首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Non-specific mental retardation (MR) is a condition in which MR appears to be the only consistent manifestation. The X linked form (MRX) is genetically heterogeneous. We report clinical, cytogenetic, and linkage data on a family with X linked non-specific MR. Two point and multi-point linkage analysis with 18 polymorphic markers, covering the entire chromosome, showed close linkage to DXS1001 and DXS425 with a maximal lod score of 2.41 at 0% recombination. DXS178 and the gene for hypoxanthine phosphoribosyl-transferase (HPRT), located in Xq22 and Xq26 respectively, flank the mutation. All other chromosomal regions could be excluded with odds of at least 100:1. To our knowledge there is currently no other non-specific MR gene mapped to this region. Therefore, the gene causing MR in this family can be considered to be a new, independent MRX locus (MRX35).  相似文献   

2.
A family is described with five affected males segregating a new gene for non-specific X linked mental retardation (MRX). Linkage analysis localised the gene at Xq28-qter. The maximum lod score was 2.89 with DXS52 (St14) at theta = 0.0. A recombinant was observed with DXS304 (U6.2) defining the proximal limit to the localisation. No evidence for linkage was determined using markers at several points along the remainder of the X chromosome, including the regions known to contain MRX1 and MRX2. This delineates the third gene for non-specific X linked mental retardation, MRX3.  相似文献   

3.
Nonspecific X-linked mental retardation is a heterogeneous condition consisting of nonsyndromal mental retardation in males. It is caused by mutation in one of several genes on the X chromosome (MRX genes). Here we report on the localization of a presumptive MRX gene to chromosomal region Xq24-q26 in a German family with nonspecific X-linked mental retardation (MRX 75, HUGO Human Gene Nomenclature Committee). Two point linkage analysis with 23 informative markers gave a lod score of 2.53 at theta = 0 for markers DXS425, DXS1254, DXS1114, and HPRT.  相似文献   

4.
More than 100 X-linked mental retardation syndromes have been described. We report the localization of the disease gene, MRX23, in one family to Xq23-24. Affected family members present with non- specific X-linked mental retardation with verbal disability (BDOAS 10, 1-100). MRX23 is tightly linked to the markers DXS1220 (Z = 3.76 at theta = 0.1) and DXS424 (Z = 3.9 at theta = 0.06). Multipoint linkage analysis, taking five loci (DXS1072-0.07-DXS1220-0.014-MRX23-0.01-DXS 424-0.08-DXS1001) at a time, gives a maximum LOD score of 6.7 between these two markers. The next most likely location, between DXS424 and DXS1001 is 120-fold less likely. Haplotype analysis also indicates the most likely location for the disease gene is between DXS1220 and DXS424.   相似文献   

5.
Isolated mental retardation is clinically and genetically heterogenous and may be inherited in an autosomal dominant, autosomal recessive, or X-linked manner. We report here a linkage analysis in a large family including 15 members, 6 of whom presenting X-linked non-syndromic mental retardation (MRX). Two-point linkage analysis using 23 polymorphic markers covering the entire X chromosome demonstrated significant linkage between the causative gene and DXS8055 with a maximum LOD score of 2.98 at theta = 0.00. Haplotype analysis indicated location for the disease gene in a 23.1 cM interval between DXS1106 and DXS8067. This MRX localization overlaps with 7 XLMR loci (MRX23, MRX27, MRX30, MRX35, MRX47, MRX53, and MRX63). This interval contains two genes associated with non-syndromic mental retardation (NSMR), namely the PAK3 gene, encoding a p21-activated kinase (MRX30 and MRX47) and the FACL4 gene encoding a fatty acyl-CoA ligase (MRX63). As skewed X-inactivation, an apparently constant feature in FACL4 carrier females was not observed in an obligate carrier belonging to the MRX family presented here, the PAK3 gene should be considered as the strongest candidate for this MRX locus.  相似文献   

6.
7.
X linked recessive idiopathic hypoparathyroidism (HPT) has been observed in two kindreds from Missouri, USA. Affected subjects, who are males, suffer from infantile onset of epilepsy and hypocalcaemia, which appears to be the result of an isolated congenital defect of parathyroid gland development; females are not affected and are normocalcaemic. The gene causing HPT has been previously mapped to a 7 cM interval, flanked centromerically by F9 and telomerically by DXS98, in Xq26-q27, and an analysis of mitochondrial DNA has established a common ancestry for these two kindreds. In order to define further the map location of HPT and thereby facilitate its isolation, we have undertaken linkage studies using polymorphic loci whose order has been established as Xcen - DXS1001 - DXS294 - DXS102 - F9 - DXS1232 - DXS984 - CDR1 - DXS105 - DXS1205 - DXS1227 - DXS98 - DXS52 - Xqter, within this region. Our results established linkage (lod score > 3) between HPT and eight of these 12 loci and indicated that the most likely location of HPT was within a 1.5 Mb interval flanked centromerically by F9 and telomerically by DXS984. Thus, the results of this study have helped to refine the map location of HPT, and this will facilitate the identification of this putative developmental gene and its role in the embryological formation of the parathyroids.  相似文献   

8.
Nonspecific X‐linked mental retardation is a heterogeneous condition consisting of non‐syndromal mental retardation in males. It is caused by mutation in one of several genes on the X chromosome (MRX genes). Here we report on the localization of a presumptive MRX gene to chromosomal region Xq24–q26 in a German family with nonspecific X‐linked mental retardation (MRX 75, HUGO Human Gene Nomenclature Committee). Two point linkage analysis with 23 informative markers gave a lod score of 2.53 at Θ = 0 for markers DXS425, DXS1254, DXS1114, and HPRT. Am. J. Med. Genet. 93:290–293, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

9.
We describe a large family with nonspecific X-linked mental retardation (MRX 47). An X-linked recessive transmission is suggested by the inheritance from the mothers in two generations of a moderate to severe form of mental retardation in six males, without any specific clinical findings. Two point linkage analysis demonstrated significant linkage between the disorder and two markers in Xq23 (Zmax = 3.75, θ = 0). Multipoint linkage analyses confirmed the significant linkage with a maximum lod score (Z = 3.96, θ = 0) at DXS1059. Recombination events observed with the flanking markers DXS1105 and DXS8067 delineate a 17cM interval. This interval overlaps with several loci of XLMR disorders previously localized in Xq23–q24, which are reviewed herein. Am. J. Med. Genet. 72:324–328, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
Clinical and molecular studies are reported on a family (MRX73) of five males with non-specific X-linked mental retardation (XLMR). A total of 33 microsatellite and RFLP markers was typed. The gene for this XLMR condition was been linked to DXS1195, with a lod score of 2.36 at theta = 0. The haplotype and multipoint linkage analyses suggest localization of the MRX73 locus to an interval of 2 cM defined by markers DXS8019 and DXS365, in Xp22.2. This interval contains the gene of Coffin-Lowry syndrome (RSK2), where a missense mutation has been associated with a form of non-specific mental retardation. Therefore, a search for RSK2 mutations was performed in the MRX73 family, but no causal mutation was found. We hypothesize that another unidentified XLMR gene is located near RSK2.  相似文献   

11.
Clinical and molecular studies are reported on a Basque family (MRX82) with nonsyndromic X-linked mental retardation (XLMR) in five affected males. A total of 38 microsatellite markers were typed. The XLMR locus has been linked to DXS8067, DXS1001, DXS425, DXS7877, and DXS1183 with a maximum LOD score of 2.4. The haplotype studies and multipoint linkage analysis suggest a localization of the MRX82 locus to an interval of 7.6 Mb defined by markers DXS6805 and DXS7346, in Xq24 and Xq25, respectively. No gene contained in this interval has been so far associated with nonsyndromic mental retardation, except for GRIA3, disrupted by a balanced translocation in a female patient with bipolar affective disorder and mental retardation. However, the search for mutations of this gene did not showed a pathogenic mutation in the present family. Given that there are other eight MRX families overlapping this interval, none of them with known mutation, we conclude that at least one new gene responsible for nonsyndromic mental retardation is located in this region.  相似文献   

12.
Nonsyndromic X-linked mental retardation (MRX) is a highly heterogeneous condition in which mental retardation appears to be the only consistent manifestation. According to the most recent data, 77 MRX families with a lod score of >2 have been mapped and eight genes have been cloned. We hereby report on a linkage analysis performed on a Greek family with apparently nonsyndromic MRX. The affected males have moderate to severe mental retardation, severe speech problems, and aggressive behavior. Two-point linkage analysis with 26 polymorphic markers spanning the entire X chromosome was carried out. We could assign the causative gene to a 27 Mb interval in Xq12-Xq21.33. The maximum LOD score was found for markers DXS1225, DXS8114, and DXS990 at 2.36, 2.06, 2.06, respectively at theta = 0.00. Recombination was observed for DXS983 at the proximal side and DXS6799 at the distal side. Nineteen other MRX families have been described with a partial overlapping disease gene interval in proximal Xq. No mutations were found in the MRX77 family for three known or candidate MRX genes, from this region OPHN1, RSK4, and ATR-X. These data indicate that the Xq12-Xq21.33 interval contains at least one additional MRX gene.  相似文献   

13.
Two genes responsible for X-linked mental retardation have been localised by linkage analysis. MRX30 maps to a 28 cM region flanked by the loci DXS990 (Xq21.3) and DXS424 (Xq24). A significant multipoint lod score of 2.78 was detected between the loci DXS1120 and DXS456. MRX31 maps to a 12 cM region that spans the centromere from DXS1126 (Xp11.23) to DXS1124 (Xq13.3). Significant two-point lod scores, at a recombination fraction of zero, were obtained with the loci DXS991 (Zmax = 2.06), AR (Zmax = 3.44), PGK1P1 (Zmax = 2.06) and DXS453 (Zmax = 3.31). The MRX30 localisation overlaps that of MRX8, 13, 20 and 26 and defines the position of a new MRX gene on the basis of a set of non-overlapping regional localisations. The MRX31 localisation overlaps the localisations of many of the pericentromeric MRX loci (MRX, 1, 4, 5, 7, 8, 9, 12, 13, 14, 15, 17, 20, 22 and 26). There are now at least 8 distinct loci associated with non-specific mental retardation on the X chromosome defined, in order from pter to qter, by localisation for MRX24, MRX2, MRX10, MRX1, MRX30, MRX27, FRAXE and MRX3. © 1996 Wiley-Liss, Inc.  相似文献   

14.
METHODS—A large family is described in which mental retardation segregates as an X linked trait. Six affected males in three generations were studied by linkage and clinical examination.
RESULTS—Characteristic clinical features include short stature, prominent lower lip, small testes, muscle wasting of the lower legs, kyphosis, joint hyperextensibility, abnormal gait, tremor, and decreased fine motor coordination. Affected subjects also had impaired speech and decreased attention span. A carrier female was mildly affected. A similar disorder was not found on review of our XLMR Database of 124 syndromes. Linkage analysis of 37 markers resulted in a lod score of 2.80 at DXS1212 and 2.76 at DXS425. The limiting markers were DXS424 and DXS1047. Ten of 124 XLMR syndromes and eight of 58 MRX families overlap this region.
CONCLUSIONS—In summary, this family appears to have a new XLMR syndrome localising to Xq24-q25.


Keywords: X linked mental retardation; Xq24-q25; syndrome  相似文献   

15.
Linkage analysis of a non-specific form of X linked mental retardation (MRX) was performed with 16 polymorphic markers spanning the entire X chromosome in a three generation Italian family, including four male patients with moderate mental retardation. One obligate carrier woman had mild mental retardation and another two had normal intelligence. The results indicate tight linkage to DNA markers DXS84 (L754), DXS164 (pERT87-15), and DXS278 (CRI-S232). A maximum lod score of 2.11 at theta = 0.00 was obtained with DXS164 and DXS278. The linked region spanned chromosomal bands Xp21.1-Xp22.3, that is, the same portion of the X chromosome where MRX2 and MRX10-13 have been previously localised.  相似文献   

16.
X-linked mental retardation (XLMR) is a heterogeneous disorder with both syndromic and non-syndromic forms. Here we describe the clinical and molecular characterisation of a family with a syndromic form of XLMR with hypogonadism and short stature. We investigated a family in which four male members in two generations presented with hypergonadotrophic hypogonadism associated with development of small and abnormal testes. In two of the males, late-onset testicular ascent was noted. In addition, all affected males had short stature (<0.4th centile) and mild learning difficulties and three out of the four had microcephaly. Karyotypes were normal and endocrine investigations confirmed primary testicular failure. The phenotype segregated as an X-linked trait. Haplotype and genetic two-point linkage analysis with 22 microsatellites excluded the whole X chromosome except for a region on Xq25-Xq27 encompassing 13.7Mb with a maximum LOD score of 1.1 for marker DXS8038 at theta=0.05. One family previously described as having XLMR with hypogonadism and short stature maps to the same X chromosome region implicated in our family. However, the more severe mental retardation, muscle wasting and tremor described in this other family would suggest that our family is affected by a novel XLMR syndrome.  相似文献   

17.
We report on a family in which non-syndromal mild to moderate mental retardation segregates as an X-linked trait (MRX41). Two point linkage analysis demonstrated linkage between the disorder and marker DXS3 in Xq21.33 with a lod score of 2.56 at θ = 0.0 and marker DXS1108 in Xq28 with a lod score of 3.82 at θ = 0.0. Multipoint linkage analysis showed that the odds for a location of the gene in Xq28 vs Xq21.33 are 100:1. This is the fourth family with non-specific X-linked mental retardation with Xq28-qter as the most likely gene localization. © 1996 Wiley-Liss, Inc.  相似文献   

18.
A family in which 6 males have X-linked mental retardation has been studied with polymorphic DNA probes. The males differ from unaffected males only in impaired intellect and in smaller head size. The gene that causes mental retardation in the family appears to be located in band Xq21 on the basis of linkage with 3 markers: DXS250, DXS345 and DXS3 (theta max = 0.00; Zmax = 1.6). A multipoint lod score of 2.36 was obtain with no recombination relative to DXS326 in Xq21. This family is considered to have nonspecific X-linked mental retardation and has been given the designation MRX8.  相似文献   

19.
Two families with nonspecific X-linked mental retardation (MRX) are presented. In the first family, MRX51, three male patients showed mild to borderline mental retardation. Multipoint linkage analysis yielded a maximal LOD score of 2.10 between markers DXS8012 and DXS1003, localizing the MRX51 gene at Xp11.3-p11.23. In the second family, XLMR7, three men showed moderate mental retardation (MR), and one possible female carrier had mild MR. Multipoint linkage analysis yielded an LOD score of 1.80 between markers DXS8063 and DXS1047, situating the disease gene at Xq23-q26.1. When the analysis was performed considering the affected female to be an expressing heterozygote carrier of the disease mutation, a maximal LOD score of 2.10 was found in the same region.  相似文献   

20.
Detailed physical mapping of oto-palato-digital (OPD) syndrome gene on the X-chromosome was attempted on a family of 3 generations with 2 affected men. Although the result remains statistically non-significant, it indicates that the OPD-I gene might be located on the distal Xq.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号