首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Flavin-containing monooxygenase (FMO) expression in male mouse liver is altered after 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure or castration. Because TCDD is slowly eliminated from the body, we examined hepatic Fmo mRNA alterations for up to 32 days following 10 or 64 μg/kg TCDD exposure by oral gavage in male C57BL/6J mice. Fmo2 mRNA was significantly induced at 1, 4, and 8 days whereas Fmo3 mRNA was also induced at 32 days relative to controls. Fmo3 mRNA levels exhibited a dose-dependent increase at 4, 8, and 32 days after exposure; Fmo1, Fmo4, and Fmo5 mRNA did not exhibit clear trends. Because castration alone also increased Fmo2, Fmo3, and Fmo4 mRNA we examined the combined effects of castration and TCDD treatment on FMO expression. A greater than additive effect was observed with Fmo2 and Fmo3 mRNA expression. Fmo2 mRNA exhibited a 3-5-fold increase after castration or 10 μg/kg TCDD exposure by oral gavage, whereas an approximately 20-fold increase was observed between the sham-castrated control and castrated TCDD-treated mice. Similarly, treatment with 10 μg/kg TCDD alone increased Fmo3 mRNA 130- and 180-fold in the sham-castrated and castrated mice compared to their controls respectively, whereas, Fmo3 mRNA increased approximately 1900-fold between the sham control and castrated TCDD-treated mice. An increase in hepatic Fmo3 protein in TCDD-treated mice was observed by immunoblotting and assaying methionine S-oxidase activity. Collectively, these results provide evidence for isoform distinct time-, dose-, and castration-dependent effects of TCDD on FMO expression and suggest cross-talk between TCDD and testosterone signal transduction pathways.  相似文献   

2.
Epidemiological studies on 2,3,7,8,-tetrachlorodibenzo-p-dioxin (TCDD) exposure indicated high incidences of pulmonary dysfunctions and lung cancer. Animal studies also demonstrated lung cancer development in female, but not in male, rats exposed to TCDD. Such effects, however, have not been reported in polychlorinated biphenyls (PCB) exposure. In our present study, we have investigated the effects of TCDD and PCB126, with or without cotreatment with 17 beta-estradiol (E2), on a human bronchial epithelial cell line BEAS-2B. We found that treatment with either TCDD or PCB126 alone reduced cell numbers as well as thymidine incorporation. Cell death, however, was only detected in PCB126-, but not TCDD-, treated cultures. The TCDD-induced cell reduction, therefore, could not be contributed to cell death. Meanwhile, because TCDD- and PCB126-enhanced CYP1A1 and CYP1B1 expressions were significantly reduced by the AhR antagonist and CYP1 inhibitor alpha-naphthoflavone (ANF), this indicated that the effects of TCDD and PCB126 were AhR and cytochrome p450 1 dependent. We also found that while E2 itself did not alter CYP1A1 and CYP1B1 expressions, cotreatment of E2 with TCDD or PCB126 would significantly enhance TCDD-, but not PCB126-, induced toxicity. We further demonstrated that in the presence of E2, 1 nM TCDD increased the production of E2 metabolites, 2-methoxyestradiol (2-MeOE2) and 4-methoxyestradiol (4-MeOE2). PCB126, however, only increased 2-MeOE2 formation without significant induction of 4-MeOE2. We believe that these metabolites, especially 4-MeOE2, interacted with TCDD to further suppress cell growth. Our data provided the first demonstration on the enhancement of TCDD-induced toxicity in human lung cells via interaction with estrogen.  相似文献   

3.
PCB concentrations in some foods from four European countries.   总被引:1,自引:0,他引:1  
Samples of salmon, butter and cabbage from Belgium, Italy, Spain and Portugal were analysed for their content in total, non-dioxin-like (as represented by the so-called seven indicator-PCBs: congeners 28, 52, 101, 118, 138, 153 and 180) and dioxin-like PCBs (mono-ortho and non-ortho PCBs). Salmon and cabbage from Belgium, and butter from Portugal and Belgium, contained less total and non-dioxin-like PCBs than those from other countries. Samples from Italy had the highest concentrations. Similar patterns were observed for dioxin-like PCBs (as represented by the TCDD-equivalents of toxicity, WHO-TEQs), with the lowest values in Belgium and Portugal for salmon, in Portugal for butter and in Belgium for cabbage. Differences up to five-fold in PCB concentrations and TEQ values were seen among commodities from the four countries. The implication is that it might be worthwhile monitoring, with selection of the least contaminated commodities, to reduce the PCB exposure of the general population. This could have health consequences, because daily intakes are higher than the tolerable levels for a considerable part of the European population.  相似文献   

4.
A metabonomic approach using 1H NMR spectroscopy was adopted to investigate the metabonomic pattern of rat urine after oral administration of environmental endocrine disruptors (EDs) polychlorinated biphenyls (PCBs) and 2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD) alone or in combination and to explore the possible hepatotoxic mechanisms of combined exposure to PCBs and TCDD. 1H NMR spectra of urines collected 24 h before and after exposure were analyzed via pattern recognition by using principal component analysis (PCA). Serum biochemistry and liver histopathology indicated significant hepatotoxicity in the rats of the combined group. The PCA scores plots of urinary 1H NMR data showed that all the treatment groups could be easily distinguished from the control group, so could the PCBs or TCDD group and the combined group. The loadings plots of the PCA revealed remarkable increases in the levels of lactate, glucose, taurine, creatine, and 2-hydroxy-isovaleric acid and reductions in the levels of 2-oxoglutarate, citrate, succinate, hippurate, and trimethylamine-N-oxide in rat urine after exposure. These changes were more striking in the combined group. The changed metabolites may be considered possible biomarker for the hepatotoxicity. The present study demonstrates that combined exposure to PCBs and TCDD induced significant hepatotoxicity in rats, and mitochondrial dysfunction and fatty acid metabolism perturbations might contribute to the hepatotoxicity. There was good conformity between changes in the urine metabonomic pattern and those in serum biochemistry and liver histopathology. These results showed that the NMR-based metabonomic approach may provide a promising technique for the evaluation of the combined toxicity of EDs.  相似文献   

5.
The effects of maternal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during pregnancy on fetal brain growth and neurobehavioral development in early developmental stages were investigated using rat offspring. TCDD in corn-oil (0.1microg/kg) was orally administrated to the dams from the 9th to 19th gestational day. When TCDD effects on the fetal brain weight were analyzed on the 19th gestational day, weight ratio of the brain to the whole body, and that of the forebrain without the cerebral cortex to the whole brain were larger in the exposed group than those of the control group, suggesting premature fetal brain development. TCDD effects on motor functions were investigated using newborns in an inclined plane task. Motor development assessed by righting response on an inclination was delayed in the exposed offspring in the 8th-12th postnatal day, especially in male. Also, TCDD effects on active avoidance behavior in a shuttle box were investigated using the offspring after weaning. Latency in the active avoidance learning was longer, and locomotor activity was reduced in the exposed male offspring in the 41st-44th postnatal day. The results demonstrated that maternal TCDD exposure delayed fetal brain growth and neurodevelopment of the offspring in early stage, especially in male rats.  相似文献   

6.
Recently, the effect of exposure to persistent organic pollutants (POPs) on sperm concentration was only seen in men with a short androgen receptor (AR) gene CAG repeat. In order to investigate whether these effects could be observed also in vitro, we tested the impact of 2,2′,4,4′,5,5′-hexachlorobiphenyl (CB-153) and 1,1-bis-(4-chlorophenyl)-2,2-dichloroethene (4,4′-DDE) on 5α-dihydrotestosterone activated ARs containing 16, 22 and 28 CAG repeats, respectively. Single exposure to 4,4′-DDE had the most pronounced effect on the AR activity containing 16 CAG repeats, whereas 28 CAG was the most sensitive variant when a mixture of the two compounds was added. Thus, our in vitro results have confirmed the in vivo data indicating a CAG repeat length dependent effect of endocrine disrupters on the AR activity.  相似文献   

7.
We studied the effect of administration of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) by i.p. injection once every 2 weeks in combination with a high-fat (HF) diet for 8 or 16 weeks on the body and organ weight changes as well as on the hepatic enzyme activity for estrogen metabolism in C3H/HeN female mice. Administration of TCDD at 100 microg/kg b.w. once every 2 weeks for 8 weeks increased the body weight by 46% in the HF diet-fed animals, but not in the regular diet-fed animals. This is the first observation suggesting that TCDD at a high dose (100 microg/kg b.w.), but not at lower doses (1 or 10 microg/kg b.w.), may have a strong obesity-inducing effect in C3H/HeN mice fed an HF diet. While TCDD increased liver weight and decreased thymus weight in animals, these effects were enhanced by feeding animals an HF diet. Metabolism studies showed that TCDD administration for 8 or 16 weeks increased the liver microsomal activity for the 2- and 4-hydroxylation of 17 beta-estradiol in animals fed a control diet, but surprisingly not in animals fed an HF diet. Treatment with TCDD dose-dependently increased the hepatic activity for the O-methylation of catechol estrogens in both control and HF diet-fed animals, and it also decreased the levels of liver microsomal sulfatase activity for hydrolysis of estrone-3-sulfate. TCDD did not significantly affect the hepatic enzyme activity for the glucuronidation or esterification of endogenous estrogens. It is suggested that enhanced metabolic inactivation of endogenous estrogens by hepatic estrogen-metabolizing enzymes in TCDD-treated, control diet-fed animals contributes importantly to the reduced incidence of estrogen-associated tumors in animals treated with TCDD.  相似文献   

8.
Although exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) clearly impairs T cell-dependent immune responses, the mechanisms underlying TCDD-induced T cell dysfunction are unclear. With the goal of determining precisely how exposure to TCDD impairs the activation of CD8(+) T cells in vivo, we used a well-defined T cell receptor (TCR) transgenic system. Greater than 95% of the CD8(+) T cells in F5 transgenic mice possess TCR specific for a peptide from influenza A virus expressed in the context of H-2D(b). Unexpectedly, we discovered that exposure to TCDD did not alter CD8(+) T cell function in the transgenic mice. Specifically, treatment of F5 mice with TCDD did not affect the recruitment of virus-specific CD8(+) T cells to the lung, nor did it impair the ability of CD8(+) T cells in the lymph node to produce cytokines, or to clonally expand or differentiate. This is in direct contrast to the suppressive effects of TCDD on the response of CD8(+) T cells in wild-type mice. Exposure of F5 mice to TCDD induced CYP1A1 and suppressed the production of virus-specific antibodies. Likewise, upon adoptive transfer into wild-type mice, TCDD suppressed the expansion and differentiation of F5-derived CD8(+) T cells. This indicates that the F5 mice and lymphocytes derived from them are not inherently resistant to the immunosuppressive effects of TCDD. Rather, our data suggest that in the context of a supraphysiological number of antigen-specific CD8(+) T cells, the function of these cells was not affected by exposure to TCDD. Given that antibody production in the F5 mice was sensitive to suppression by TCDD, while the CD8 response was resistant, our data provide a new perspective on the ways in which exposure to TCDD adversely affects B and T lymphocyte function.  相似文献   

9.
10.
Our previous study showed that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure of NC/Nga mice, a mouse model of atopic dermatitis, induces no dermal changes. In the present study, to investigate whether TCDD exacerbates atopic dermatitis-like skin lesions elicited in NC/Nga mice, NC/Nga mice were applied with picryl chloride (PC), and then were exposed to a single oral dose of 0 (control), 5, and 20 microg TCDD/kg. Two weeks later, spleens, blood, and skin specimens were collected. TCDD exposure increased the production of Th1-type cytokine IFN-gamma, but not Th2-type cytokine IL-4, from spleen cells stimulated with a mitogen. The plasma total IgE antibody levels of the TCDD-exposed mice remained at control levels. On the other hand, TCDD exposure markedly increased the mast cell infiltration and degranulation in PC-sensitized NC/Nga mice histologically, as compared with control mice. These results suggest that TCDD exposure exacerbates atopic dermatitis-related inflammation with no increase of IgE antibody production and that TCDD may be one of the environmental pollutants that induce exacerbations of atopic diseases.  相似文献   

11.
12.
Aversion to novel food items was studied in male rats and mice after 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure using chocolate consumption as an indicator. The correlation of this phenomenon with susceptibility to acute toxicity and CYP1A1 induction was examined by determining the dose-response of chocolate aversion in differently dioxin-sensitive rat lines after TCDD (0.01-10 μg/kg). Furthermore, the dependence of this behavioral alteration on the AH receptor (AHR) was studied employing AHR-deficient and wild-type mice. We offered chocolate for both species as a novel food item immediately after the exposure, and it was available with standard rodent chow for 3 days. The ED50 value for the extremely resistant rat line A (LD50 value > 10,000 μg/kg) was 0.36 μg/kg, for the semi-resistant line B (LD50 value 830 μg/kg) 1.07 μg/kg and for the TCDD-sensitive line C (LD50 value 40 μg/kg) 0.34 μg/kg. Interestingly, the ED50 values for chocolate aversion were very similar to those for CYP1A1 induction in these rat lines. Findings on AHR-deficient and wild-type mice implied the involvement of the AHR in this intriguing response, which may thus represent a mechanism to restrict exposure to potentially toxic dietary substances causing hepatic induction of drug-metabolizing enzymes.  相似文献   

13.
Congenital hydronephrosis is a serious disease occurring among infants and children. Besides the intrinsic genetic factors, in utero exposure to a xenobiotic, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), has been suggested to induce hydronephrosis in rodents owing to anatomical obstruction in the ureter. Here, we report that hydronephrosis induced in mouse pups exposed lactationally to TCDD is not associated with anatomical obstruction, but with abnormal alterations in the subepithelial mesenchyma of the ureter. In the kidneys of these pups, the expressions of a battery of inflammatory cytokines including monocyte chemoattractant protein (MCP)-1, tumor necrosis factor α (TNFα) and interleukin (IL) -1β were up-regulated as early as postnatal day (PND) 7. The amounts of cyclooxygenase (COX) -2 mRNA and protein as well as prostaglandin E2 (PGE2) were conspicuously up-regulated in an arylhydrocarbon-receptor-dependent manner in the TCDD-induced hydronephrotic kidney, with a subsequent down-regulation of the gene expressions of Na+ and K+ transporters, NKCC2 and ROMK. Daily administration of a COX-2 selective inhibitor to newborns until PND 7 completely abrogated the TCDD-induced PGE2 synthesis and gene expressions of inflammatory cytokines and electrolyte transporters, and eventually prevented the onset of hydronephrosis. These findings suggest an essential role of COX-2 in mediating the TCDD action of inducing hydronephrosis through the functional impairment rather than the anatomical blockade of the ureter.  相似文献   

14.
Mercuric ions accumulate preferentially in renal tubular epithelial cells and bond with intracellular thiols. Certain metal-complexing agents have been shown to promote extraction of mercuric ions via the multidrug resistance-associated protein 2 (MRP2). Following exposure to a non-toxic dose of inorganic mercury (Hg2+), in the absence of complexing agents, tubular cells are capable of exporting a small fraction of intracellular Hg2+ through one or more undetermined mechanisms. We hypothesize that MRP2 plays a role in this export. To test this hypothesis, Wistar (control) and TR rats were injected intravenously with a non-nephrotoxic dose of HgCl2 (0.5 μmol/kg) or CH3HgCl (5 mg/kg), containing [203Hg], in the presence or absence of cysteine (Cys; 1.25 μmol/kg or 12.5 mg/kg, respectively). Animals were sacrificed 24 h after exposure to mercury and the content of [203Hg] in blood, kidneys, liver, urine and feces was determined. In addition, uptake of Cys-S-conjugates of Hg2+ and methylmercury (CH3Hg+) was measured in inside-out membrane vesicles prepared from either control Sf9 cells or Sf9 cells transfected with human MRP2. The amount of mercury in the total renal mass and liver was significantly greater in TR rats than in controls. In contrast, the amount of mercury in urine and feces was significantly lower in TR rats than in controls. Data from membrane vesicles indicate that Cys-S-conjugates of Hg2+ and CH3Hg+ are transportable substrates of MRP2. Collectively, these data indicate that MRP2 plays a role in the physiological handling and elimination of mercuric ions from the kidney.  相似文献   

15.
Previous studies have shown that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) can arrest molar tooth development in rats after in utero and lactational exposure, and that the sensitive stage is temporally restricted. To define the stage in which TCDD is able to arrest tooth development and the cellular background of the effect, mouse embryonic molar tooth explants including various early developmental stages from initiation to late cap stage were exposed to TCDD in organ culture. TCDD did not inhibit morphogenesis of the first molar teeth including the early bud-staged E12 first molars, but the teeth were smaller than in control cultures. Accordingly, the second molars underwent morphogenesis in the presence of TCDD when explanted at E15 when they were at the bud stage. TCDD arrested their development when explanted at E14 when they had not yet reached the early bud stage. Immunohistochemical localization of incorporated bromodeoxyuridine in cultured E14 teeth showed that TCDD did not affect cell proliferation. Localization of apoptosis by terminal deoxynucleotidyl transferase (TdT)-mediated nick end labeling (TUNEL) method revealed that TCDD enhanced apoptosis of dental epithelial cells, especially in the dental lamina of both the first and second molars, and in the inner dental epithelium at the cusp tips of the first molars. Thus, TCDD can arrest tooth development in vitro if the exposure starts at the initiation stage, whereas exposure at later stages leads to smaller tooth size and deformation of cuspal morphology. TCDD interferes with tooth development by stimulating apoptosis in those cells of the dental epithelium, which are predetermined to undergo apoptosis during normal development.  相似文献   

16.
17.
As protein binding of uremic toxins is not well understood, neither in chronic kidney disease (CKD) progression, nor during a hemodialysis (HD) session, we studied protein binding in two cross-sectional studies. Ninety-five CKD 2 to 5 patients and ten stable hemodialysis patients were included. Blood samples were taken either during the routine ambulatory visit (CKD patients) or from blood inlet and outlet line during dialysis (HD patients). Total (CT) and free concentrations were determined of p-cresylglucuronide (pCG), hippuric acid (HA), indole-3-acetic acid (IAA), indoxyl sulfate (IS) and p-cresylsulfate (pCS), and their percentage protein binding (%PB) was calculated. In CKD patients, %PB/CT resulted in a positive correlation (all p < 0.001) with renal function for all five uremic toxins. In HD patients, %PB was increased after 120 min of dialysis for HA and at the dialysis end for the stronger (IAA) and the highly-bound (IS and pCS) solutes. During one passage through the dialyzer at 120 min, %PB was increased for HA (borderline), IAA, IS and pCS. These findings explain why protein-bound solutes are difficult to remove by dialysis: a combination of the fact that (i) only the free fraction can pass the filter and (ii) the equilibrium, as it was pre-dialysis, cannot be restored during the dialysis session, as it is continuously disturbed.  相似文献   

18.
Halogenated aromatic hydrocarbons (HAHs) are ubiquitous environment contaminants that produce many of their toxic effects by binding to the aryl hydrocarbon receptor (AhR). However, several investigations have demonstrated that certain polychlorinated biphenyl (PCB) congeners, principally di-ortho-chlorinated PCB congeners, or mixtures containing multiple di-ortho-chlorinated PCBs, inhibit AhR-mediated responses induced by other toxic HAHs. Most relevant to the present study are past reports demonstrating antagonism by these uniquely acting PCB congeners on AhR agonist-mediated inhibition of humoral immune responses. The mechanism responsible for antagonism of AhR agonists by certain PCBs is presently unknown. The present study evaluated the antagonist activity of several di-ortho-substituted PCB congeners [PCB47 (2,2',4,4'), PCB52 (2,2',5,5'), PCB128 (2,2',3,3',4,4'), and PCB153 (2,2',4,4',5,5')] when present in combination with AhR agonists [TCDD (2,3,7,8,-tetrachlorodibenzo-p-dioxin), PCB126 (3,3',4,4',5), and PCB77 (3,3',4,4')] on CYP1A1 induction and inhibition of lipopolysaccharide (LPS)-induced immunoglobulin production in the CH12.LX B cell line. In contrast to non-ortho-substituted PCB (PCB77), which showed additive effects on CYP1A1 induction in combination with TCDD, all of the di-ortho-substituted PCBs examined produced antagonism. Di-ortho-substituted PCB (PCB52) also antagonized TCDD- or PCB126- mediated inhibition of IgM secretion and immunoglobulin heavy chain mRNA expression in the LPS-activated B cells. In addition, PCB52 inhibited TCDD-induced AhR DNA binding to a dioxin-responsive element. Collectively, these results suggest that the mechanism responsible for antagonism by di-ortho-substituted PCB congeners of AhR agonist-mediated CYP1A1 induction and inhibition of antibody responses in B cells occurs through interference with agonist activation of the cytosolic AhR complex.  相似文献   

19.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) is an environmental toxicant with a polyhalogenated aromatic hydrocarbon structure and is one of the most toxic man-made chemicals. Exposure to 2,3,7,8-TCDD induces reproductive toxicity, immunotoxicity, and hepatotoxicity. In this study, we evaluated how 2,3,7,8-TCDD-induced hepatotoxicity affect the expression of heat shock proteins and antioxidant enzymes using the real-time polymerase chain reaction (PCR) in rat. 2,3,7,8-TCDD increased heat shock protein (Hsp27, α-B-crystallin, Mortalin, Hsp105, and Hsp90s) and antioxidant enzymes (SOD-3, GST and catalase) expression after a 1 day exposure in livers of rats, whereas heat shock protein (α-B-crystallin, Hsp90, and GRP78) and antioxidant enzymes (SOD-1, SOD-3, catalase, GST, and GPXs) expression decreased on day 2 and then slowly recovered back to control levels on day 8. These results suggest that heat shock proteins and antioxidant enzymes were induced as protective mechanisms against 2,3,7,8-TCDD induced hepatotoxicity, and that prolonged exposure depressed their levels, which recovered to control levels due to reduced 2,3,7,8-TCDD induced hepatotoxicity.  相似文献   

20.
Dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD) is known to cause bone toxicity, particularly during animal development, although its action mechanism to cause this toxicity has yet to be elucidated. Mouse pups were exposed to TCDD via dam's milk that were administered orally with 15 μg TCDD/kg b.w. on postnatal day 1. Here we report that TCDD causes up-regulation of vitamin D 1α-hydroxylase in kidney, resulting in a 2-fold increase in the active form of vitamin D, 1,25-dihydroxyvitamin D3, in serum. This action of TCDD is not caused by changes in parathyroid hormone, a decrease in vitamin D degrading enzyme, vitamin D 24-hydroxylase, or alterations in serum Ca2+ concentration. Vitamin D is known to affect bone mineralization. Our data clearly show that TCDD-exposed mice exhibit a marked decrease in osteocalcin and collagen type 1 as well as alkaline phosphatase gene expression in tibia by postnatal day 21, which is accompanied with a mineralization defect in the tibia, lowered activity of osteoblastic bone formation, and an increase in fibroblastic growth factor-23, a sign of increased vitamin D effect. Despite these significant effects of TCDD on osteoblast activities, none of the markers of osteoclast activities was found to be affected. Histomorphometry confirmed that osteoblastic activity, but not bone resorption activity, was altered by TCDD. A prominent lesion commonly observed in these TCDD-treated mice was impaired bone mineralization that is characterized by an increased volume and thickness of osteoids lining both the endosteum of the cortical bone and trabeculae. Together, these data suggest that the impaired mineralization resulting from reduction of the osteoblastic activity, which is caused by TCDD-induced up-regulation of vitamin D, is responsible for its bone developmental toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号