首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
As the key producer of cerebrospinal fluid (CSF), the choroid plexus (CP) provides a unique protective system in the central nervous system. CSF components are not invariable and they can change based on the pathological conditions of the central nervous system. hTe purpose of the present study was to assess the effects of non-traumatic and traumatic CSF on the differentiation of multipotent stem-like cells of CP into the neural and/or glial cells. CP epithelial cells were isolated from adult male rats and treated with human non-traumatic and traumatic CSF. Alterations in mRNA expression of Nestin and microtubule-associat-ed protein (MAP2), as the speciifc markers of neurogenesis, and astrocyte marker glial ifbrillary acidic protein (GFAP) in cultured CP epithelial cells were evaluated using quantitative real-time PCR. hTe data revealed that treatment with CSF (non-traumatic and traumatic) led to increase in mRNA expression levels of MAP2 and GFAP. Moreover, the expression of Nestin decreased in CP epithelial cells treated with non-traumatic CSF, while treatment with traumatic CSF signiifcantly increased its mRNA level compared to the cells cultured only in DMEM/F12 as control. It seems that CP epithelial cells contain multipotent stem-like cells which are inducible under pathological conditions including exposure to traumatic CSF because of its compositions.  相似文献   

2.
BACKGROUND: Studies have demonstrated that astrocytes may possess similar properties to neural stem cells/neural precursor cells and have the potential to differentiate into neurons. OBJECTIVE: To observe neuroepithelial stem cell protein (nestin) and glial fibrillary acidic protein (GFAP) expression following spinal cord injury, and to explore whether nestin+/GFAP+ cells, which are detected at peak levels in gray and white matter around the ependymal region of the central canal in injured spinal cord, possess similar properties of neural stem cells. DESIGN, TIME AND SETTING: A randomized, controlled experiment. The study was performed at the Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education between January 2004 and December 2006. MATERIALS: Rabbit anti-rat nestin, β-tubulinⅢ, mouse anti-rat GFAP, galactocerebroside (GaLC) antibodies were utilized, as well as flow cytometry. METHODS: A total of 60 male, Sprague Dawley rats, aged 8 weeks, were randomly assigned to control (n = 12) and model (n = 48) groups. The spinal cord injury model was established in the model group by aneurysm clip compression, while the control animals were not treated. The gray and white matter around the ependymal region of the central canal exhibited peak expression of nestin+/GFAP+ cells. These cells were harvested and prepared into single cell suspension, followed by primary and passage cultures. The cells were incubated with serum-containing neural stem cell complete medium. MAINOUTCOME MEASURES: Nestin and GFAP expression in injured spinal cord was determined using immunohistochemistry and double-labeled immunofluorescence at 1, 3, 5, 7, 14, 28, and 56 days post-injury. In addition, cell proliferation and differentiation were detected using immunofluorescence cytochemistry and flow cytometry. RESULTS: Compared with the control group, the model group exhibited significantly increased nestin and GFAP expression (P 〈 0.05), which reached peak levels between 3 and 7 days. The majority of cells in the ependymal region around the central canal were nestin+/GFAP- cells, while the gray and white matter around the ependymal region were full of nestin+/GFAP+ cells, with an astrocytic-like appearance. A large number of nestin+/GFAP+cells were observed in the model group cell culture, and the cells formed clonal spheres and displayed strong nestin-positive immunofluorescence staining. Following induced differentiation, a large number of GaLC-nestin, β-tubulin Ⅲ-nestin, and GFAP-nestin positive cells were observed. However, no obvious changes were seen in the control group. Cells in S stage, as well as the percentage of proliferating cells, in the model group were significantly greater than in the control group (P 〈 0.01), CONCLUSION: Spinal cord injury in the adult rat induced high expression of nestin+/GFAP+ in the gray and white matter around the ependymal region of the central canal. These nestin+/GFAP+ cells displayed the potential to self-renew and differentiate into various cells. The cells could be neural stem cells of the central nervous system.  相似文献   

3.
4.
This study describes a detailed process for obtaining brain glioma stem cells from freshly dissected human brain glioma samples using an immunomagnetic bead technique combined with serum-free media pressure screening.Furthermore,the proliferation,differentiation and self-renewal biological features of brain glioma stem cells were identified.Results showed that a small number of CD133 positive tumor cells isolated from brain glioma samples survived as a cell suspension in serum-free media and proliferated.Subcultured CD133 positive cells maintained a potent self-renewal and proliferative ability,and expressed the stem cell-specific markers CD133 and nestin.After incubation with fetal bovine serum,the number of glial fibrillary acidic protein and microtubule associated protein 2 positive cells increased significantly,indicating that the cultured brain glioma stem cells can differentiate into astrocytes and neurons.Western blot analysis showed that tumor suppressor phosphatase and tensin homolog was highly expressed in tumor spheres compared with the differentiated tumor cells.These experimental findings indicate that the immunomagnetic beads technique is a useful method to obtain brain glioma stem cells from human brain tumors.  相似文献   

5.
BACKGROUND: Human amniotic epithelial cells (HAECs) can differentiate into neurons, astrocytes and oligodendrocytes. They biologically secrete many active neurotrophins and have the capacity to metabolize dopamine enzymes. These features underlie a theoretical basis for the treatment of Parkinson's disease (PD). OBJECTIVE: To investigate the survival and differentiation of transplanted HAECs in the lateral ventricle of PD model rats, and to explore its effect on circling behavior, as well as levels of dopamine (DA), the metabolite homovanillic acid, dihydroxyphenyl acetic acid, 5-hydroxyindoleacetic acid, and 5-hydroxytryptamine in the striatum. DESIGN, TIME AND SETTING: A randomized, controlled, animal study was performed at the Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, and Shanghai Celstar Institute of Biotechnology from May 2007 to December 2008. MATERIALS: HAECs were derived from the placental chorion following caesarean delivery at the Shanghai International Matemal and Child Health Hospital. 6-hydroxydopamine (6-OHDA), and mouse anti-human Vimentin monoclonal antibody were purchased from Sigma, USA; mouse anti-human nestin and tyrosine hydroxylase (TH) monoclonal antibodies were purchased from Chemicon, USA. METHODS: A total of 114 healthy, adult, Sprague Dawley rats were randomly assigned to two groups: PD model [n = 90, stereotactic microinjection of 2 μL 6-OHDA (3.5 μg/uL) into the striatum] and control (n = 24, no treatment). The 51 successful PD model rats were randomly divided into 3 subgroups (n = 17): HAEC, PBS, and model. The HAEC and PBS groups were respectively injected with 10 μL PBS solution containing 1 × 10^5/mL HAECs or 10 pL PBS into the lateral ventricle. The model group was not treated. MAIN OUTCOME MEASURES: TH protein expression in the striatum was evaluated by immunohistochemistry 5 weeks after HAEC transplantation. At 10 weeks, HAEC survival in the lateral ventricle was investigated by immunofluorescent staining; differentiation of HAECs in the lateral and third ventricles was examined by TH immunohistochemistry; concentrations of DA, homovanillic acid, dihydroxyphenyl acetic acid, 5-hydroxyindoleacetic acid, and 5-hydroxytryptamine in the striatum, as well as DA concentration in the cerebrospinal fluid, were measured with high-performance liquid chromatography-electrochemical detection. Circling behavior of PD model rats was consecutively observed for 10 weeks following intraperitoneal injection of amphetamine 1 week after successful model establishment. RESULTS: tn the HAEC group, the number of TH-positive cells significantly increased in the striatum, and circling behavior significantly decreased, compared with the PBS and model groups (P 〈 0.01). In addition, monoamine concentrations in the striatum, as well as DA concentrations in the cerebrospinal fluid, significantly increased, compared with the PBS group (P 〈 0.05-0.01). Moreover, a large number of nestin-, vimentin-, and TH-positive cells were observed in the lateral and third ventricles following HAEC injection.CONCLUSION: HAECs survived for 10 weeks with no overgrowth following transplantation into the lateral ventricle of PD model rats. Moreover, the cells differentiated into dopaminergic neurons, which increased DA secretion. HAEC transplantation improved cycling behavior in PD model rats.  相似文献   

6.
Choroid plexus epithelial cells represent a continuation of, and have the same origin as, ventricular ependymal cells, and are regarded as modified ependymal cells. To extend previous studies of the use of choroid plexus ependymal cell (CPEC) grafting for nerve regeneration in the spinal cord, we investigated the capacity of cultured choroid plexus ependymal cells to differentiate into other types of glial cells in the spinal cord tissue. The choroid plexuses were excised from the fourth ventricle of green fluorescent protein (GFP)-transgenic mice and the cells were dissociated and cultured for 4-6 weeks. CPECs were harvested from the monolayer cultures and injected into the pre-lesioned spinal cords of wild-type mice of the same strain using a Hamilton syringe. One week after injection, some GFP-positive transplanted cells became immunohistochemically positive for glial fibrillary acidic protein (GFAP) but negative for neurofilament and myelin basic protein. All the GFAP-positive transplanted cells were negative for vimentin. Two weeks after grafting, immunoelectron microscopy showed that the GFP-positive transplanted cells that had gained GFAP immunoreactivity contained numerous bundles of intermediate filaments, a morphological characteristic similar to that of astrocytes, and were in close contact with adjacent host tissue. These results indicate that, when grafted into the spinal cord, at least some cultured choroid plexus ependymal cells have the capacity to differentiate into astrocytes.  相似文献   

7.
A comprehensive evaluation of myelination during normal human development is essential to understand the pathology of congenital diseases of white matter. The present study establishes quantitative values for normal oligodendrocyte-specific gene expression during the early stages of myelination in the human fetal spinal cord. Complementary techniques of Northern and immunoblotting were used to determine relative amounts of oligodendrocyte-specific mRNAs and proteins between 12 and 24 gestational weeks. Values were determined for myelin basic protein, 2′,3′-cyclic nucleotide 3′-phosphodiesterase, and proteolipid protein. The relative amount of myelin-associated glycoprotein mRNA was also estimated. To compare gene expression between glial cell types, the relative amounts of mRNA and protein were determined for glial fibrillary acidic protein (GFAP), a cell-type specific marker for astrocytes. All oligodendrocyte-specific genes expressed similar developmental kinetics. Between 12 and 15 gestational weeks, less than a five-fold increase was detected in the expression of these genes and their protein products. Between 15 and 22 gestational weeks, the relative amounts of mRNA and protein for the myelin genes increased more than 80-fold. The kinetics of GFAP expression were similar to those of the myelin-associated genes. Absolute values for the increase in mass of the human fetal spinal cord were also obtained. These results provide data that may aid in the neuropathologic assessment and characterization of myelin disorders in the preterm, neonatal, and pediatric spinal cord. J. Neurosci. Res. 47:332–340, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

8.
Following a unilateral lesion of the visual cortex (cortical areas 17, 18, and 18a) in adult rats, neurons in the ipsilateral dorsal lateral geniculate nucleus (LGN) are axotomized, which leads to their atrophy and death. The time course of this neuronal degeneration was studied quantitatively, and the astroglial response was examined with glial fibrillary acidic protein immunohistochemistry. More than 95% of the neurons in the ipsilateral LGN survive during the first 3 days following a lesion of the visual cortex. However, in the next 4 days, massive neuronal death ensues, reducing the number of surviving neurons to approximately 33% of normal by the end of the first postoperative week. Between 2 weeks and 24 weeks postoperatively, the number of neurons present in the LGN declines very gradually from 34% to 17% of normal. Three days after a lesion of the visual cortex, the mean cross-sectional areas of ipsilateral LGN neurons are 13% smaller than normal (87%). By 1 week after the operation, surviving LGN neurons have atrophied to 66% of their normal area. Subsequently, the size of surviving neurons declines slowly to approximately 50% of normal at 24 weeks after the cortical lesion. Astrocytes in the ipsilateral LGN also react to cortical damage. At 1 day after a lesion of the visual cortex, glial fibrillary acidic protein immunoreactivity in the LGN is almost undetectable, but a distinct increase in immunoreactivity is seen at 3 days. Immunoreactivity peaks between 1 week and 2 weeks postoperatively and, thereafter, remains intense for at least 24 weeks. Thus, following a lesion of the visual cortex, the somata of neurons in the LGN remain essentially normal morphologically for about 3 days before the onset of rapid atrophy and death. Moreover, most of the neural cell death that occurs in the LGN after axotomy takes place in the last half of the first postoperative week. J. Comp. Neurol. 392:252–263, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
10.
In this study, we loaded human umbilical cord mesenchymal stem cells onto human amniotic membrane with epithelial cells to prepare nerve conduits, i.e., a relatively closed nerve regeneration chamber. After neurolysis, the injured radial nerve was enwrapped with the prepared nerve conduit, which was fixed to the epineurium by sutures, with the cell on the inner surface of the conduit. Simultaneously, a 1.0 mL aliquot of human umbilical cord mesenchymal stem cell suspension was injected into the distal and proximal ends of the injured radial nerve with 1.0 cm intervals. A total of 1.75 x 107 cells were seeded on the amniotic membrane. In the control group, patients received only neurolysis. At 12 weeks after cell transplantation, more than 80% of patients exhibited obvious improvements in muscular strength, and touch and pain sensations. In contrast, these improvements were observed only in 55-65% of control patients. At 8 and 12 weeks, muscular electrophysiological function in the region dominated by the injured radial nerve was significantly better in the transplantation group than the control group. After cell transplantation, no immunological rejections were observed. These findings suggest that human umbilical cord mesenchymal stem cell-loaded amniotic membrane can be used for the repair of radial nerve injury.  相似文献   

11.
The terminal portion of the ls/ls mouse is congenitally aganglionic because the precursors of enteric neurons fail to enter this region. This animal was studied in order to gain insight into the origin of enteric glia and into the process by which the precursors of these cells colonize the gut. In control (CD-1) mice, immunoreactivity of the glial marker, glial fibrillary acidic protein, appeared for the first time in the fetal bowel at day E16 and, in adults, was much more intense within intraenteric neural elements than in nerves outside the bowel. Glial fibrillary acidic protein developed in tissue cultures of fetal intestine explanted before the protein appeared in situ, and before the bowel became innervated by extrinsic nerves; thus, the precursors of cells able to elaborate glial fibrillary acidic protein must have been present, but unrecognizable, in the original explants. This explant assay demonstrated that these glial precursors were present in all regions of the bowel of control mice, but not in the presumptive aganglionic bowel of ls/ls mice. The nerves (of extrinsic origin) in the aganglionic tissue of ls/ls mice showed a high level of immunoreactive glial fibrillary acidic protein; nevertheless, their ultrastructure was typical of peripheral nerve, not enteric plexus, and they contained Schwann cells, not enteric glia. These observations support the view that enteric glia are derived from the single wave of neural crest colonists that populates the enteric nervous system before the gut receives its extrinsic innervation. These glial precursors, like neuronal precursors, tend to be excluded from the presumptive aganglionic ls/ls bowel. In contrast, Schwann cells grow into the abnormal ls/ls gut with the extrinsic innervation. The enteric microenvironment appears to promote the expression of glial fibrillary acidic protein in both enteric glia and Schwann cells; however, even within the bowel, Schwann cells retain their characteristic morphology. It is thus probable that the normal enteric nervous system contains supporting cells of separate lineages, enteric glia and Schwann cells.  相似文献   

12.
Dopaminergic (DA) neuron therapy has been established as a new clinical tool for treating Parkinson's disease (PD). Prior to cell transplantation, there are two primary issues that must be resolved: one is the appropriate seed cell origin, and the other is the efficient inducing technique. In the present study, human umbilical cord blood‐derived mesenchymal stem cells (hUCB‐MSCs) were used as the available seed cells, and conditioned medium from human amniotic epithelial cells (ACM) was used as the inducing reagent. Results showed that the proportion of DA neuron‐like cells from hUCB‐MSCs was significantly increased after cultured in ACM, suggested by the upregulation of DAT, TH, Nurr1, and Pitx3. To identify the process by which ACM induces DA neuron differentiation, we pretreated hUCB‐MSCs with k252a, the Trk receptor inhibitor of brain‐derived neurotrophic factor (BDNF) and nerve growth factor (NGF), and found that the proportion of DA neuron‐like cells was significantly decreased compared with ACM‐treated hUCB‐MSCs, suggesting that NGF and BDNF in ACM were involved in the differentiation process. However, we could not rule out the involvement of other unidentified factors in the ACM, because ACM + k252a treatment does not fully block DA neuron‐like cell differentiation compared with control. The transplantation of ACM‐induced hUCB‐MSCs could ameliorate behavioral deficits in PD rats, which may be associated with the survival of engrafted DA neuron‐like cells. In conclusion, we propose that hUCB‐MSCs are a good source of DA neuron‐like cells and that ACM is a potential inducer to obtain DA neuron‐like cells from hUCB‐MSCs in vitro for an ethical and legal cell therapy for PD. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
Glial cells in the gut   总被引:7,自引:0,他引:7  
The enteric nervous system is composed of both neurons and glia. Recent evidence indicates that enteric glia-which vastly outnumber enteric neurons-are actively involved in the control of gastrointestinal functions: they contain neurotransmitter precursors, have the machinery for uptake and degradation of neuroligands, and express neurotransmitter-receptors which makes them well suited as intermediaries in enteric neurotransmission and information processing in the ENS. Novel data further suggest that enteric glia have an important role in maintaining the integrity of the mucosal barrier of the gut. Finally, enteric glia may also serve as a link between the nervous and immune systems of the gut as indicated by their potential to synthesize cytokines, present antigen and respond to inflammatory insults. The role of enteric glia in human disease has not yet been systematically studied, but based on the available evidence it is predictable that enteric glia are involved in the etiopathogenesis of various pathological processes in the gut, particularly such with neuroinflammatory or neurodegenerative components.  相似文献   

14.
15.
We previously reported that the transplantation of neural stem/progenitor cells (NSPCs) can contribute to the repair of injured spinal cord in adult rats and monkeys. In some cases, however, most of the transplanted cells adhered to the cavity wall and failed to migrate and integrate into the host spinal cord. In this study we focused on chondroitin sulfate proteoglycan (CSPG), a known constituent of glial scars that is strongly expressed after spinal cord injury (SCI), as a putative inhibitor of NSPC migration in vivo. We hypothesized that the digestion of CSPG by chondroitinase ABC (C-ABC) might promote the migration of transplanted cells and neurite outgrowth after SCI. An in vitro study revealed that the migration of NSPC-derived cells was inhibited by CSPG and that this inhibitory effect was attenuated by C-ABC pre-treatment. Consistently, an in vivo study of C-ABC treatment combined with NSPC transplantation into injured spinal cord revealed that C-ABC pre-treatment promoted the migration of the transplanted cells, whereas CSPG-immunopositive scar tissue around the lesion cavity prevented their migration into the host spinal cord in the absence of C-ABC pre-treatment. Furthermore, this combined treatment significantly induced the outgrowth of a greater number of growth-associated protein-43-positive fibers at the lesion epicentre, compared with NSPC transplantation alone. These findings suggested that the application of C-ABC enhanced the benefits of NSPC transplantation for SCI by reducing the inhibitory effects of the glial scar, indicating that this combined treatment may be a promising strategy for the regeneration of injured spinal cord.  相似文献   

16.
Various retinal injuries induced by ocular hypertension have been shown to induce plastic changes in retinal synapses, but the potential regulatory mechanism of synaptic plasticity after retinal injury was still unclear. A rat model of acute ocular hypertension was established by injecting saline intravitreally for an hour, and elevating the intraocular pressure to 14.63 kPa (110 mmHg). Western blot assay and immunofluorescence results showed that synaptophysin expression had a distinct spatiotemporal change that increased in the inner plexiform layer within 1 day and spread across the outer plexiform layer after 3 days. Glial fibrillary acidic protein expression in retinae was greatly increased after 3 days, and reached a peak at 7 days, which was also consistent with the peak time of synaptophysin expression in the outer plexiform layer following the increased intraocular pressure. Fluorocitrate, a glial metabolic inhibitor, was intravitreally injected to inhibit glial cell activation following high intraocular pressure. This significantly inhibited the enhanced glial fibrillary acidic protein expression induced by high intraocular pressure injury. Synaptophysin expression also decreased in the inner plexiform layer within a day and the widened distribution in the outer plexiform layer had disappeared by 3 days. The results suggested that retinal glial cell activation might play an important role in the process of retinal synaptic plasticity induced by acute high intraocular pressure through affecting the expression and distribution of synaptic functional proteins, such as synaptophysin.  相似文献   

17.
A rat model of Parkinson’s disease was established by 6-hydroxydopamine injection into the medial forebrain bundle. Bone marrow-derived mesenchymal stem cells (BMSCs) were isolated from the femur and tibia, and were co-cultured with 10% and 60% lesioned or intact striatal extracts. The results showed that when exposed to lesioned striatal extracts, BMSCs developed bipolar or multi-polar morphologies, and there was an increase in the percentage of cells that expressed glial fibrillary acidic protein (GFAP), nestin and neuron-specific enolase (NSE). Moreover, the percentage of NSE-positive cells increased with increasing concentrations of lesioned striatal extracts. However, intact striatal extracts only increased the percentage of GFAP-positive cells. The findings suggest that striatal extracts from Parkinson’s disease rats induce BMSCs to differentiate into neuronal-like cells in vitro.  相似文献   

18.
目的 观察人羊膜上皮细胞(HAECs)移植入帕金森病(PD)大鼠模型侧脑室后的存活及分化情况,及其对PD大鼠模型旋转行为、纹状体区多巴胺及其代谢产物的影响.方法 采用6-羟多巴立体定向脑内注射制作PD大鼠模型,将制模成功大鼠随机分成3组:人羊膜上皮细胞移植组(HAECs组)、磷酸缓冲组(PBS组)和帕金森组(PD组),1w后腹腔注射阿朴吗啡观察各组大鼠旋转行为的变化,连续观察10w,HAECs组5w后用人特异性抗体Nestin和Vimentin检测人羊膜细胞的存活情况,10w后酪氨酸羟化酶(TH)染色观察各组PD大鼠模型黑质部TH阳性神经元的变化情况及HAECs的分化情况,高效液相色谱--电化学仪测定纹状体多巴胺(DA)、高香草酸(HVA)、3,4-二羟基苯乙酸(DOPAC)等神经递质的水平.结果 HAECs在PD大鼠侧脑室内移植可以长期存活达10w,并且可以分化为DA能神经元,HAECs组大鼠旋转数较PBS组及PD组明显降低(P<0.01),黑质部TH阳性神经元数量较PD组及PBS组升高(P<0.01),HAECs组大鼠纹状体区DA及其代谢产物DOPAC、HVA含量较PBS组明显升高(P<0.05).结论 人羊膜上皮细胞移植入PD大鼠侧脑室可以改善PD大鼠的旋转行为,其机制可能与增加纹状体区DA等神经递质有关.  相似文献   

19.
Cell transplantation has come to the forefront of regenerative medicine alongside the discovery and application of stem cells in both research and clinical settings. There are several types of stem cells currently being used for pre-clinical regenerative therapies, each with unique characteristics, benefits and limitations. This brief review will focus on recent basic science advancements made with embryonic stem cells and induced pluripotent stem cells. Both embryonic stem cells and induced pluripotent stem cells provide platforms for new neurons to replace dead and/or dying cells following injury. Due to their capacity for reprogramming and differentiation into any neuronal type, research in preclinical rodent models has shown that embryonic stem cells and induced pluripotent stem cells can integrate, survive and form connections in the nervous system similar to de novo cells. Going forward however, there are some limitations to consider with the use of either stem cell type. Ethically, embryonic stem cells are not an ideal source of cells, genetically, induced pluripotent stem cells are not ideal in terms of personalized treatment for those with certain genetic diseases the latter of which may guide regenerative medicine away from personalized stem cell based therapies and into optimized stem cell banks. Nonetheless, the potential of these stem cells in central nervous system regenerative therapy is only beginning to be appreciated. For example, through genetic modification, stem cells serve as ideal platforms to reintroduce missing or downregulated molecules into the nervous system to further induce regenerative growth. In this review, we highlight the limitations of stem cell based therapies whilst discussing some of the means of overcoming these limitations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号