively) compared to UPD patients. Females with deletions more commonly had hypoplastic labia minora (p = .009) and clitoris (.030) in comparison to those with UPD. Individuals who received GH in both deletion and UPD groups were taller (p = .004), had larger hands (p = .011) and feet (p = .006) and a trend for a larger head circumference (p = .103). Interestingly, the GH‐treated group also had a lower rate of strabismus (esotropia [p = .017] and exotropia [p = .039]). This study showed statistically significant correlations between phenotype and molecular subtypes and also between phenotype and GH treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号