首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dicentric chromosomes have often been observed in complex karyotypes in previously reported studies of therapy-related myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). Fluorescence in situ hybridization (FISH) has now made the characterization of these rearrangements much easier. Dicentric and tricentric chromosomes were identified in 21 patients (9 MDS and 12 AML) among the 133 consecutive MDS/AML patients (17%) who had a structural or numerical aberration of chromosome 5 using conventional cytogenetic analysis. One third (7/21) of the patients had received alkylating drugs for a previously diagnosed cancer or chronic myeloproliferative disease. Loss of 5q material was identified in all 21 patients. One copy of the EGR1 (5q31) or the CSF1R (5q33 approximately q34) genes was lost in 20 of the 21 patients. Dicentric and tricentric chromosomes involving chromosome 5 are frequently observed in complex karyotypes among patients with de novo or therapy-related MDS/AML. They lead to deletions of various parts of the long arm of chromosome 5.  相似文献   

2.
The information obtained by conventional cytogenetics (CC) in human leukemias is sometimes limited, in particular by complex karyotypes with many marker chromosomes. While CC is restricted to metaphases with a good quality, interphase fluorescence in situ hybridization (I-FISH) is also capable of analyzing specific anomalies in the interphase nuclei. Comparative genomic hybridization (CGH) gives additional information about the imbalanced karyotype changes in the whole genome. The aim of this study was to assess the contribution of CGH to the unraveling of complex GTG karyotypes, which are difficult to evaluate by banding analysis, and to compare these results with those by CC and FISH. Thirteen bone marrow samples and one sample obtained from peripheral blood of 13 leukemia patients were examined by CC, FISH and CGH. The GTG banding analysis showed complex karyotypes with many marker chromosomes. The most frequent abnormalities were numerical and structural aberrations on chromosomes 5 and 7. In 12 of the 14 samples, the CGH analysis was able to detect chromosomal imbalances with losses of material on chromosome 5 and 7 as the most frequent aberrations. In all 14 samples, additional FISH analyses were performed. For most of the studied neoplasias, a close correlation between CC, FISH and CGH data was observed. CGH was considerably helpful in adding additional information to classical karyotyping, if the low quality or number of metaphases was insufficient for a reliable CC analysis. Even in cases where whole chromosome painting could be applied, it added information on the breakpoints of the observed rearrangements. In only 2 of the studied 14 samples, neither CGH nor I-FISH could improve the result of karyotyping. CGH, nevertheless, can be regarded as a powerful additional technique in leukemias with unsuccessful CC, incomplete, or complex karyotypes with many marker chromosomes. A systematic analysis by three techniques such as CC, FISH and CGH guarantees an optimal genetic characterization of the neoplasias.  相似文献   

3.
We report the use of multiplex fluorescence in situ hybridization (M-FISH) to resolve chromosomal aberrations in seven established melanoma cell lines with hypotriploid to hypertetraploid complex karyotypes. By simultaneous identification of all human chromosomes in single FISH experiments using a set of 52 directly labeled, whole chromosome painting probes, cryptic chromosomal translocations and the origin of unclear chromosomal material in structural rearranged and marker chromosomes could be identified, refining the tumor karyotypes in all seven cell lines. The number of structural aberrations in each cell line assigned with combined M-FISH and DAPI banding analysis ranged from 15 to 45. Altogether, 275 breakpoints could be assigned to defined chromosomal regions or bands. The chromosome arms 1p, 6q, 7p, 9p, and 11q which are known to be nonrandomly associated with melanoma tumorigenesis, were frequently involved in chromosomal breaks and/or copy number changes. This study also demonstrated the practical usefulness of combining M-FISH with conventional cytogenetic banding techniques for the characterization of complex tumor karyotypes with massive genomic alterations.  相似文献   

4.
Three primary breast tumors and their lymph node metastases were characterized by G-banding, spectral karyotyping (SKY), and fluorescence in situ hybridization (FISH). In each case, the karyotypic abnormalities detected were similar in the primary tumor and its matched metastasis. Two of the pairs had near-diploid karyotypes with three to four chromosomal aberrations, whereas the third pair had a near-pentaploid chromosome content and many marker chromosomes in the primary tumor and a near-tetraploid chromosome number with almost the same marker chromosomes in the metastasis. SKY and FISH confirmed the karyotypic similarities between the primary tumors and their metastases and, in addition, improved the identification and characterization of marker chromosomes. One of the tumor pairs with near-diploid karyotypes had gain of 8q, 16q, and 17q, whereas the other had gain of 1q and chromosome 8 material in the form of ring chromosomes. The third pair had more complex chromosomal translocations and numerical changes resulting in net gain of material from chromosomes X, 1, 2, 6, 7, 14, 16, 19, and 20, and chromosome arms 8q and 11q, as well as net loss of material from chromosomes 3, 13, 18, 21, and 22. The present study underscores the need to combine conventional chromosome banding and molecular cytogenetic techniques in the cytogenetic analysis of solid tumors.  相似文献   

5.
G band cytogenetic analysis often leads to the discovery of unbalanced karyotypes that require further characterisation by molecular cytogenetic studies. In particular, G band analysis usually does not show the chromosomal origin of small marker chromosomes or of a small amount of extra material detected on otherwise normal chromosomes. Comparative genomic hybridisation (CGH) is one of several molecular approaches that can be applied to ascertain the origin of extra chromosomal material. CGH is also capable of detecting loss of material and thus is also applicable to confirming or further characterising subtle deletions. We have used comparative genomic hybridisation to analyse 19 constitutional chromosome abnormalities detected by G band analysis, including seven deletions, five supernumerary marker chromosomes, two interstitial duplications, and five chromosomes presenting with abnormal terminal banding patterns. CGH was successful in elucidating the origin of extra chromosomal material in 10 out of 11 non-mosaic cases, and permitted further characterisation of all of the deletions that could be detected by GTG banding. CGH appears to be a useful adjunct tool for either confirming deletions or defining their breakpoints and for determining the origin of extra chromosomal material, even in cases where abnormalities are judged to be subtle. We discuss internal quality control measures, such as the mismatching of test and reference DNA in order to assess the quality of the competitive hybridisation effect on the X chromosome.  相似文献   

6.
Spectral karyotyping (SKY) is a new molecular cytogenetic technique that allows simultaneous visualization of each chromosome in a different color. We have used SKY for comprehensive analysis of 20 myelodysplastic syndromes (MDSs) (13 primary MDSs, 3 therapy-related MDSs, and 4 acute leukemias developed from MDS, including 1 cell line established from a secondary leukemia), previously analyzed by G-banding. To locate the chromosomal breakpoints, DAPI-counterstained band images from all metaphases were transformed to G-band-like patterns. By using SKY, it was possible to identify the origin and organization of all clonal marker chromosomes (mar), as well as the origin of all abnormalities defined as additional material of unknown origin (add) or homogeneously staining regions (hsr) by G-banding. In total, SKY identified the chromosomal basis of 38 mar, add, and hsr, corrected 8 abnormalities misidentified by G-banding, and revealed 6 cryptic translocations in 5 cases. Total or partial chromosomal loss (mainly of -5/5q- and -7/7q-) is the most frequent cytogenetic abnormality in MDS. In 3 of 11 cases with -5/5q- and in 4 of 8 with -7/7q-, lost material was detected by SKY in unbalanced translocations. A total of 60 chromosomal losses were identified by G-banding in 16 cases with multiple chromosome abnormalities involving at least 3 chromosomes. For 26 of these losses (43%), SKY analysis suggested that the losses were not complete, but had been translocated to a variety of partner chromosomes. Moreover, SKY analysis revealed that a ring chromosome in a case of acute leukemia developed from MDS contained three to six segments that originated from chromosome 21 material. Fluorescence in situ hybridization showed the amplification of the AML1 gene on regions derived from chromosome 21, providing the first evidence of amplification involving this gene in MDS. Genes Chromosomes Cancer 26:336-345, 1999.  相似文献   

7.
Chromosomal abnormalities are found by conventional cytogenetic (CC) analysis in about 50% of myelodysplastic syndromes (MDS) and 70% of acute myeloid leukemias (AML). When cytogenetic abnormalities are complex, multiplex fluorescence in situ hybridization (M-FISH) can help clarify complex chromosomal abnormalities and identify rearrangements with prognostic value or cryptic translocations, which could be preliminary steps in identifying new genes. We studied by M-FISH 28 cases of MDS and AML with complex chromosomal abnormalities, 10 of them were therapy-related. M-FISH allowed the characterization of unidentified chromosomal material in 26 cases (93%). One or several unbalanced rearrangements were observed in 27 cases (96%), generally interpreted as deletions or additional material by CC. Among those translocations, 4 involved 3 chromosomes. Eighteen cryptic translocations undetected by CC were found in 13 cases. By FISH analysis using locus specific probes, TP53 deletion, additional copies of MLL, and additional copies or deletions of RUNX1/AML1 were observed in 16, 4, and 3 cases, respectively. Thus, M-FISH is an important tool to characterize complex chromosomal abnormalities which identified unbalanced and cryptic translocations in 96% and 46% of the cases studied, respectively. Complementary FISH helped us identify involvement of TP53, MLL, and RUNX1/AML1 genes in 82% of cases, confirming their probable role in leukemogenesis.  相似文献   

8.
Several nonrandom recurrent chromosomal changes are observed in uveal melanoma. Some of these abnormalities, e.g., loss of chromosome 3, gain of the q arm of chromosome 8, and chromosome 6 abnormalities, are of prognostic value. Cytogenetic analysis and/or fluorescence in situ hybridization (FISH) are used to detect these changes. In some cases, however, detailed cytogenetic analysis is not possible due to the presence of complex abnormalities. To define more accurately these cytogenetic changes, we have applied comparative genomic hybridization (CGH) and/or spectral karyotyping (SKY) to two uveal melanoma cell lines and five primary uveal melanomas, with partially defined and/or complex abnormalities. SKY provided additional information on 34/39 partially defined aberrant chromosomes and revealed a new abnormality, a der(17)t(7;17)(?;q?), that had not been recognized by conventional cytogenetics. Additionally, using SKY, abnormalities involving chromosome 6 or 8 were found to be twice as common as observed with cytogenetic analysis. CGH was especially useful in assigning the abnormalities identified by SKY to specific chromosomal regions and, in addition, resulted in the detection of a small deletion of chromosome region 3q13 approximately 21. We conclude that SKY and CGH, as methods complementary to cytogenetic and FISH analysis, provide more complete information on the chromosomal abnormalities occurring in uveal melanoma.  相似文献   

9.
Comparative genomic hybridization (CGH) is a valuable technique for cytogenetic analysis of solid tumors. To evaluate the reliability of CGH, we examined DNA of 10 ovarian carcinomas after CGH analysis with single- and double-locus fluorescence in situ hybridization (FISH). The FISH experiments, involving 5 chromosomes (chromosomes 3, 6, 8, 12, and 18) with different FISH probes, confirmed the CGH results in 66.2% of cases (92 of 139 investigated loci). In 4 patients, inconsistent results (41 loci) were related to polyploidy, because CGH cannot detect polyploid karyotypes. The remaining 6 discordant loci can be referred to limitations in both techniques. Re-evaluation of FISH and CGH results by one other is therefore recommended to overcome these technical artifacts. Nevertheless, CGH is of potential value in characterizing chromosomal alterations and might help in generating tumor-specific sets of FISH probes to obtain genetic information of prognostic value within a few days.  相似文献   

10.
We report three new cases of chromosome 13 derived marker chromosomes, found in unrelated patients with dysmorphisms and/or developmental delay. Molecular cytogenetic analysis was performed using fluorescence in situ hybridization (FISH) with chromosome-specific painting probes, alpha satellite probes, and physically mapped probes from chromosome 13q, as well as comparative genomic hybridization (CGH). This analysis demonstrated that these markers consisted of inversion duplications of distal portions of chromosome 13q that have separated from the endogenous chromosome 13 centromere and contain no detectable alpha satellite DNA. The presence of a functional neocentromere on these marker chromosomes was confirmed by immunofluorescence with antibodies to centromere protein-C (CENP-C). The cytogenetic location of a neocentromere in band 13q32 was confirmed by simultaneous FISH with physically mapped YACs from 13q32 and immunofluorescence with anti-CENP-C. The addition of these three new cases brings the total number of described inv dup 13q neocentic chromosomes to 11, representing 21% (11/52) of the current overall total of 52 described cases of human neocentric chromosomes. This higher than expected frequency suggests that chromosome 13q may have an increased propensity for neocentromere formation. The clinical spectrum of all 11 cases is presented, representing a unique collection of polysomy for different portions of chromosome 13q without aneuploidies for additional chromosomal regions. The complexity and variability of the phenotypes seen in these patients does not support a simple reductionist view of phenotype/genotype correlation with polysomy for certain chromosomal regions.  相似文献   

11.
To elucidate the structural abnormalities and the relationship between chromosome structural disorders and DNA copy number aberrations in tumor cells, we applied the techniques of spectral karyotyping (SKY), comparative genomic hybridization (CGH), and fluorescence in situ hybridization (FISH), using yeast artificial chromosome (YAC) probes for nine human glioblastoma cell lines. One striking finding was that independently derived cell lines had the same recurrent marker chromosomes. Seven recurrent chromosomes were detected by these cytogenetic methods. In particular, cell lines U251, SNB-19, and U373-MG showed very similar karyotypes. It is also interesting that regions of DNA amplification were found translocated and/or inserted at a high rate (91.7%). In all, there were 12 amplified loci in five of the nine cell lines. These amplified chromosomal bands were scattered on the chromosomes, including the normal chromosome, with one exception (7q32-qter in U373-MG). FISH with YAC clones mapping to these chromosomal regions as DNA probes often showed DNA probe signals not only at original chromosomal sites but also in translocated or inserted segments. This form of DNA amplification was characterized by low-level increases (four- to 10-fold) and by translocation or insertion of the relevant chromosomal locus. These studies shed light on typical derivative chromosomes and the relationship between DNA amplification and chromosomal translocation in glioblastoma.  相似文献   

12.
Some marker chromosomes and chromosome rearrangements are difficult to identify using G-bands by Giemsa staining after trypsin treatment (G-banding) alone. Molecular cytogenetic techniques, such as spectral karyotyping (SKY) and fluorescence in situ hybridization (FISH), can help to detect chromosomal aberrations precisely. We analyzed the karyotypes in 6 cases of multiple congenital abnormalities and 1 case of spontaneous abortion (case 2). Three cases (cases 1, 6, and 7) had marker chromosomes, and 4 cases (cases 2-5) had chromosomal rearrangements. The karyotypes in cases 1, 2, and 3 were determined using FISH with probes based on the clinical findings and family histories. Spectral karyotyping (SKY) analysis in cases 4-7 showed that this method is useful and saves time. The combination of SKY and FISH analyses defined the range of the ring chromosome in case 7. We demonstrated that a combination of G-banding, FISH, and SKY can be applied effectively to the investigation of chromosomal rearrangement and to the detection of marker chromosome origins. We suggest the use of these methods for prenatal diagnosis, in which the inherent time limitations are particularly important.  相似文献   

13.
Conventional cytogenetics (CC) is proven as a diagnostic and prognostic factor in myelodysplastic syndrome (MDS). However, CC may be hampered by insufficient metaphase preparation and cannot analyze interphase nuclei. These problems are solved by using comparative genomic hybridization (CGH). The CGH was applied to samples from 45 patients with MDS, and the results were compared with CC and fluorescence in situ hybridization (FISH). The CC detected aberrations in 12 of 45 samples, including chromosomes 3 (n = 1), 5 (n = 9), 7 (n = 2),8(n = 1), 18(n = 1),21 (n = 1), X (n = 1), and Y(n = 2). In one patient, loss of B and C group chromosomes and a marker chromosome were seen. The CGH revealed chromosomal imbalances in 18 of 45 samples, including chromosomes 5 (n = 11), 7 (n = 2), 8 (n = 1), 18(n = 1), 20(n = 1), 21 (n = 1), X (n = 1), and Y (n = 2). All unbalanced aberrations found by CC were detected by CGH, too. In two patients, the CGH found additional aberrations and redefined the aberrations of the chromosomes of the B and C group in one sample. The FISH confirmed these aberrations. Additionally performed FISH for chromosomes 5, 7, and 8 gave normal findings in all patients found to be normal in CC and CGH. The CGH and FISH confirmed the results obtained by CC. All three techniques showed changes of chromosomes 5 and 7 as the most frequent aberrations, emphasizing the importance of these chromosomes in the development of MDS. Furthermore, the CC is proven as the basic technique for cytogenetic evaluation of MDS.  相似文献   

14.
A total of 127 adult de novo acute myelocytic leukemia (AML) patients were analyzed by comparative genomic hybridization (CGH) at diagnosis. Conventional cytogenetic analysis (CCA) showed a normal karyotype in 45 cases and an abnormal karyotype in 56 cases; in the remaining cases, CCA either failed to yield sufficient metaphase cells (19/26) or was not done (7/26). Abnormal CGH profiles were identified in 39 patients (30.7%). DNA copy number losses (61%) were high compared to gains (39%), whereas partial chromosome changes (76%) were more common than whole chromosomes changes (24%). Recurrent losses were detected on chromosomes 7, 5q (comprising bands 5q15 to 5q33), 7q (7q32 approximately q36), 16q (16q13 approximately q21), and 17p, and gains were detected on chromosomes 8, 22, and 3q (comprising bands 3q26.1 approximately q27). Furthermore, distinct amplifications were identified in chromosome regions 21q, 13q12 approximately q13, and 13q21.1. No cryptic recurrent chromosomal imbalances were identified by CGH in cases with normal karyotypes. The concordance between CGH results and CCA was 72.5%. In the remaining cases, CGH gave additional information compared to CCA (20%) and partially failed to identify the alterations previously detected by CCA (7.5%). The majority of discrepancies arose from the limitations of the CGH technique, such as insensitivity to detect unbalanced chromosomal changes when occurring in a low proportion of cells. CGH increased the detection of unbalanced chromosomal alterations and allowed precise defining of partial or uncharacterized cytogenetical abnormalities. Application of the CGH technique is thus a useful complementary diagnostic tool for CCA in de novo AML cases with abnormal karyotypes or with unsuccessful cytogenetics.  相似文献   

15.
目的:评价组合探针荧光原位杂交(fluorescence in site hybridization,FISH)在检测骨髓增生异常综合征(myelodysplastic syndrome,MDS)常见染色体异常中的价值。方法:应用YAC248F5(5q31)、YAC938G5(7q32)、CEP8、YAC912C3(20q12)4种DNA探针,对核型未知的20例MDS患者进行FISH检测-5/5q-、-7/7q-、+8、20q-等常见染色体异常,并与常规细胞遗传学分析结果相比较。结果:20例MDS患者中,组合探针FISH检出13例有常见染色体异常(其中5例+8,1例-5/5q-,5例20q-,1例5q-合并20q-,复杂异常1例);而常规细胞遗传学发现5例常见染色体异常,1例+21,复杂异常1例,标记染色体1例,正常5例。结论:组合探针FISH是筛查MDS患者常见染色体异常的有效手段。  相似文献   

16.
A five-year-old Caucasian male presented with developmental delay, minor dysmorphic features, and hyperactivity. Cytogenetic analysis showed the presence of a marker chromosome in the majority of cells analyzed. Fluorescence in situ hybridization (FISH) analyses using several alpha satellite probes, including D13Z1/D21Z1, did not reveal any signal on the marker chromosome. Subsequent multicolor FISH (M-FISH) indicated the marker to be derived from chromosome 13, and FISH with a chromosome 13 paint confirmed this finding. The absence of D13Z1/D21Z1 signal on the marker suggested that it was analphoid in nature. Comparative genomic hybridization (CGH) was utilized to further characterize the region of chromosome 13 from which the marker originated, and unexpectedly revealed a gain of chromosomal material at both the centromeric regions of chromosomes 3 and 13. In view of the CGH results, extensive FISH studies with D3Z1 and D13Z1/D21Z1 were performed and revealed the presence of four cell lines comprising one normal cell line (50.5%), a cell line with a chromosome 3 derived marker (19%), a cell line containing a marker derived from chromosome 13 (20%), and a cell line with both markers (10.5%). As the two markers appeared morphologically similar by GTG banding, all 47,XY metaphases in the initial analysis were thought to comprise only a single marker. This is the first report, to our knowledge, of the presence of a chromosome 3 and a chromosome 13 marker in mosaic condition in a congenital disorder. In light of our experience, we urge caution in interpreting karyotypes with marker chromosomes. Our case illustrates the limitations of fluorescent DNA probes and sampling errors.  相似文献   

17.
A retrospective cytogenetic study of acute myeloid leukemias (AML) and myelodysplastic syndromes (MDS) was conducted by the Groupe Francophone de Cytogénétique Hématologique (GFCH) to evaluate the structural abnormalities of chromosome 5 associated with other chromosomal abnormalities, in particular of chromosome 7, in these pathologies. In all, 110 cases of AML/MDS were recruited based on the presence of chromosome 5 abnormalities under conventional cytogenetics and supplemented by a systematic fluorescence in situ hybridization study of chromosomes 5 and 7. The abnormalities of the long arm of chromosome 5 (5q) were deletions of various sizes and sometimes cryptic. The 5q abnormalities were associated with translocations in 54% of cases and were simple deletions in 46%. In 68% of cases, 5q deletions were associated with chromosome 7 abnormalities, and 90% of these presented a complex karyotype. Of the 110 patients, 28 had a hematopoietic disorder secondary to chemotherapy, radiotherapy, or both. Among 82 patients with de novo AML/MDS, 63 were older than 60 years. Chromosomal abnormalities often associated hypodiploidy and chromosome 5 and 7 abnormalities in complex karyotypes, features resembling those of secondary hemopathies. Systematic investigation of the exposure to mutagens and oncogenes is thus essential to specify the factors potentially involved in MDS/AML with 5q abnormalities.  相似文献   

18.
目的探讨多重荧光原位杂交(multiplex fluorescence in situ hybridization,M-FISH)及全染色体涂抹(whole chromosome painting,WCP)技术在骨髓增生异常综合征(myelodysplastic syndromes,MDS)复杂核型异常检测中的价值。方法对7例常规R显带具有复杂染色体异常的MDS患者应用M-FISH技术确定复杂染色体的重排及标记染色体的组成,识别微小易位。并进一步采用双色WCP技术验证M-FISH检测的结果。结果M-FISH不仅证实了R显带的结果,而且确定了R带核型分析没有确定的6种标记染色体、9种有不明来源的额外物质增加的染色体、5种衍生染色体的组成和来源及4种被忽略的微小易位。涉及17号染色体的异常及-5/5q-是MDS最为常见的两种染色体异常。WCP技术纠正了一些M-FISH漏检及误检的异常。结论M-FISH是明确复杂染色体异常的很有用的分子生物学工具,WCP是M-FISH技术的重要补充,R带核型分析结合分子细胞遗传学工具M-FISH和WCP可以更加准确地描述复杂染色体异常。  相似文献   

19.
The identification of marker chromosomes is important for genetic counseling. However, the origin or composition can rarely be defined with conventional cytogenetic technique alone. In this study, we investigated the incidences and types of marker chromosomes in Korean patients and attempted to establish a cost-effective diagnostic approach for marker chromosomes. We reviewed the karyotypes of 2,984 patients that were requested for the cytogenetic analysis between 1997 and 2003 at the Samsung Medical Center. Ten marker chromosomes were found and identified using fluorescent in situ hybridization (FISH). Among the ten marker chromosomes, six were supernumerary marker chromosomes (SMCs) and the rest were marker chromosomes in Turner syndrome (TS). The incidence of SMCs was 2.01/1,000, slightly higher than that previously reported. Five of six SMCs were satellited marker chromosomes. Three bisatellited marker chromosomes originated from chromosome 15 and two from chromosome 22. The origin of one SMC could not be identified. All marker chromosomes in TS originated from X- or Y chromosome. The application of FISH is indispensable to identify marker chromosomes, and the appropriate selection of probes is necessary for cost-effective analysis. For analyzing satellited marker chromosomes, application of probes for chromosome 15 followed by those for chromosome 22 is recommended and in cases of TS, probes for sex chromosomes should take precedence.  相似文献   

20.
Fluorescence in situ hybridization (FISH) or molecular cytogenetics is currently recognized as a reliable, sensitive, and reproducible technique for identifying the copy number and structure of chromosomes. FISH combines molecular genetics with classic cytogenetics and allows simultaneous morphologic evaluation on a single slide. Centromeric DNA probes are used to detect specific chromosomes and telomeric probes to demonstrate all chromosomes. Sequence-specific probes can localize in situ a single gene copy on a specific chromosome locus. FISH allows cytogenetic investigation of metaphase spreads and interphase nuclei. Several protocols have been proposed to analyze preparations from fresh samples or archival material. Comparative genomic hybridization (CGH) is a novel cytogenetic technique, which combines FISH with automatic digital image analysis. Comparative analysis of the hybridization products of tumor DNA and reference DNA with normal metaphase chromosomes, each labeled with color different fluorochrome, can retrieve chromosomal imbalances of the entire genome in a single experiment. FISH and CGH are powerful morphologic tools in understanding physiologic mechanisms and in resolving problems of the pathogenesis of several diseases. These techniques shed light on the cytogenetic background in many endocrinological disorders, providing a better understanding of the activities and alterations of endocrine cell function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号